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An Analytical Approach for Continuous-Thrust, LEO-
Molniya Transfers 

David B. Spencer* and Felix Acon-Chen† 
The Pennsylvania State University, University Park, PA 16802 

This paper presents a comparison between an analytical approximation to a spacecraft 
transfer from a low Earth orbit to a highly elliptical Molniya orbit with an optimal 
solution.  In this paper, a spacecraft is transferred from low Earth orbit to the final 
mission orbit by using various initial thrust accelerations ranging from 10-1 to 10-2 
m/sec2.  An approximate analytical method using a blended control that satisfy some 
basic physical constraints on the orbit transfer and comparing these results to the 
exact optimal case found using a well known trajectory optimization software.  The 
comparison between the analytical data and the numerical data showed that the 
percent error between the two is small, there is about a 13% percent difference in 
propellant usage for the initial thrust acceleration of 10-1 m/sec2 and 10-2 m/sec2.  The 
factor that affected the results of both solutions is that in the analytical method, the 
radius of perigee was held constant while with the numerical solution the radius of 
perigee was free.  This difference indicates that while the analytical solution was 
closely related to numerical solution, it can be improved by doing another analytical 
analysis with the radius of perigee free. 

Nomenclature 
a,e,i,Ω,ω,ν = Classical orbital elements 
p,f,g,h,k,L = Equinoctial orbital elements 
a    =  Semimajor axis, km 
e    = Eccentricity 
g0    = Gravitational acceleration at sea level, m/sec2

 
i    = Inclination, deg 
Isp    = Specific impulse, sec 
L    = Argument of longitude, deg 
m    = Mass, kg 
M    = Mean anomaly, deg 
P    = Power, kW 
REarth   = Radius of Earth, km 
t    = Time, hrs 
T    = Thrust, N 
T
r

    = Thrust vector, N 
α    = In-plane control angle, deg 
β    = Out-of-plane control angle, deg 
∆Veff   = Effective change in velocity, m/sec 
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∆r,∆θ,∆n  = Radial, tangential, and normal thrust acceleration, N/kg 
∆t    = Change in time 
ε    = Power efficiency 
µ    = Gravitational constant, km3/sec2 

η    = Non-dimensional mass ratio 
ν    = True anomaly, deg 
Ω    = Right ascension of the ascending node, deg 
ω    = Argument of periapse, deg 
 
Subscripts 
initial or 0  = Initial value 
final   = Final value 

I. Introduction 
During the past few decades, various groups have attempted to develop a solar-electric-
propulsion spacecraft, since such a vehicle would have a significantly increased propellant 
efficiency, greater maneuverability, larger payload capabilities, and a greater lifetime than a 
conventional chemical-propulsion space vehicle1.  Many studies have been conducted in an 
attempt to find the best method for computing an optimal low-thrust Earth-orbit transfer.   

 
Previously, the trajectory optimization problem regarding the low-thrust propulsion systems has 
been investigated in order to find the best solution method.  For example, multiple optimal and 
non-optimal transfer trajectories between specific initial and final orbits have been studied2.  In 
addition, a method of averaging that provides a quick trajectory evaluation compared to methods 
based upon numerical integration of differential equations was developed3.   
 
In another study, Lawden’s “primer vector” theory was used to analyze impulsive and near-
impulsive transfers in order to predict the conditions for low-thrust transfers.  This study used 
algebraic approximations to compute the total time and gravity loss for relatively efficient 
transfers and to demonstrate that gravity losses for a transfer are reduced to a low level if enough 
burns are done4. 
 
Herman and Conway5 found optimal, low-thrust, Earth-moon orbit transfers by applying a 
method of collocation with nonlinear programming.  The Earth orbit of the spacecraft and the 
final lunar orbit are both arbitrary while the moon is in its actual orbit.  Furthermore, the total 
transfer time is minimized, but the trajectory is also propellant minimizing since the propulsion 
system operates continuously and prohibits a coast arc.  They also discovered that a very low 
initial thrust acceleration of 10-4 g yields flight times of approximately 32 days and requires 
many revolutions of both the Earth and the moon.  In addition, if the problem is solved as two 
coupled two-body problems by ignoring the third body, then the optimal trajectory is changed 
slightly.  The optimal trajectory is also insensitive to change in the engine specific impulse as 
long as the same initial thrust acceleration magnitude is used. 
 
On the other hand, Prussing6 examined minimum-fuel impulsive spacecraft trajectories in which 
long-duration coast arcs between thrust impulses are possible.  If the coast time is long enough 
that it allows one or more complete revolutions of the central body then the solutions become 
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complicated.  This type of scenario presents Lambert’s problem in which the determination of 
the orbit that connects two specified terminal points in a specified time interval brings about 
multiple solutions; a transfer time long enough to allow N revolutions of the central body has 2N 
+ 1 trajectories that satisfy the boundary value problem.  In order to solve all the trajectories, 
Prussing developed an algorithm based on the classical Lagrange formulation for an elliptic 
orbit.  Moreover, this procedure is applied to the problem of rendezvous with a target in the same 
circular orbit as the spacecraft while the minimum-fuel optimality of the two-impulse trajectory 
is determined using primer vector theory6. 
 
Kechichian7 also studied the minimum-time low-thrust rendezvous and transfer using the epoch 
mean longitude formulation.  His study shows the state and adjoint differential equations as 
explicit functions of time that include natural orbital elements that stay constant if no 
perturbations are applied.  In addition, the optimal Hamiltonian is time varying while the 
function that defines the transversality condition at the end time in minimum-time problems is 
illustrated as constant during the optimal transfer. 
 
Coverstone-Carroll and Williams8 developed a direct optimization method based on differential 
inclusion concepts and used the formulation to compute low thrust trajectories.  This procedure 
removes explicit control dependence from the problem statement which reduces the dimension of 
the parameter space and requires fewer nonlinear constraints in the resulting nonlinear 
programming problem.  Moreover, the study presents simulations for a two-dimensional gravity-
free trajectory which involves a maximum velocity transfer to a rectilinear path, an Earth-Mars 
constant specific impulse transfer, an Earth-Jupiter constant specific impulse transfer, and an 
Earth-Venus-Mars variable specific impulse gravity assist. 
 
In another study, Betts9 used the direct transcription method, one of the most effective numerical 
techniques, to solve the trajectory optimization and optimal control problems.  This method 
combines a sparse nonlinear programming algorithm with a discretization of the trajectory 
dynamics.  Furthermore, the vehicle dynamics are defined by using a modified set of equinoctial 
coordinates while the trajectory modeling is described using these dynamics.  Also, in order to 
demonstrate some special features of this method such as alternate coordinate systems during the 
transfer and mesh refinement to produce a high fidelity trajectory, the solution for the transfer 
from Earth to Mars including a swingby of the planet Venus is presented using the direct 
transcription method. 
 
In addition, Kechichian10 explored the optimal low-Earth-orbit-Geostationary-Earth-orbit 
intermediate acceleration orbit transfer by analyzing the problem of minimum-time orbit transfer 
using intermediate acceleration through precision integration and averaging.  In his study, 
continuous constant accelerations of the order of 10-2g are considered for applications using 
nuclear propulsion upper stages; in addition, the acceleration vector is optimized in direction 
with its magnitude held constant throughout the flight.  The scenarios examined have trajectories 
that circle the Earth for only a few orbits before reaching geostationary Earth orbit, and these 
trajectories have demonstrated to be sensitive to departure and arrival points, requiring the use of 
the full six-state dynamics for satisfactory and meaningful results.  Also, the ∆V losses with 
respect to very low-acceleration transfers are shown to be small. 
 

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
C

A
L

IF
O

R
N

IA
-I

R
V

IN
E

 o
n 

A
ug

us
t 2

5,
 2

01
3 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
00

4-
50

90
 



 
American Institute of Aeronautics and Astronautics 

 

4

Herman and Spencer1 focused on optimal low-thrust Earth-orbit transfers using higher-order 
collocation methods in which several Earth-orbit transfers, the LEO-to-GEO, LEO-to-MEO, and 
LEO-to-HEO transfers, were computed and then compared to the solutions found through 
analytical blended control methods.  For each of these scenarios, a spacecraft is transferred from 
LEO to the final mission orbit by using various initial thrust accelerations (TA) ranging from 100 
to 10-2 g.  This study involved determining the control time histories of a set of states, a system 
of first-order ordinary differential equations, from specified initial conditions to the desired final 
conditions while minimizing a function of the final values of states and/or time.  These time 
histories are determined through a performance function, a scalar function consisting of the 
values of the states at the final time and the initial and final times, which is minimized while 
meeting the initial and final conditions of the system of differential equations. 
 
This paper discusses the solution to the optimal control problem using NASA’s SEPSPOT 
software program on the LEO-to-Molniya transfer.  An analytical formulation by Spencer11 for a 
LEO-Molniya transfer is compared with the results obtained from the program.  As the 
SEPSPOT software uses equinoctial elements in its computations, equinoctial elements are also 
used for the analytical study.  All results are converted back into classical orbital elements to 
provide better physical insight of the results.  The final data is analyzed and compare with the 
results in Spencer’s analytical solutions.  Overall, there are a total of five plots for each initial 
thrust acceleration (10-1 N/kg and 10-2 N/kg).  For these graphs, the semimajor axis, eccentricity, 
inclination, apogee and perigee radius, and energy are all plotted versus time. 

II. Analytical Solution Method 
The analytical solution method minimizes the propellant usage for a given transfer by assuming 
that the propellant usage rate is constant during a burn, which means, the burn times for a given 
maneuver are minimized by maximizing the time rate of change of the particular orbital 
parameter that governs the burn.  During the first burn, thrusting is performed in the orbit plane 
to increase the apogee radius to the desired final radius value.  In addition, the rate of change of 
the semimajor axis, da/dt, is maximized by determining the in-plane (α) motion of the thrust 
direction.  Also, during the first burn, the out-of-plane component of the thrust vector does not 
exist.  Afterwards, a coast is initiated and lasts until there is a second burn1. 
 
For the second burn, the periapse is kept constant while the inclination is changed from the initial 
value to the desired final value by maximizing the time rate of change in inclination, di/dt.  This 
results in the out-of-plane thrust angle (β) being near ±90 degrees while the inclination change 
maneuver is centered about the apogee.  Figure 1 illustrates the thrust vector and angle 
definitions1. 

 
 
 
 
 
 
 
 

Figure 1:  Thrust Vector and Angle Definitions1 
∆r

α
∆r

∆θ 

β
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For various cases of the LEO-to-Molniya transfers with a range of TA values, a specific impulse 
of 1000 sec was used. 

III. Analytical Solution Method Equations 
In order to avoid the singularities that occur in the modified classical orbit elements (a, e, i, Ω, 
ω) when e = 0 and i = 0 deg, modified equinoctial orbit elements must be used to describe the 
orbit transfers1.  Therefore, the modified equinoctial orbit elements (p, f, g, h, k, L) must be 
defined in terms of the modified classical orbital elements as:  

( )21p a e= −                                     (1) 

( )cosf e ω= Ω +                                 (2) 

( )sing e ω= Ω +                             (3) 

tan cos2
ih = Ω                                 (4) 

tan sin2
ik = Ω                                 (5) 

L ω ν= Ω + +                                   (6) 
 

The equations of motion of a thrusting spacecraft in an inverse square gravity field in terms of 
the modified equinoctial orbit elements are:   

 
1

22dp p p
dt w θµ

⎛ ⎞⎛ ⎞= ∆⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
                                              (7) 

( ) ( )
1

2

sin 1 cos sin cos n
r

df p gL w L f h L k L
dt w w

θ

µ
⎛ ⎞ ∆ ∆⎧ ⎫⎛ ⎞ ⎛ ⎞= ∆ + + + − −⎡ ⎤⎨ ⎬⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎣ ⎦ ⎝ ⎠ ⎝ ⎠⎩ ⎭⎝ ⎠

                     (8) 

( ) ( )
1

2

cos 1 sin sin cos n
r

dg p fL w L g h L k L
dt w w

θ

µ
⎛ ⎞ ∆ ∆⎧ ⎫⎛ ⎞ ⎛ ⎞= −∆ + + + + −⎡ ⎤⎨ ⎬⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎣ ⎦ ⎝ ⎠ ⎝ ⎠⎩ ⎭⎝ ⎠

                    (9) 

1
22

cos
2

ndh p s L
dt wµ

⎛ ⎞⎛ ⎞ ∆
= ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

                                     (10) 

1
22

sin
2

ndk p s L
dt wµ

⎛ ⎞⎛ ⎞ ∆
= ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

                                      (11) 

( ) ( )
12 21

2 1 sin cos n
dL w pp h L k L
dt p w

µ
µ

⎛ ⎞ ⎛ ⎞
= + − ∆⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
                                                                           (12) 

dm T
dt c

= −                                                               (13) 

0

1d T
dt m c
η ⎛ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
                                                   (14)  
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where 2 2 2
0

0

, 1 cos sin , 1 and .sp
mc g I w f L g L s h k
m

η= = + + = + + =  

 
A measure of the total velocity change is found using the effective velocity, and is defined as 

  
0

ln[ ( )] ln[ ( )]
( ) ( )

final initial
eff

final initial

t tTV t
m t t

η η
η η

⎧ ⎫−⎛ ⎞ ⎪ ⎪∆ = − ∆⎨ ⎬⎜ ⎟ −⎪ ⎪⎝ ⎠ ⎩ ⎭
             (15) 

 
While the thrust vector T  is computed by using two angles α and β, which represent the in-plane 
and out-plane components of the thrust direction, 

            
sin cos
cos cos

sin

r

n

T T θ

α β
α β

β

∆⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪= = ∆⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪∆⎩ ⎭ ⎩ ⎭

         (16) 

IV. Numerical Solution Method 
The Fortran IV double precision version of NASA’s SEPSPOT software is used in the numerical 
solution method.  A costate formulation is used which results in a two point boundary value 
problem which is solved using a Newton iteration on the initial unknown parameters and the 
unknown transfer time.  Also, a Runge-Kutta method is used to integrate the state and costate 
equations and averaging is done using a Gaussian quadrature12,13. 
 
SEPSPOT is designed to calculate time optimal or nearly time optimal geocentric transfers for a 
solar electric spacecraft with or without attitude constraints.  The program has the option to use 
initial high thrust or low thrust.  For the initial high thrust stage one or two impulses of fixed 
total ∆V can be included, and the initial orbit is assumed to be circular.  For the low thrust stage, 
a nonsingular set of orbital elements and an averaging method are used.  In addition, the low 
thrust phase is applicable to general geocentric elliptical orbits12,13. 

V. Numerical Solution Method Equations 

A. Analytical Analysis of SEPSPOT’s Results 
Microsoft Excel was used to conduct an analytical analysis of all the data obtained from 
SEPSPOT.  The data was plotted and then a polynomial trendline, a graphic representation of 
trends in data series, was added to each plot.  To compute the trendline Microsoft Excel 
calculates the least squares fit through the data points by using the following equation where b 
and c1...c6 are constants, 

2 3 6
1 2 3 6...y b c x c x c x c x= + + + + +                           (17) 

A measure of how close the trendline is to the actual data is also conducted by computing the 
coefficient of determination, R2.  The coefficient of determination is an indicator from 0 to 1 that 
reveals how closely the estimated values for the trendline correspond to the actual data.  A 
trendline is most reliable when its R2 value is at or near 1.  R2 is computed as follows: 

( )2

2
2

ˆ
1 j j

j

Y Y
R

Y

−
= −

∑
∑

                                   (18) 
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where the Y values correspond to the optimal values, and the Ŷ  values correspond to the 
analytical values. 

B. Initial Conditions 
Tables 1 and 2 show the initial conditions required to run the computer simulation.  The initial 
conditions used to declare the initial and final orbit consist of the semimajor axis, eccentricity, 
inclination, right ascension of the ascending node, and argument of perigee for both the LEO and 
Molniya orbits.  In addition, the initial mass, initial power, thruster specific impulse, and 
efficiency are considered in order to compute the initial thrust acceleration using the following 
relation12-14: 

     0

2
SPg TIP

ε
=                                    (19) 

Also, the final conditions are the total effective change in velocity, the total transfer time (hours), 
the semimajor axis time history, the eccentricity time history, the inclination time history, the 
apogee and perigee radius time history, and the energy time history.  

 
Table 1  Initial Conditions for the Initial and Final Orbit 

Element Initial Value (LEO) Final Value (Molniya) 
a 7,000 km 26,578 km 
e 0 0.73646 
i 28.5° 63.435° 
Ω 0° 0° 
ω 0° 0° 

 
Table 2  Initial Conditions for Initial Thrust Acceleration 

Element TA = 10-1 N/kg TA = 10-2 N/kg 
Normalized Initial Mass (η) 1 1 

P0 (kw) 0.4905 0.04905 
ISP (sec) 1,000 1,000 

VI. Results 

A. LEO-Molniya Transfer: T/m0 = 10-1 N/kg  
For the case of an initial thrust acceleration of 10-1 N/kg, SEPSPOT accomplishes the transfer in 
one burn while achieving an overall effective change in velocity (∆V) of 5,814.69 m/s in 12.18 
hours.  On the other hand, Spencer’s analytical solution completes the transfer using two burns in 
13.75 hours at a ∆Veff of 6,896 m/s.  Refer to Table 3 to view a comparison of the two solutions 
which shows that SEPSPOT’s trajectory is slightly more efficient by completing the transfer in 
less time; in addition, there is a percent error of 12.89% between the numerical solution provided 
by SEPSPOT and Spencer’s analytical solution. 
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Table 3  Initial Thrust Acceleration of 10-1 N/kg 

 Overall Effective Change in 
Velocity (∆Veff) 

Overall 
Time 

Percent Error 
(%) 

Spencer's Results 6,896 m/s 13.75 hrs 
SEPSPOT's Results 5,814.69 m/s 12.18 hrs 12.89% 

 
Five figures are now presented for this case.  Figures 2-6 show a comparison of the time history 
of the semimajor axis, eccentricity, inclination, apogee and perigee radius, and energy between 
SEPSPOT’s numerical data and Spencer’s analytical data.  A key aspect of the comparison that 
should be noticed is that SEPSPOT’s trajectory manages to complete all the desired conditions in 
approximately the amount of time it takes Spencer’s trajectory to complete the first burn. 
 
Figure 2 shows how SEPSPOT manages to achieve a semimajor axis of 26,578 km (Molniya 
orbit) from a starting semimajor axis of 7,000 km (LEO Orbit) in 12.18 hours by using one burn.  
However, Spencer’s trajectory shows that a burn is performed for approximately 12 hours, 
followed by a coast arc of 4.5 hours, and then a second burn is made which takes about 1.5 hours 
to complete the trajectory.  One should also notice that SEPSPOT’s trajectory seems almost 
parabolic while Spencer’s trajectory has more of an oscillatory shape which could account for 
SEPSPOT’s reduced time to complete the trajectory. 

 

 
Figure 2:  Semimajor Axis Time History, T/m0 = 10-1 N/kg 

 
Figure 3 shows how Spencer’s eccentricity curve slightly oscillates, but increases at a steady rate 
while SEPSPOT’s curve increases slowly at the beginning and then the eccentricity starts 
increasing at a faster rate, resulting in a smooth parabolic curve.  The oscillations in Spencer’s 
trajectory could account for additional time required to achieve a final eccentricity of 0.73646. 
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9

 
Figure 3:  Eccentricity Time History, T/m0 = 10-1 N/kg 

 
Figure 4 illustrates how for Spencer’s results the angle of inclination stays constant at 28.5° 
during the first burn and then it rapidly increases to 63.435° in the second burn.  SEPSPOT’s 
results show how the angle of inclination is increased over time and a parabolic curve is formed. 

 

 
Figure 4:  Inclination Time History, T/m0 = 10-1 N/kg 
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Figure 5 shows how SEPSPOT’s trajectory achieves both the apogee and perigee radius desired 
conditions in the amount of time it takes Spencer’s trajectory to complete the first burn.  An 
important aspect of this plot is that SEPSPOT keeps the perigee radius free which forms a 
parabolic type curve while Spencer maintains a constant perigee radius.  This is a key difference 
since it might account for the optimal trajectory found by SEPSPOT. 

 

 
Figure 5:  Apogee and Perigee Radius Time History, T/m0 = 10-1 N/kg 

 
From Figure 6 one can see that SEPSPOT’s trajectory achieves the energy levels required to 
complete the trajectory in less time.  In addition, from the plot Spencer’s data indicates that more 
energy is required to accomplish the desired LEO-Molniya transfer. 
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Figure 6:  Energy Time History, T/m0 = 10-1 N/kg 

 
In the case of an initial thrust acceleration of 10-2 N/kg, SEPSPOT completes the transfer in one 
burn while achieving a ∆Veff of 5,814.69 m/s in 121.77 hours.  Spencer’s analytical solution 
achieves the transfer using one burn in 136.83 hours at a ∆Veff of 6,844 m/s.  Table 4 depicts a 
comparison of the two solutions in which SEPSPOT’s trajectory is shown to be slightly more 
optimal by completing the transfer in less time.  Furthermore, there is a percent error of 12.37% 
between the numerical solution provided by SEPSPOT and Spencer’s analytical solution. 

 
Table 4:  Initial Thrust Acceleration of 10-2 N/kg 

 Overall Effective Change in 
Velocity (∆Veff) 

Overall Time Percent Error 
(%) 

Spencer's Results 6,844 m/s 136.83 hrs 
SEPSPOT's Results 5,814.69 m/s 121.77 hrs 12.37% 

 
Figures 7-11 illustrate a comparison of the time history of the semimajor axis, eccentricity, 
inclination, apogee and perigee radius, and energy between SEPSPOT’s numerical data and 
Spencer’s analytical data.  One should note that unlike the previous case, both SEPSPOT’s and 
Spencer’s trajectories manage to achieve the desired orbit using only one burn. 
 
Figure 7 shows that despite the fact that both trajectories only require one burn to complete the 
desired final conditions, Spencer’s results are still taking longer to reach the final conditions.  In 
this case SEPSPOT’s semimajor axis curve is smooth and parabolic while Spencer’s curve has a 
similar shape, but it contains small oscillations; these oscillations can account for the additional 
time required to reach the Molniya orbit. 
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Figure 7:  Semimajor Axis Time History, T/m0 = 10-2 N/kg 

 
Figure 8 shows how for Spencer’s results the eccentricity seems to increase at an almost constant 
rate with time.  Furthermore, for SEPSPOT’s results, like in previous initial thrust acceleration 
case, the curve increases slowly at the beginning and then the eccentricity starts increasing at a 
faster rate, resulting in a smooth parabolic curve.   

 

 
Figure 8:  Eccentricity Time History, T/m0 = 10-2 N/kg 
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Figure 9 illustrates how for both Spencer’s and SEPSPOT’s results, the angle of inclination is 
increased over time and a parabolic curve is formed.  The only difference is that SEPSPOT’s 
curve is smooth while Spencer’s curve has oscillations.  In addition, the plot depicts how the 
angle of inclination for SEPSPOT’s trajectory increases at a much faster rate than Spencer’s 
trajectory, hence reaching the desired angle of inclination in less time. 

 

 
Figure 9:  Inclination Time History, T/m0 = 10-2 N/kg 

 
Figure 10 illustrates how SEPSPOT keeps the perigee radius free and forms a parabolic type 
curve while Spencer maintains a constant perigee radius.  This is a key difference since it might 
account for SEPSPOT’s more efficient trajectory. 

 

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
C

A
L

IF
O

R
N

IA
-I

R
V

IN
E

 o
n 

A
ug

us
t 2

5,
 2

01
3 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
00

4-
50

90
 



 
American Institute of Aeronautics and Astronautics 

 

14

 
Figure 10:  Apogee and Perigee Time History, T/m0 = 10-2 N/kg 

 
Figure 11 shows how SEPSPOT’s trajectory achieves the energy levels required to complete the 
trajectory in less time.  In addition, from the plot Spencer’s data indicates that more energy is 
required to accomplish the desired LEO-Molniya transfer. 

 

 
Figure 11:  Energy Time History, T/m0 = 10-2 N/kg 
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An analytical analysis was performed on the time history of the semimajor axis, eccentricity, 
inclination, and equinoctial orbital elements.  Table 5 shows the coefficients of the polynomial 
equation derived for each equinoctial orbital element (semimajor axis is used for the distance 
variable rather than semilatus rectum).  These were then converted into classical orbital element 
curves and plotted. 

 
Table 5 Equinoctial Orbital Element Coefficients, T/m0 = 10-1 N/kg 

y = c1t6 + c2t5 + c3t4 + c4t3 + c5t2 + c6t + c7 
y c1 c2 c3 c4 c5 c6 c7 R2 

a/REarth 0 0 0 0.0004 0.0052 0.1219 1.0783 0.9997 

f 0 0 0 4 x10-17 -4 x10-17 3 x10-16 3 x10-16 0.9999 

g 0 0 -9 x10-5 0.0022 -0.0107 0.0285 -0.007 0.9999 

h 0 1x10-18 -3 x10-17 2 x10-16 -8 x10-16 1 x10-15 -3 x10-16 0.9994 

k 0 0 7 x10-5 -0.0012 0.0076 -0.0114 0.2601 0.9988 
 

To provide a better physical sense of the results, the equinoctial elements and their associated 
curves are converted into classical orbital elements.  Figures 12, 13, and 14 show a comparison 
of the time history of the semimajor axis, eccentricity, and inclination with ωinitial: 0°, 90°, 180°, 
and 270°.  Furthermore, figures 15-19 show the results for the equinoctial orbital elements.  
Figure 12 shows how ωinitial has no effect on the solution provided by SEPSPOT.  The curves for 
ωinitial: 0°, 90°, 180°, and 270° are superimposed and fit perfectly on top of each other.  This 
indicates that SEPSPOT’s solution isn’t dependent on ωinitial. 
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Figure 12:  Semimajor Axis Time History, T/m0=10-1 N/kg 

 
Figure 13 depicts how eccentricity is independent of ωinitial.  The curves for ωinitial: 0°, 90°, 180°, 
and 270° are identical.  Again, this demonstrates that SEPSPOT’s solution is independent of 
ωinitial.  The trendline for this figure also seems to be very accurate since its determination 
coefficient has a value close to 1. 
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Figure 13:  Eccentricity Time History, T/m0=10-1 N/kg 

 
Figure 14 supports what Figures 12 and 13 indicate, that SEPSPOT’s solution is independent of 
ωinitial..  Furthermore, the trendline for this case consists of a third order polynomial and is a 
perfect match to the actual data since the determination coefficient is equivalent to 1.  

 

 
Figure 14:  Inclination Time History, T/m0=10-1 N/kg 
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The analytical analysis conducted for the T/m0 = 10-2 N/kg case consists on deriving the 
polynomial equations for the time history of the semimajor axis, eccentricity, inclination, and 
equinoctial orbital elements (a, f, g, h, and k).  Refer to Table 6 for a comparison of the 
coefficients of the polynomial equation derived for each equinoctial orbital element.  

 
Table 6:  Time History Coefficients, T/m0 = 10-2 N/kg 

y = c1t6 + c2t5 + c3t4 + c4t3 + c5t2 + c6t + c7 

y c1 c2 c3 c4 c5 c6 c7 R2 

a/REarth 0 0 0 4x10-7 6x10-5 0.0119 1.0792 0.9998

f 4x10-29 -2x10-26 3x10-24 -2x10-22 3x10-21 5x10-20 -3x10-19 0.9989

g 0 0 -9x10-9 2x10-6 -0.0001 0.0029 -0.0078 0.9999

h 6x10-29 -2x10-26 2x10-24 -1x10-22 4x10-21 -5x10-20 8x10-20 0.9968

k 0 0 6x10-9 -1x10-6 7x10-5 -0.0011 0.2605 0.9987
 

Figures 15-17 depict a comparison between the trendlines and the actual data for the semimajor 
axis, eccentricity, and inclination. 

 

 
Figure 15:  Semimajor Axis Time History, T/m0 = 10-2 N/kg 
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Figure 16:  Eccentricity Time History, T/m0 = 10-2 N/kg 

 

 
Figure 17:  Inclination Time History, T/m0 = 10-2 N/kg 

VII. Conclusions 
A comparison between Spencer’s analytical data and SEPSPOT’s numerical data showed that the 
percent error between the two is small, there is about a 13% percent difference for the initial 
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thrust acceleration of 10-1 N/kg and 10-2 N/kg.  The factor that affected the results of both 
solutions is that for Spencer’s analytical solution the radius of perigee was held constant while 
with SEPSPOT’s numerical solution the radius of perigee was free.  This difference indicates 
that while Spencer’s solution was closely related to SEPSPOT’s solution it can be improved by 
doing another analytical analysis with the radius of perigee free. 
 
Overall, all the polynomial equations derived for the initial thrust acceleration of 10-1 N/kg and 
10-2 N/kg were extremely accurate since the threshold for the determination coefficient was 
0.995.  The small discrepancies between the trendlines and some of the actual data are the result 
of computer precision.   
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