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Abstract: An electric propulsion system supplying constant low thrust can perform station change maneuvers with significantly 
lower fuel costs than conventional propulsion systems . This paper introduces an analytical method of calculating the maneuver 
time for a given station change. assuming a tangential thrust profile and a constant mass flow rate. A non-tangential thrust angle 
profile is also developed which optimizes the stalion change rate while ensuring that the final orbit has zero eccentricity. Simu
lat ions of a common electric propulsion system show that the optimal profile can reduce final eccentricity by three orders in 
magnitude compared to the tangential profile . 
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I . INTRODUCTION 

Applications for constant low thrust propulsion have 
appeared throughout the literature since the 1960's 
when practical electric propulsion systems were first 
demonstrated in the lab and in actual space operations 
(Friedlander, 1972). Many of the studies concern the 
use of electric propulsion for geosynchronous satellite 
station keeping, which was the first application of an 
electrothermal thruster in space operations on the 
VELA nuclear detection satellite in 1965 (Vondra et 
al. , 1984). Later examples of stationkeeping using 
electric propulsion are the Applied Technology Satel
lites (ATS) and the Synchronous Meteorological Sat
ellite (SMS-C)(lsley and Duck, 1972). The other 
significant area of study has been low thrust orbit 
transfers, particularly for interplanetary and LEO-to
GEO transfers (Jasper, 1973; Wiesel and Alfano, 
1985 ; Alfano and Thorne, 1993) . These include 
numerous papers discussing the use of optimal con
trol trajectories to minimize time or fuel usage of low 
thrust transfers . 

One application that has not received extensive atten
tion is orbit relocation maneuvers. However, the high 
specific impulse attainable with electric systems 
make them an attractive option for decreasing the fuel 
cost of station changes. Satellites could be relocated 
quickly without using a significant portion of the 
spacecraft's fuel budget. This would improve flexibil
ity, increasing the competitiveness and efficiency of 
satellite constellations. 

One of the earliest authors to consider station changes 
using continuous low thrust was Edelbaum (1961) . 
He suggested that the optimal method was to thrust 

225 

tangentially in one direction until half of the desired 
change was completed and then thrust in the opposite 
direction until the full change was complete. In his 
development of this solution, he assumes that mass 
flow is neglible and he does not consider the eccen
tricity changes caused by tangential thrusting. Isley 
and Duck also discuss simple station changes. They 
make the same assumptions as Edelbaum, but also 
allow a coast phase, creating a trade-off between 
transfer time and fuel use . 

This paper proposes two improvements to Edel
baum 's solution . First, an analytical solution to the 
relocation maneuver is presented which uses tangen
tial thrusting , but includes the effect of propellant 
mass loss . Second, a control profile is developed 
using conventional optimal control techniques which 
varies the thrust angle to maximize station change 
while zeroing the final eccentricity. This aspect is 
important since many communications satellites in 
use today have strict stationkeeping requirements, and 
even a small eccentricity can cause variations in the 
satellite's station . Using the optimal control profile to 
perform relocation maneuvers, no additional maneu
vers are necessary to eliminate the eccentricity intro
duced by a tangential profile. 

2. NOMENCLATURE 

r radial position 

u radial velocity 

v 

e 
"tangential" velocity 

true longitude 



x state vector (r; u, v)T 

f(x,<I>,t) state vector derivative 

a satellite station (longitude) 

F 

<I> 
m 

m 

Isr 
t 

T 

J 

H 

A 

thruster force 

thrust vector angle 

satellite mass 

mass flow rate 

specific mass flow (m / mo) 

gravitational acceleration 

specific impulse 

time 

total transfer time 

performance index 

Hamiltonian 

Lagrange multiplier vector 
. -5 rad 

Earth rotation rate (7 .292116 x 10 -) 

orbital period 

a semI-maJor aXIs 

11 Earth gravitational parameter 
(3.986012 x IO\m 3 / sec ~) 

A satellite acceleration 

T accumulated velocity change 

SUBSCRIPTS 

o initial value 

final value 

geo value for geostationary orbit 

-t value for transfer orbit 

3. EQUATIONS OF MOTION 

sec 

The dynamics of repositioning maneuvers are not 
strongly affected by perturbation effects, so two-body 
motion is a satisfactory model for the purposes of this 
paper. A constant thrust, acting in the orbital plane, 
provides the control input. Using a polar coordinate 
system, the equations of motion are 

r=u 

2 
V 11 Fsin$ 

u=---+---
2 

r r mo-mt 

. uv Fcos$ 
v= -- + 

r 

. v e =
r 

(I) 

An additional coordinate of interest is the longitude, 
or station of the satellite . The differential equation 
describing its time rate of change is determined by the 
geometry of the problem, as shown in Fig. I . It can be 
written as 
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a = e - wE!) (2) 

4 . ANALYTIC SOLUTION FOR TANGENTIAL 
THRUSTING WITH MASS FLOW 

Consider the repositioning maneuver in which a space 
vehicle in a circular orbit thrusts at a constant low 
level in a direction tangent to its orbit for a period of 
time, and then reverses the thrust direction until it 
returns to a circular orbit at its original altitude. In this 
maneuver, the position change is uniquely defined by 
the duration of the thrusting period. Edelbaum solved 
this problem assuming zero mass flow, or constant 
acceleration. In reality, thrust is likely to be constant, 
while the changing mass of the space vehicle will 
cause acceleration to vary slowly as 

A (t) = (3) 
I + m, pt 

Since the change in orbital position is an effect of 
changing the orbital period for a short drift phase, and 
orbital period is a function only of semi-major axis, 
the problem can be framed in terms of the change in 
semi-major axis . Introducing a new independent vari
able, T, related to time by d T = A (t) d t, allows the 
derivative of the semi-major axis to be written as 7 

da = ±2 {J 
dT ~~ (4) 

where the positive sign applies when thrusting in the 
direction of orbital velocity (orbit raising) and the 
negative sign applies when thrusting in the direction 
opposite the orbital velocity. Now the position change 
can be found as the integral , 

" 
l1a = f(8 o-8(t»dt (5) 

o 

The first term of the integral is constant, so it can be 
computed and brought outside the integral sign. The 
second term of the integral is then written in terms of 

0° Longitude 



semi-major axis, a, and the new independent variable, 
't, as 

[ 

T, . ] 

~ I fi¥, msp't t.cr = -;/f-- - 3 exp(-)d't 
a Ao a Ao 

o 0 

(6) 

To integrate this expression, semi-major axis must be 
written in terms of't. This can be done by dividing the 
integral into the two parts of the repositioning maneu
ver, and using the differential relationship given in 
equation (4). For a positive reposition , the initial 
thrusting is opposite the orbital velocity, so the rela
tionship is 

(7) 

if 't (ao) = O. This can be rewritten as 

~ = ~ ( ~) 
3 

= ~ ['t + r; J3 ~-;; ~ {;; ~ ~~ (8) 

For the second half of the maneuver, a similar func-
tion can be constructed, 

~ = ~ ( ~)3 ~ [2't, + r; __ 'tJ3 (9) 
~-;; ~ ~~ ~ ~~ 

where 't] is the value of the independent variable at the 
point where the thrust is reversed . Substituting these 
expressions into equation (6), the integral becomes 

(10) 

Integrating by parts, the first integral becomes 

(11 ) 

where 

( .. . ) = ['t+ J¥.J (12) 

After integration by parts, the second integral is iden
tical to equation (11) except that sign changes on the 
second and fourth terms in the brackets and the ellip
sis now represents 
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(13) 

Now the only unknowns in the t.cr equation are the 
limits of integration, 't] and 't2 ' These can be related to 
the final time tI' by the original differential relation, 

Ao 
---dt 
I + mJpt 

Integrating, this becomes 

Ao . 
't = - .-In (1 + m,pt) 

mJp 

(14) 

(15) 

when 't (0) = O. In this form, it can be seen that 't 
represents the accumulated velocity change. Since the 
velocity change from the beginning of the transfer to 
the point of thrust reversal must equal the velocity 
change from thrust reversal to the end of the transfer, 
't2 = 2't, . Then, since 't (t

f
) = 't2 , the value of 't] 

becomes 

Ao . 
't, = - .-In(l+msptf ) 

2mJp 

(16) 

Using equation (16) with equations (10) - (13) , the 
total positive position change can be calculated for 
any given transfer time. A similar derivation produces 
the formulas required for determining a negative posi
tion change. These formulas can be used to quickly 
estimate the time needed for any station change where 
tangential thrusting is used, and gives improved accu
racy over the original formulas given by Edelbaum or 
Isley and Duck. A computer algorithm using the posi
tive position change formulas should also check for 
consequences of lowering the orbit, such as increased 
atmospheric drag, or even worse, collision with the 
earth . The formulas can also include a coast phase, 
with a little revision . A further refinement is to use an 
optimal control profile to not only include the effects 
of mass loss, but also eliminate any eccentricity that 
may build up during the transfer as a result of tangen
tial thrusting . 

5. OPTIMAL CONTROL FORMULATION 

To obtain the optimal station change transfer, the 
thrust angle must be controlled so as to maximize the 
total station change, while ensuring that the final orbit 
is recircularized at geosynchronous altitude. Optimi
zation techniques based on variational calculus are 
well suited to solving this problem, and have been 
discussed extensively in the literature. The formula
tion below generally follows the -development of the 
theory given in Bryson and Ho (1975) . 

The performance index to be maximized is the station 
change, integrated over the total transfer time, 



I, 
1 = J adt (17) 

The equations of motion, f(t), can be adjoined to the 
performance index with Lagrange multiplier func
tions, A(t) , and the Hamiltonian, H, is then defined as 

. T 
H=O-Af (18) 

It can be shown that the performance index is op!i
mized by the optimality condition 

dH 

d<p 
= 0 

which leads to the control law 

A 
" tan <p = 

A, 

(19 ) 

(20) 

where Ap Au ' A" are determined by the differential 
equations 

A = - A v - - - A /IV + V . I ( (2 211 ) ) 
r 2 U r \" 

r 

. v 
A=A--A u \' , r 

. I 
A, = - (A"U - 2A" v - I) 

r 

(21 ) 

Combining the first three state equations from (I) , 
with the costate equations (21) , and the control law 
from (20) , there are six first order non-linear ODE's 
that describe the optimal trajectory. The equations for 
8 and AS can be dropped to decrease the computa
tionalload , since they do not affect the system dynam
ics. Six boundary conditions are also needed to define 
the system. These boundary conditions are 

r(t) = r(t
f
) = r = 42164.2 km o geo 

U(t) =u(t
f
) =uge e =3 .07466 km/sec (22) 

v (t ) = v (t
f
) = v = 0.0 km / sec o gee 

The system can be solved numerically using the 
"shooting" method for boundary-value problems 
(Press et aI., 1989). Using this method, the initial val
ues for AT' Au' Av are guessed and then the ODE's are 
integrated numerically to the final time . Next, the 
errors in the final conditions of r, u, and v are com
puted . Then a lacobian matrix (relating small changes 
in the initial lambdas to small changes in the final 
states) is created numerically. Using this matrix, new 
guesses for AT' Au ' Av are made, and the process is 
repeated until the final state errors are acceptable. 

228 

6 . EVALUATION OF THE OVITMALSTATION 
CHANGE 

The performance of the optimal control method was 
evaluated using simulations to predict the behavior of 
a satellite during a station change maneuver, first 
using optimal control, and then using the tangential 
thrust suggested by Edelbaum. The dynamics were 
modeled using the equations of motion (I) and propa
gated with a fourth order Runge-Kutta integration 
scheme. The constants in the equations were chosen 
to represent a typical communications satellite and 
typical form of electric propulsion. Specifically, the 
following figures were developed assuming a geosta
tionary satellite with an initial mass of 1000 kilo
grams and a propulsion system using an arcjet with a 
specific impulse of 1000 seconds . The total thrust 
would depend primarily on the power available, so 
various thrust levels for the arcjet were considered : 
2.24 N, 0.224 N, and 0.0224 N. 

Figure 2 compares the minimum transfer time for a 
station change using each method. The results for the 
tangential case agree well with those given in Isley 
and Duck, which indicates that the mass loss during 
the transfer is indeed largely negligible . It is also evi
dent that the two method s produce very similar 
results . For the lowest thrust case, the two methods 
are virtually indistinguishable , while an examination 
of the highest thrust case reveals a slight periodic 
variation in which the fastest transfer rate alternates 
between the optimal and tangential control. This vari
ation relates to the number of revolutions that occur 
during the transfer. For transfers completed over an 
even number of revolutions , the optimal method 
results in a marginally faster transfer, while for trans
fers with an odd number of revolutions, the tangential 
method is faster. 

The final eccentricity for the lowest thrust (0.0224 N) 
family of transfers is shown in Fig. 3. The final eccen
tricity resulting from the tangential method is peri
odic, and on average, about three orders of magnitude 
greater than the final eccentricity resulting from the 
optimal method. By design, the optimal method 
should produce zero final eccentricity, but it is a func
tion of the numerical accuracy of the method and 
machine used to compute the optimal control func-

lOO ,----,----,----,--,-- ,----,---,--,------, 
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Fig. 2. Optimal Station Change Maneuver 
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Fig. 3. Transfer Recircularizalion 

tion. In these simulations, the final values of r, U, and 
v were computed to six significant figures, so the final 
eccentricities are zero only to six significant figures. 

The eccentricity build-up caused by the tangential 
method can have significant ramifications for the suc
cessful operation of a communications satellite. Con
sider the worst case from Fig. 3, e = 0.001. A 
geosynchronous satellite with this eccentricity would 
have a daily station oscillation of about ±O.II 0 . Many 
communications satellites, such as INTELSAT-V and 
DSCS III (Martin, 1991), have station tolerance 
requirements of ±O. I 0, so even a small eccentricity 
can cause the satellite to exceed its station tolerances . 
Thrust levels higher than the 0.0224 N used in gener
ating Fig . 3 would result in even higher maximum 
eccentricities. 

The eccentricity build-up of the tangential method 
suggests an explanation for the slight periodic varia
tion seen in Fig . 2 . The final eccentricity reaches a 
maximum when the duration of the transfer spans an 
odd number of revolutions and a minimum when the 
duration is an even number of revolutions . This period 
corresponds to a two-day cycle for short transfers, but 
shrinks for long transfers since the average orbital 
period begins to differ from the geosynchronous orbit 
significantly in these cases. Transfers spanning an 
even number of revolutions require little energy to 
recircularize so the optimal method outperforms the 
tangential method in these cases, whereas transfers 
spanning an odd number of revolutions build up a rel
atively large eccentricity so that the optimal method 
must divert energy from the station change to the 
recircularization of the final orbit. This "cost of recir
cularization" phenomenon is also seen in orbit raising 
problems using constant thrust, and is discussed in 
Alfano and Thorne. 

Electric propulsion has been widely accepted as offer
ing large fuel savings when compared to conventional 
methods, and the following simple derivation quanti
fies these benefits in the problem of orbit relocation, 
by comparing continuous thrust electric propulsion 
systems to conventional hydrazine propulsion sys
tems. For satellites with hydrazine thrusters, the typi
cal maneuver consists of two impulsive burns. The 
first burn establishes a drift orbit, and the second burn 
stops the drift and recircularizes the orbit. By simply 
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drifting, any size of station change can be achieved 
with very little fuel. However, the drift rate is directly 
proportional to the 1:1 V used . Therefore an unbiased 
metric for the comparison of the two-bum and contin
uous thrust methods is the cost associated with pro
ducing equal, average relocation rates . 

For the two-burn transfer, the relocation rate, cr . 
depends on the difference of the angular velocity of 
the geosynchronous and transfer orbits . 

cr = 00, - OO Ell 

Or in terms of the difference in semi-major axis 

cr 
3 l:1a 

----00 
2 a EB 

geo 

(23) 

(24) 

where a binomial expansion truncated to first order 
has been used to simplify the expression . Then, using 
simple relationships obtained by differentiating the 
energy equation, equation (24) becomes 

1:1 V 
rgeo . 

--cr 
3 

(25) 

This equation gives the 1:1 V needed to generate a 
given drift rate . The total two-burn transfer would 
require a stepping maneuver as well , so the total 1:1 V 
is twice is twice this expression or 

2 
1:1 V two-burn = -:3 r geo cr (26) 

Note that the rate, cr , is the average rate, since it is 
constant throughout the transfer. 

For the continuous thrust case, determining the appro
priate drift rate is slightly more complex, since it can
not be considered constant during the transfer. One 
approach is to integrate the drift rate over the entire 
transfer to compute the total station change. and then 
divide by the transfer time to obtain an average drift 
rate. Start with equation (25), and substitute 

(F I:1t) / mo for 1:1 V, giving 

3FI:1t 
cr = ---- (27) 

If the semi-major axis is assumed to be approximately 
constant during the transfer (which is reasonable for 
drift rates up to about 30o/day), then this equation can 
be integrated to obtain 

(28) 



This expression considers only one-half of the trans
fer. In reality, the vehicle would thrust in two opposite 
directions, each for one half of the transfer. For low 
mass loss, this is essentially a symmetric process, so 
the total station change is twice the station change 
achieved in the first half of the transfer. In the equa
tion this becomes 

(
3 111 (T)2) a-2 ----
2 ageonlO 2 

(29) 

Substituting aaverage alT and 

t1 Vconunuous FT Imo . this becomes 

A comparison of equations (25) and (30) shows that a 
high thrust system is twice as efficient as low thrust 
system in terms of t1 V. The advantage of electric pro
pulsion is only seen when the t1Y is written in terms 
of the fuel used . The impulse can be approximated by 

Ft1t 1,,,gnit1t Is"gt1m 
t1V",- = = (31 ) 

mo nlo mo 

Substituting this expression for t1 Y into equations (25) 
and (30) and solving for t1m (fuel used) gives 

t1mIWo_burn 

!:im . = conunuous 

2r nl 
geo o· 

aaverage 
31,pg 

4r m 
geo o· 

---a 31 average 
,pg 

(32) 

(33) 

These expressions indicate that the continuous system 
needs a specific impulse only twice that of the high 
thrust system to eliminate its advantage, a figure 
which is easily attainable. For example, the most com
mon type of propulsion system today uses monopro
pellant hydrazine with a specific impulse of about 
200-225 seconds, while a typical arcjet can have a 
specific impulse of more than 1000 seconds (Larson 
and Wertz, 1992) . The inefficiency of low thrust 
maneuvers is overshadowed by the efficiency of the 
low thrust propulsion systems, clearly demonstrating 
their value for use on satellites for a variety of tasks . 

7. CONCLUSION 

Constant low thrust should be used to perform station 
change maneuvers on future satellite systems. The 
derivation presented here highlights the fuel savings 
achievable by low thrust electric propulsion systems 
compared with conventional propUlsion systems. This 
reduction in fuel costs for station changes translate to 
longer life, and more frequent or more rapid station 
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changes. This allows greater flexibility and improved 
overall performance of satellite systems . 

The application of optimal control techniques to the 
problem of relocating satellites in circular orbit with 
constant thrust has a significant advantage over tan
gential thrust control. The optimal method ensures the 
new orbit has zero eccentricity, while achieving a an 
essentially identical rate of relocation. By constrain
ing the final eccentricity, significant daily variations 
in the station are avoided . This is an important factor 
in minimizing station keeping effort following a sta
tion change maneuver. While the optimal control 
method is an improvement over tangential thrusting, 
the analytic solution quickly determines maneuver 
time for any required station change. This estimate is 
excellent for planning, since the optimal maneuver 
will involve nearly tangential thrusting in most cases. 
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