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Approximate Initial Lagrange Costates for
Continuous-Thrust Spacecraft

James D. Thorne* and Christopher D. Hall1"
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A method is presented to obtain approximate initial costate values and flight time for the optimal control of
a continuous-thrust spacecraft on a coplanar, circle-to-circle transfer. The approximate initial costates are then
used as starting values for the associated boundary-value problem to match the desired final states. The exact,
nonlinear differential equations are integrated to solve the boundary-value problem with a shooting method. The
approximate expressions for the initial costates and flight time are useful when the thrust acceleration is greater
than or equal to the change in orbital radius, in canonical units. Numerical examples are provided for a geocentric
and an Earth-Mars orbital transfer.

Introduction

N EW propulsion technologies have raised interest in the space
community for continuous-thrust orbital missions. In military

applications, this could mean more responsive deployment of space
assets and longer on-orbit lifetimes. Tactical repositioning of a satel-
lite using chemical propulsion can consume large amounts of the
available fuel mass per maneuver. This is certainly unacceptable
for many reasons including lifetime, reliability, and cost. A space-
craft propelled by high-efficiency thrusters could accomplish many
more maneuvers for the same amount of fuel mass as a chemical
propulsion system.

Another interesting application of continuous-thrust propulsion
is interplanetary space travel. A permanently orbiting space station
could serve as a launch point for solar system exploration. Maintain-
ing cryogenic fuels for this purpose, however, would be technically
difficult and extremely costly. These problems would be less signif-
icant if the orbiting space station were used as an assembly point
for an exploration vehicle propelled by high-efficiency continuous
thrusters. Such a vehicle could be made reusable much more easily
in terms of reliability and cost than a chemically propelled space-
craft. Also, a vehicle using continuous thrust with existing technol-
ogy could shorten travel times compared to fuel-optimal impulsive
maneuvers, then could return to Earth orbit for reconditioning.

Although the optimization of impulsive transfers has a direct
solution,1 none has been found for the continuous-thrust case. This
problem may be solved numerically, and many examples of this
are to be found in the literature.2 Optimization of a continuous-
thrust trajectory involves the simultaneous solution of an optimal
control problem and a boundary-value problem. The initial and
final states are normally known, but there is usually no infor-
mation available for the initial values of the Lagrange costates.
This presents quite a problem, since the optimal control law is
often a function of the Lagrange costates that must be initialized
for numerical integration. The usual approach is to make an edu-
cated guess for the initial values, then update them by solving the
boundary-value problem. Trussing,3 Broucke,4 and others2 have re-
cast the boundary-value problem in terms of other variables, but
the initial values of these must be guessed and refined as well.
Prussing3 incorporated the second derivative of the primer vec-
tor into a fourth-order dynamics equation, thus eliminating the
control variables. Once this is accomplished, four constants of
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integration must be iterated to find the correct optimal trajectory.
Broucke4 expressed the Lagrange multipliers as functions of new
auxiliary variables and graphically examined the behavior of the new
variables.

Pines5 suggested using the results of optimal impulsive maneu-
vers to serve as an initial guess for the continuous-thrust case. How-
ever, this method produces poor results for small values of continu-
ous thrust, particularly if there are no coasting arcs used. Coasting
arcs appear in the optimal fuel solution for continuous-thrust vehi-
cles when the switching function changes sign.6

Closed-form nonoptimal solutions have been found for spacecraft
trajectories where special assumptions are made about the control
law. If the thrust vector is directed either radially away from the
attracting center or tangentially to the orbital path, it is possible
to integrate the equations of motion analytically. Battin7 presents
results for the time to reach escape velocity and the number of
revolutions for both thrust assumptions.

Assumptions about the thrust magnitude will also allow closed-
form nonoptimal solutions through the method of averaging. If the
thrust level is small enough, there is only a small change in semi-
major axis or eccentricity for a single orbital revolution. Then, a
correction is made to the semimajor axis at the completion of each
revolution. These approximations are reasonable for orbital transfers
that require roughly 10 or more revolutions to complete.8'9 Using
these assumptions, it is possible to solve analytically for the ap-
proximate trajectory. The thrust is directed tangentially; this is also
perpendicular to the orbit radius because the eccentricity is assumed
to be zero for individual revolutions.

For circle-to-circle coplanar orbital transfers, the minimum time
of flight may be derived from the accumulated velocity change (in-
tegrated A V) on the trajectory. It is possible to display the optimal
accumulated velocity change in graphical form for a large range
of constant thrust levels, ratio of final to initial orbit radius, and
mass propellant fraction.10 In this way, a wide range of possible
cases may be represented through the use of canonical variables. To
produce the graphical results, many different cases must be solved
numerically to allow for interpolation. Although linear interpolation
from a graph will not provide great precision, it does show general
trends for mission design. In particular, a graph of the number of
revolutions for the optimal path vs the logarithm of thrust magni-
tude shows a distinct change in trajectory characteristics at integer
values of revolutions.10

Our goal is to develop analytical expressions for the approximate
values of the optimal initial costates and time of flight for the mini-
mum time, circle-to-circle orbital transfer. These values are then to
be used as initial guesses for the associated boundary-value prob-
lem with no approximations. This way, the final result is a converged
boundary-value problem that produces the truly optimal control law,
instead of an exact solution to some suboptimal approach with an
assumed control history.
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284 THORNE AND HALL

To find the analytical expressions, the equations of motion are
modified by neglecting the gravitational term. The resulting differ-
ential equations for the states and costates are integrated analyti-
cally to produce algebraic equations of motion. Two of the con-
stants of integration are the desired initial costate values. When
boundary conditions are introduced, the initial costates are then ex-
pressed as functions of canonical parameters. The useful range of
the approximate expressions is discussed, and numerical examples
are given.

Equations of Motion
The optimal control law for a continuously thrusting spacecraft

may be found using variational calculus techniques.11 Figure 1
shows the Cartesian coordinates x\ and x2 and the problem geom-
etry. The acceleration resulting from thrust is A, the gravitational
parameter is /z, and the velocities in the x\ and x2 directions are v\
and i>2, respectively. The length of the position vector is r, and the
final desired value of r will be given by R.

The minimum time to R is found by repeatedly maximizing the
final radius for different flight times, then choosing the time such that
the final radius is R. Since time is the independent variable, a final
value of the time makes a reliable stopping condition for integrating
the equations of motion. However, the stopping condition r = R
is not reliable, since r may decrease for some initial conditions of
the costates. Therefore, maximizing R for a given flight time is the
most practical approach to the problem.

This approach leads to the following variational Hamiltonian6:

+ A*2i>2 + *«i -( + A cos 0]

(1)

The associated costates are represented by A and are also known
as Lagrange multipliers. From the Hamiltonian, one may obtain6

a set of first-order differential equations for each of the states and
costates, as well as the optimal control law. The control law that
maximizes the radius for a given flight time is found by setting
3Hc/d(/) = 0 and leads to

(2)

One may choose various values of flight time to match the desired
final radius through a shooting method. Once the end conditions
have been met, the resulting time of flight will be the minimum nec-
essary to reach the desired radius.6 In this case, the second derivative
of the Hamiltonian with respect to the thrust angle 0 will be nega-
tive, which meets the Legendre-Clebsch condition for a maximum.

X2

Using the control law, the equations of motion in Cartesian coordi-
nates are as follows:

x\ = vi (3)

x2 = v2 (4)

= ——r*i + A

V2 = ——r*2 + A

(5)

(6)

(7)

A*V =

A =
+ mt

(9)

(10)

(11)

Once the control law has been determined as a function of
Lagrange multipliers, a boundary-value problem must be solved
to meet the desired end conditions. This technique requires initial
values for each of the states and costates. However, the initial values
of the costates are generally unknown. Thus, they must be guessed
and refined to solve the problem using some numerical technique
such as the shooting method.12 We will present an approximate
closed-form solution for the initial costate values as a function of
spacecraft thrust acceleration A and the final circular orbit radius R.
The problem we will consider is optimal planar transfer from one
circular orbit defined with radius = 1 to a larger circular orbit of
radius = R under continuous thrust. The problem of transferring to
a lower orbit may be recast as an equivalent orbit-raising problem
by defining the canonical distance unit with the final orbit radius
that would be smaller in that case and using a negative time step.

Zero-Gravity Approximation
In canonical units,13 the gravitational constant /z is unity regard-

less of the system under consideration as long as the initial circular
radius is defined to be one distance unit (DU) and the initial circular
velocity is one distance unit per time unit (DU/TU). If the equations
of motion are approximated by setting ^ = 0 and m = 0, the dif-
ferential equations for the states and costates may be integrated in
closed form. Although ignoring the gravity may not seem to be the
most obvious choice for approximation, it does reduce the problem
to a system of algebraic equations. Further, the boundary conditions
are still chosen to be circular orbits. Thus, gravity still has an influ-
ence on the solution since the boundary conditions are a function
of the nominal gravitational constant value, /z = 1. A mass flow
rate of zero is not realistic for any real propulsion system, but it can
have a surprisingly small effect on the optimal initial costate values
as will be shown by example.

Once these two approximations (//, = 0, ra = 0) have been
made, the equations of motion in Cartesian coordinates simplify
enough to allow analytical integration. The result is a system of
eight algebraic equations for the position and velocity components
and their associated costates. These solutions are functions of the
constant-thrust acceleration A, final orbit radius R, time, and various
constants of integration.

Setting the gravitational constant to zero, the differential equa-
tions of motion simplify to

Fig. 1 Problem geometry with flight path.

x\ =

X2 =

(12)

(13)
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THORNE AND HALL 285

(14)

(15)

(16)

(17)

(18)

(19)

The last four equations may be integrated immediately and substi-
tuted into the first four equations. Defining Xx = V(A?! + ^x2)' an<^

+ A^2), the /x = 0 solutions are

(20)

(21)

(22)

(23)

A*2 - b

AWI = -at + c

AU2 = -bt+d

Xl = A[(AV/2A*) (a2c - 2b2c + 3abd - aX2
xt)

+ (l/2^)(-3a^2c2 + 4a2bcd - 2b3cd

- a3d2 + 2ab2 d2 + 2X2
xb(bc - ad)i)

x ^-ac -bd + X2r + A^A,)] + kit + fc3

x2 = A[(A,/2A^)(^2^ - 2a2d + 3abc - bX2
xt)

+ (l/2^)(-3fl2^2 +4ab2cd - 2a3cd

- b3c2 + 2a2bc2 + 2X2
xa(ad - bc)t)

x <L(-ac - bd + A2r + A^AU)] H- k2t + k4

vi = (A/A^) [-aXx A, + ^(^?c - ad)

(24)

x &v-ac -

(25)

(26)

(27)

The terms a, fe, c, d, fc j , /:2, ^3, and £4 are constants of integration.
Because the Lagrange multipliers appear in the Hamiltonian as lin-
ear terms, the initial value of one of them may be scaled to unity. For
this system, we choose XXl (0) = 1; thus, a = 1. Also, if the initial
state is on a circular orbit, we have b = c. This may be seen by
equating the system Hamiltonian expressed in polar and Cartesian
coordinates. The polar coordinates include r as the scalar distance
from the attracting center, u as the time rate of change of r, and
w as the velocity component perpendicular to M, directed along the
spacecraft horizon. Here, the Hamiltonian is expressed in both sets
of coordinates

Up = A rw H- AM[(u;2/r) -

+ AU ;[— (uw/r) + A sin

+ A cos 0]

A cos .

(28)

(29)

The initial conditions for the polar and Cartesian cases are

r(0) = l M ( 0 ) = 0 tw(0) = 1

l *2(0)=0

Using these initial conditions and equating the resulting Hamiltoni-
ans yields

XX2 + AV1(-1 + Acos0) +
(30)

By equating coefficients of sin 0 and cos 0, the following three re-
lationships are obtained:

A U l ( 0 ) = A M ( 0 ) ( = f e )

(31)

(32)

(33)

The constants £1 and k2 may be eliminated from Eqs. (24-27) by
using the velocity component end conditions i>io, v\f, v2o, and v2/
and the final time tf. This yields

(Vlf - ^K))Ax

A

(V2f -

Ab

, - AW/) + b(d - b2

'b2-d
(35)

L =
-b-bd

—fe — b d -f AjA^o H- A2.?/

In the special case where the initial and final velocity components
are all equal to zero, the optimal trajectory is a straight line. If m = 0,
the thrust will switch directions midway through the trajectory to
decelerate to a stop, and the time of flight is tf — 2^/[(R — I)/A].
This straight-line case allows for a simplification of the preceding
equations. They take the form

X /} -\ \ |^ r /1 2 ^\ / rn 7 _ rv /"2C\
x VAu() — Auf/ ~T~ Lv^ — Cl)l D\L-i — \J (^Joj

The only difference in the two preceding equations is the coefficient
of the logarithmic term, and so these coefficients must be equal.
This leads to the following relationship:

l)(d-b2)=0 (39)

Clearly, the real solution is d = b2. If this result is substituted
back into Eq. (37), the logarithmic term vanishes. Since AX > 1 by
definition, we have

A,() = AV/ (40)

Using the definition AV = V(A^ + A?2) an<^ tne s°luti°ns f°r Avi
and AU2 given in Eqs. (22) and (23), this becomes

~ tf)2 + (d~ btf)2 (41)

Squaring both sides, expanding, and collecting terms leads to

-2fe3 + tfb2 - 2b + tf = 0

(fe2 + l ) ( f e - f / / 2 )=0

(42)

(43)

Again taking the real solution, the result is b = t f / 2 . Using this
and the results for b and d, we have the complete solution to the
straight-line case

fe() =

tf() = - I)/ A

(44)

(45)

(46)
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286 THORNE AND HALL

where the zero subscript indicates that these solutions are for the
simplest case of no gravity, no mass flow rate, and zero velocity end
conditions. Note that XV{ = b() and XV2 = do define a parabola in the
AU2 , XVI plane.

Equations (44-46) along with b — c and a = 1 provide an ap-
proximate analytical solution for the initial values of the Lagrange
costates and the final time. These approximations can be used to start
suboptimal transfers, or as starting points for solving the two-point
boundary-value problem. Further refinement is possible by scaling
these results, as will be shown next.

In Fig. 2, the exact initial costates for the zero-gravity case are
shown on the solid line. These are obtained by numerically solving
the IJL = 0 = m two-point boundary-value problem with circular end
conditions corresponding to an Earth-Mars transfer (R — 1.525).
The o symbols correspond to A values of 1000, 100, 10, and 1.6,
with the largest values near the origin. Initial costate values for
A < 1.6 do not lie near a parabolic arc for R = 1.525. The dashed
line is a parabola defined by Eqs. (44) and (45) for b(} = A.V1 (0)
and do = A.U2(0). The x symbols correspond to the same values of
A as the o symbols. Note the excellent agreement for large A as
expected. A simple scaling approach leads to improved agreement
for the lower values of A. The scaled points are shown with the +
symbols, and the scaling factor q is defined as follows:

to produce an equation in a single variable with two parameters, R
and A. Let s = </[(R - 1)/A]. Then, Eq. (49) becomes

(47)

(48)

The time of flight tf is not as sensitive to the presence of the gravity
term, and so the formula for tf does not require additional scaling.

If the two velocity components, Eqs. (26) and (27), are used to
eliminate their common logarithmic term, the following relationship
is obtained:

(d -

(49)

The initial velocity components are V\Q = 0 and v^o = 1 on the
starting circular orbit. The final Cartesian velocity components are
not known individually at t f , and they may be set equal to zero as
an approximation. In this way, the scaling factor may be introduced

0 0.1 0.2 0.3

Initial Lambda-V2
Fig. 2 Comparison of various costate solutions. R = 1.525, p, = 0, m =
0: ——, exact values, circular B.C.s; ——, parabolic arc; x, unsealed
approximations; +, scaled approximations; and o, exact values, circular
B.C.S.

-(qs/A) - 2qs2)22 - = 0
(50)

Using this result, the initial costates are given by

The scaling factor q may be expressed as an infinite series in the
quantity (I/ A). After solving for the coefficients, the first three
terms in this series solution are

(51)

(52)

(53)

Since the expansion for q involves the quantity (I/A), it should
not be used if A < 1. If A < 1, the approximate initial costates
may be obtained from Eqs. (44) and (45), which do not include the
scaling factory.

To summarize, Eqs. (44) and (45) give the approximate initial
costate values, and Eq. (46) is the approximate time of flight. If
A > 1, the scaled Eqs. (52) and (53) should be used to improve the
approximate initial costate values. These relationships were derived
using the assumptions of zero gravity, zero mass flow rate, and
zero final velocity components. Even using these assumptions, the
results lead to a good initial guess for the associated boundary-value
problem over a large range of problem parameters.

It has been found from numerical studies that the ratio of the
radius change to the thrust acceleration, (R — I)/A, must be equal
to one or less in canonical units for the approximate initial costates
to provide a reasonable first guess.

Numerical Examples
Two numerical examples will be given to illustrate geocentric

and heliocentric missions. The trajectories were propagated with an
integration tolerance of 10~8 and an error tolerance in the final state
values of 10~7 in canonical units.

Example 1 involves a spacecraft design that has been investigated
by past researchers.I4 A 2400-kg spacecraft is at geosynchronous al-
titude with a thrust of 1.3 N and a mass flow rate of -0.000069 kg/s.
In canonical units, the problem parameters are A = 0.002425 and
ra = —0.000395. Suppose that it is desired to make a small in-
crease in altitude in minimum time to avoid a ballistic antisatellite
weapon. If R = 1.000336, the new orbit radius will increase by
roughly 15 km. Using the given problem parameters, the results in
canonical units are given in Table 1.

The first line in Table 1 is the set of converged values for example 1
that includes the effects of gravity and mass flow rate. The second
line shows the values obtained by using the approximate solutions
from Eqs. (44-46), where A,U1(0) = b and XU2(0) = d. The zeros
listed for /z and m are a reminder that the approximate solutions
were derived with these assumptions. The scaling factor q was not
used in this example since A < 1. The total thrusting time is roughly
2.8 h.

Figure 3 shows the iterative search history for the flight time and
initial costates in example 1 from the initial guess to the converged
values. In this case, the initial estimates were very close to the final
values, so that convergence was achieved in four iterations of the
shooting method. Figure 4 compares the exact control angle history
from the converged case with the approximate history generated

Table 1 Results from example 1

UL m tf XU1(0) MO)
1
0

-0.000395
0

0.7366198
0.7441893

0.3395791
0.3720947

0.1201369
0.1384544
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Table 2 Results from example 2

1 2 3 4

Search Iterations
Fig. 3 Iterative search history for example 1. R = 1.000336, A =
0.002425: —A—, time of flight; —<^~, Av,(0); and —O—, AV2(0).
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_ 20 -
0) n

° -2°0-

™ -4°-O)
C -60 -
< fin
o -8 0"
£ -100 -
0 -120 -
O i>n

-ifin -

~">\
1

\
1
\
^
\

^^> — -----
0.2 0.4 0.6

Flight Time (TU)
0.8

Fig. 4 Control angle history for example 1. R -1.000336, A = 0.002425:
——, exact values and ——, approximate values.

0.7 -r

0.6

0.5

0.4

0.2

0.1

0.2 0.4 0.6

X1 (DU)
0.8

Fig. 5 Trajectories using exact and approximate AQ for example 1.
R = 1.000336, A = 0.002425: ——, exact path and o, approximate path.

by the initial estimates. Both curves pass through the zero angle,
snowing the switch in thrust direction. The differences between the
initial estimates and the converged values are most evident here,
since the costate histories are very sensitive to the initial conditions.

Figure 5 shows a comparison of flight-path trajectories using the
control law from the initial estimates and the converged values. In
this case, the paths are almost identical in spite of the differences in
the control-angle histories.

The second example is an Earth-Mars transfer, with A = 1 and
ra = —0.5. These parameters are each roughly seven times greater
than those given in the well-known example from Bryson and Ho.6
A high-performance spacecraft with these parameters might have an
array of thrusters with a common fuel source, as well as reasonable
improvements in the power generation system. There is, however,

M
1
0

m

-0.5
0

*f
1.1699013
1.4491376

(̂0)
0.5312363
0.6385263

AU2(0)

0.3737511
0.4077158

O GO

0.6?

0>0.2

H 0.4 n—————o

1 2 3 4 5 6

Search Iterations
Fig. 6 Search history for example 2. R = 1.525, A = 1, m = -0.5: -
time of flight; —0—, Av,(0); and —Q—, AV2(0).

40

20

O) 0
0)
2. -20
o>
"5) -40

< -so
o
•g -80

O -100

-120

-140
0.2 0.4 0.6 0.8

Right Time
1.2

Fig. 7 Control-angle history for example 2. R = 1.525, A = 1, m = —0.5:
——, exact values; ——, first approximation; ----, second approxima-
tion; and - - - -, third approximation.

no assumed improvement in the specific impulse compared to the
classic example. Using the given problem parameters, the results in
canonical units are given in Table 2.

The first line in Table 2 is the set of converged values for exam-
ple 2 that includes the effects of gravity and mass flow rate. The
second line shows the values obtained by using the approximate
solutions from Eqs. (52) and (53) and Eq. (46), where XVI (0) = b
and XV2 (0) = d. The zeros listed for [i and m are a reminder that the
approximate solutions were derived with these assumptions. The
scaling factor q = 0.88215 was used in this example, since A > 1.
The total trip time from Earth to Mars is roughly 68 days.

Figure 6 shows the iterative search history for the flight time and
initial costates in example 2 from the initial guess to the converged
values. In this case, the initial estimates were not as close to the final
values as in example 1, and so convergence was achieved in seven
iterations of the shooting method.

Figure 7 compares the exact control-angle history from the con-
verged case with the approximate histories generated by the initial
estimates of several intermediate values. All curves pass through the
zero angle, showing the switch in thrust direction. The initial values
were taken from iteration numbers 1, 2, 3, and 7 from the shoot-
ing method, to show the refinement process. With each iteration,
the approximate control-angle history lies closer to the converged
control-angle history.
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288 THORNE AND HALL

CM
X

1.2

1 -

n R

0.6
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0.2

0 -
() 0

\

>i /

1''
1

1
5 1

X1 (DU)

Fig. 8 Trajectories using exact and approximate AQ for example 2. R
= 1.525, A = 1, m = —0.5: ——, exact path; ——, first approximation;
- - - -, second approximation; and - - - -, third approximation.

Figure 8 shows a comparison of flight-path trajectories using the
control law from several initial estimates and the converged values.
In this case, the flight trajectory from the first estimate is off by
roughly 0.3 DU. Again using the intermediate values from iterations
2, 3, and 7, the paths come closer to the converged path with each
iteration.

As stated before, it has been found from numerical studies that
the ratio of the radius change to the thrust acceleration, (R — I)/A,
must be equal to one or less in canonical units for the approxi-
mate initial costates to provide a reasonable first guess. In exam-
ple 1, (R - 1)/A = 0.1384544, and in example 2, (R - I ) / A =
0.4077158. Since the ratio in example 1 was smaller, the approxi-
mate initial values were better. This behavior has been consistent in
all cases studied.

The physical implication of the limit (R — I)/A < 1 is that
the orbital transfer will occur in less than one revolution. This is
an intuitive result, since the approximation of [i — 0 removes the
effect of gravity from the equations of motion. Without gravity,
there cannot be periodic, multiple revolution solutions. Therefore,
this method works best for transfers of less than one revolution,
especially if the path lies in a single quadrant. For problems with
more than 10 revolutions, it is well known that the optimal thrust
direction is nearly tangential to the path through most of the transfer.8
For such cases, a good starting guess is XVl (0) — 0 and AU2 (0) = 1,
although difficulties can always arise because of the sensitive nature
of the equations of motion and costates.

Unlike multiple revolution problems, the approximate initial
costates for transfers of less than one revolution do not have a well-
known limiting case. As shown in the examples, the expressions

presented for the approximate initial cos/tates and time of flight will
provide a good starting point to solve this type of problem, regardless
of the thrust level.

Conclusion
Approximate solutions have been obtained for the initial costate

values and flight time for the optimal control of a continuous-thrust
spacecraft on a coplanar, circle-to-circle orbital transfer. The method
works best for transfers of less than one revolution, particularly
if the path lies in a single quadrant. There is no specific limit on
thrust level; however, the ratio of the radius change to the thrust
acceleration should be less than one in canonical units.
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