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Introduction

THE problem of low-thrust, minimum-time orbit transfer
has been studied analytically by several authors in the last

decades. The method of two time variables has been used by
Levin,1 Shi and Eckstein,2 and Eckstein and Shi3 to study the
effect of ad hoc thrust programs on the orbit without con-
sidering optimization. In an important paper, Edelbaum4

solved the optimal one-orbit control problem for the first
time, and obtained a suboptimal solution for the long time
scale problem.

In this Note we shall also use the method of two time scales,
separating the optimal control problem into a "fast" time
scale problem over one orbit, and a "slow" time scale
problem over the entire transfer. We shall recapitulate
Edelbaum's solution of the fast time scale problem, and then
we shall solve, for the first time, the optimal control problem
for the overall transfer. The optimal control law for the slow
time scale problem will be found in explicit form. This reduces
the slow time scale problem to a two-point boundary value
problem in semimajor axis inclination space. The solution
space for this problem has been globally mapped, and explicit
total velocity change requirements for any desired transfer
can be easily obtained. The solution assumes constant thrust
with decreasing mass of the vehicle, but is also optimum for
any slowly varying throttle program.

The Short Time Scale Problem
The optimal control problem over the fast time scale of one

orbit was first solved by Edelbaum. However, we quickly
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review those portions pertinent to our later discussion. For a
low-thrust vehicle in a nearly circular orbit, the two Lagrange
planetary equations we shall need (in their acceleration
component form) are (Danby5):

da _2Aa3/2cos$
dt~ V/I

d/

(1)

(2)

where ^ is the gravitational parameter, a the semimajor axis, /
the inclination, and / the true anomaly, measured from the
node since the eccentricity is small. The vehicle acceleration is
A, and the vehicle pitch angle from the orbital plane is #. For
small eccentricity there is no dependence on any vehicle yaw
component of acceleration.

Assuming the control $(/) to be a function of true
anomaly, we may pose the problem of maximizing the in-
clination change over one orbit while still achieving a given
semimajor axis change A#. Assuming small changes over the
orbit leads to the optimization problem

2-JT r fj2 A2-JT r fj A
—— sio L //,

sim?(/)cos/+X
A<7 \ ~\

-— ) \df=0
2-n-/J

(3)

Simple techniques yield the control law

£7)
and the changes in a and / per orbit are

(4)

(5)

d/= ——

Here, in anticipation of the next section, we have introduced
the control variable

The operative range of u is from 0 to 1 , and K and E are the
complete elliptic integrals of the first and second kinds,
respectively. Very convenient approximation formulas for
these functions are given by Abramowitz and Segun.6

Several other results must be mentioned. The net change in
eccentricity and node per orbit is zero with this control
program, so initially circular obits stay nearly circular. The
control law $(/) varies from a pure in-track acceleration for
u = 0 when only a changes and to a square wave for u = 1 when
only the inclination changes.

The Long Time Scale Problem
In the previous section we reviewed the optimal way to

produce small changes in the orbital elements over one orbit.
On the long time scale of the entire transfer, these expressions
can be divided by the Keplerian period dt = 2ira3/2 /Vju (which
is to be regarded as a "short" time) to yield equations of
motion on the long time scale. Also on the long time scale we
must include the effects of depletion of fuel which (for
constant thrust) causes the vehicle acceleration to vary as

Here m is the specific fuel usage rate, and A0 is the initial
acceleration. This last effect introduces explicit time
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0 -.1 -2 -.3 -.4
10 -.5

-.6

Table 1 Expansion coefficients for *> ~ 7 (Z)

90

Fig. 1 The ay, if plane showing contours of A/ and 7y. Contours of
A/ represent trajectories, and are labeled with the A value along the top
and right. The contour interval for r is 0.1.

dependence into the control Hamiltonian, but this may be
eliminated if we introduce the new independent variable r by
placing dr=A (t) d/, which leads to the time transformation

m (9)

Equation (9) can be recognized as a form of the rocket
equation. Physically, T is the total accumulated velocity
change of the vehicle.

The equations of motion on the long time scale then become

4a3/2
(10)

In this form the equations of motion are free of the values of
A0 and m for a particular vehicle, and are also free of the time
variable r.

We are now in a position to pose the long time scale
problem. We wish to effect a transfer from given initial values
of a0 and i0 to given final values of af and if in the minimum r
interval, ?y, simultaneously minimizing elapsed time and fuel
consumption. This is a standard minimum time-optimal
control problem treated, for example, in Bryson and Ho.7
The control Hamiltonian is

4a3'2 2al
(12)

where two Lagrange multipliers have been introduced. The
optimal control program is the solution of

da d/ dH

dX£ =__a^ dX,
dr da dr

IH
H(rf)=0

dH

(13)

(14)

(15)

(16)

0
1
2
3
4
5
6
7
8
9

10

0.0
2.467410607

-1.907470562
35.892442177

-214.672979624
947.773273608

-2114.861134906
2271.240058672

-1127.457440108
192.953875268

8.577733773

1.0
0.4609698838

13.7756315324
-69.1245316678
279.0671832500

-397.6628952136
-70.0139935047
528.0334266841

-324.9303836520
20.5838245170
18.8165370778

Equations (13) repeat the state equations of motion. Since the
Hamiltonian is independent of /, the first of Eqs. (14) states
that X/ is a constant. Also, since H is not an explicit function
of r, //itself is constant, and the transversality condition (16)
tells us that this value of//is zero.

The explicit control law for this problem can be found. The
optimality condition (15) and the statement that //=0 supply
us with two linear equations for \a and X/. These can be
solved for the constant value of X/ and the result inverted to
yield the control law for the long-term problem

(17)

in terms of the semimajor axis and the constant value of X/.
The function <p is defined as

R'(u)P(u)
P'(u)

-R(u) (18)

where primes refer to differentiation with respect to u. This
function is monotonic, and, hence, invertible. An ap-
proximation formula for <p ~1 is included in the Appendix.

With the discovery of the explicit control law, the complete
minimum-time control problem has been reduced to the
solution to the state equations of motion (13), subject to the
control law (17), with given boundary conditions. This is a
very significant reduction of order compared to the original
problem. Starting from given initial conditions a0 and i0, two
unknown constants, X, and r/, are to be determined by
requiring that the final conditions af and ifd are met. This
two-variable boundary value problem is easily surveyed by
numerical techniques, and the results globally mapped.

We now introduce nondimensional units by setting a0 = l,
/0 = 0, and setting the gravitational parameter /*=!, which
implicitly sets the time unit via Kepler's third law.
Numerically integrating the state equations of motion with the
control law (17) produces Fig. 1, in which contours of X, and
Tf are plotted on the af, if plane. Curves of constant X, are
also trajectories across the plane. It is gratifying to note that
large inclination changes are performed at the largest value of
/ in the transfer being executed. This behavior parallels the
behavior of impulsive maneuvers. The values of X, are in the
range from 0 to — ir/2, while the T contour interval is 0.1 in
the dimenisionless units. The figure permits simple in-
terpolation of approximate values of the constants rf and X,
to solve any particular long time scale boundary value
problem.

Discussion
We have formulated the low-thrust, many-revolution circle

to-circle orbit transfer problem, and under very general
conditions reduced this optimal control problem to
quadratures. Knowing the desired initial and final orbits, the
slow time scale boundary value problem would be solved first.
The vehicle would then be commanded to execute a periodic
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pitch angle program given by Eq. (4), where the slow control
variable u is given by Eq. (17). Whenever the fundamental
assumptions of the two time scale method are met, the fast
time variable / and the slow time variable r (or a) are com-
pletely independent of one another. As long as very many
resolutions elapse the vehicle will arrive in the final orbit when
T = Tf. The vehicle need not have the capability of solving the
optimal control problem. Given the values of A, and rf for the
desired transfer, the vehicle only needs access to the current
values of a and/to calculate the control functions.

From an operational point of view, the separation of the
two time variables has several advantages. Should a thruster
fail, for example, the optimal solution does not change. Only
the T to t conversion changes as vehicle parameters are altered.
Should the vehicle need to return to its original orbit after
depositing a payload, the optimal return trajectory will be the
simple r-time reverse of the outbound transfer, as long as very
many revolutions elapse on the return leg. In fact, the time
transformation is not limited to the constant thrust vehicle we
have assumed. Any arbitrary throttle program A(t) may be
used in the time transformation and the same optimal r-time
trajectory results. The only restriction is that A(t) can vary
only * ' slowly'' over the period of one orbit.

Edelbaum, besides being the first to solve the short time
scale problem, also addressed the long time scale problem and
found a suboptimal solution. In order to find this solution, he
assumed that the fast control variable $ (/) was a square wave
for any value of u, and, more critically, he assumed that the
vehicle acceleration (not its thrust) was constant. The first
assumption may be defendable as differing only slightly from
the optimal $ program, but modern attitude control systems
are quite capable of executing the optimal $(/) program. The
restriction of Edelbaum's result to constant acceleration
vehicles is much more severe. Our work has eliminated this
restriction completely.

We have simulated several transfers numerically by using
our control law in the full set of Lagrange planetary
equations. The method of two time scales is, of course, exact
only when an infinite number of revolutions elapse during the
transfer, and our solution is exact only in this case. In all
simulated transfers, the error in obtaining the desired final
conditions af and if show a first-power law dependence on
l/N, where TV is the number of revolutions which elapse in the
transfer. This strongly indicates that the problem of optimal
finite revolution transfer should be solvable by a perturbation
theory attack, starting from our infinite revolution solution.
This is a topic of current research.

Conclusions
In this work we have detailed, for the first time, a closed-

form solution to the low-thrust circle to circle orbit transfer
problem. The solution is exact for an infinite number of
revolutions during the transfer. The solution is simple enough
to be implemented in the onboard control system of an orbit
transfer vehicle. It can also tolerate changes in thrust
programs over a very wide range, including loss of thruster s.
Finally, this solution holds the promise of success of a per-
turbation theory approach to finite revolution orbit transfer.

Appendix
To implement our solution the user will need methods to

easily generate values of the function <p~!. The function
u = (p~! (X) is best approximated as a rational function of the
variable Z = X ~ 2 in the form

JO 10

£ «/z7 E
/ = 0 ' 1 = 0
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The Number of Multiplications
Required to Chain Coordinate

Transformations

V.N. Dvornychenko*
South Pasadena, California

Introduction

MANY applications in guidance and control require
transformations of coordinates and/or the rotation of

vectors. When these computations are performed in the inner
loop of a real-time guidance system, the computations can be
quite demanding, even allowing for the great advances in
hardware in recent years. In dealing with this problem, a
number of investigators (for example, Ickes1) have
rediscovered the eminent suitability of quaternions for this
application.

Hamilton discovered his celebrated quaternions in 1843.
Following the lead of a then recent discovery that complex
numbers can be interpreted as rotations in the plane,
Hamilton was able to interpret quaternions as, among other
things, three-dimensional spatial rotations. The high hopes
Hamilton had for the quaternions were not all realized (Ref.
2).| With Gibb's development of his vector analysis (c. 1901),
the quaternions experienced a steady erosion in popularity,
until rediscovered for guidance and control.

As shown by Ickes,1 the straightforward multiplication of
3x3 matrices requires 27 multiplications and 18 additions,
while straightforward multiplication of quaternions requires
16 and 12, respectively. The principal results of the present
paper show that the previous numbers are not minimal:
adaptations of Strassen-Winograd algorithms reduce the
required number of multiplications to as few as ten. The
achievable relief in computational requirements over the
conventional quaternion algorithm is about 15%. Of course,
the improvement over conventional matrix multiplication is
much higher (approximately a factor of two).

The variable Z eliminates a singularity in <p. The coefficients
otj and Pi listed in Table Al, yield values for <p~1 which are
accurate to at least seven figures. This is a Chebyshev fit, not
a Taylor series, and should not be truncated.
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valuable mathematical exposition besides the obligatory biographical
material. Chapter VII deals with the quaternions: the motivation
behind them, their genesis, Hamilton's very high expectations for
them, and their somewhat disappointing fate and the reasons thereof.
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