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Abstract 
This paper examines an analytical method to 

transfer a spacecraft from a Low-Earth Orbit (LEO), 
circular and inclined to the equator, to a Geosynchro- 
nous Earth Orbit (GEO), with no inclination or ec- 
centric~ty, in an analytical, near-optimal fashion. The 
focus is to examine the propulsive mass cost for a 
continuously thrusting vehicle, specifically, to de- 
velop a method to simplify the trajectory optimiza- 
tion problem for this type of vehicle. 

The complexities of this problem are such that an 
analytical study is difficult to accomplish. Simplifica- 
tions and approximations that are acceptable for some 
type of problems are limited by the assumptions 
made. Analytical approximations work for many 
cases, such as very low-thrust, where perturbation 
methods can approximate the small change in the or- 
bital elements quite well. On the other end of the 
thrust spectrum. impulsive approximations (infinite 
thrust, infinitely small duration) can also yield valid 
results. In between, for intermediate-level thrust, nei- 
ther small perturbation methods nor infinitely small 
thrust duration approximation is valid. For very low- 
thrust levels, both analytical and numerical solutions 
are acceptably close. Likewise, for the impulsive 
thrust burn, analytical and numerical results compare 
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favorably. Numerical approaches can yield valuable 
results for the entire thrust level spectrum, but exist- 
ing software tends to lack robustness, and are gen- 
erally computationally intensive. 

The method used in this paper to reduce the 
computational burden is to simplify the problem. The 
goal, just like the true optimization problem, is to 
transfer from one orbit to another, by expending the 
minimal amount of propellant. The sum of the dura- 
tion of all bum-arcs and coast-arcs is the total transfer 
time. 

The first bum arc in the transfer is designed so as 
to maximize the time rate in change in apogee radius. 
Once the apogee radius reaches the GEO altitude, the 
coast arc begins. This coast arc continues until the 
spacecraft reaches a radius that the time rate of 
change in perigee is maximized. Then, the second 
bum arc begins. The pointing direction of the thrust 
vector is determined so as to keep the apogee radius 
constant, and increases the perigee radius until it 
reaches the same value as the apogee radius. For a 
plane change, the most efficient use of mass occurs 
when the velocity is a minimum, and the vector is 
pointed perpendicular to the orbit plane. Addition- 
ally, a variation of the thrust-to-mass ratios was 
studied, and the effects of this parameter on the mass 
cost were then determined. 

The results showed that an analytical LEO-GEO 
transfer can be accomplished using the techniques 
presented range from 1% of the optimal cost for high- 
thrust transfers, down 2.5% of the optimal cost for an 
intermediate to low-thrust transfer. This makes this 
technique a good first estimate algorithm of an opti- 
mal solution. 

Introduction 
The problem to be examined in the course of this 

paper will be that of determining the near-optimal 
orbit transfer characteristics of a continuously 
thrusting propulsion system, and comparing it to the 
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optimal orbit transfer. In the design phase, sizing of 
the system occurs, and the value of having a simple 
method to determine the near-optimal cost is very 
important. The methods presented here are further 
detailed in references [4] and [5 ] .  

The transfer begins with a bum arc that changes 
the apogee of the initial orbit to a ,oeosynchronous 
radius. The perigee is allowed to increase during that 
bum arc, as well. Once the transfer orbit's apogee is 
at the geosynchronous altitude, a coast arc begins. As 
the spacecraft reaches the apogee radius, a plane 
change maneuver begins. This plane change is most 
efficient when the velocity is smallest, so the orbit 
plane is rotated to the final inclination. In the cases 
where the plane change bum arc is of significant du- 
ration, the bum arc is spread out over the apogee 
passage, for example, if it takes the spacecraft 10 
seconds total to rotate the plane, then the plane 
change begins 5 seconds before apogee passage, and 
ends 5 seconds after apogee passage. A velocity 
threshold can also be implemented when the initial 
thrust-to-mass ratio is low, and it takes multiple 
revolutions to complete. After the inclination has 
reached its final value. the orbit is then recircularized. 
The recircularization is accomplished by increasing 
the perigee radius, while keeping the apogee radius 
constant. When the instantaneous radius approaches 
the instantaneous perigee radius, a coast arc is initi- 
ated. This is because at the perigee radius, the perigee 
radius cannot be raised faster than the instantaneous 
radius increases. For the low initial thrust-to-mass 
ratios, it may take several small bum arcs, separated 
by several small coast arcs, to accomplish this recir- 
cularization. 

Analvsis 
The natural dynarnical equations of motion in an 

inverse-square gravitational field, with a perturbation 
vector in the form of a propulsive force are now pre- 
sented in equinoctial coordinates. The concept of 
eccentricity and inclination control using a Fourier 
series analysis is presented next. The initial estima- 
tion of the associated Fourier coeficients for the ec- 
centricity and inclination control is then derived. 
Next. several control laws are developed for the 
LEO-GEO transfer. 

Any element set can be used. Earth-Centered-In- 

ertial (ECI) ( x ,  y, 2 ,  x, y, i) are easily implemented, 
but show little insight into the behavior of the system. 
Classical elements. (a, e,  i,R, a, iM) give good physi- 
cal insight on the system, but prove difficult for low 
eccentricity, and low inclination orbits. Equinoctial 
elements [ I ]  eliminate several of the singularities of 
the classical elements, and prove useful for the spe- 

cific cases to be studied. Because of this, the equi- 
noctial orbital elements are used for the analysis 
throughout the course of this paper. The zeometry of 
the equinoctial coordinate frame is shown in Figure 
1. A ?  

I 

. Y 
t' 

Figure 1 : Geometry of Coordinate Frame 
Here, these equations of motion are presented in ma- 
trix form. as: 

where 

X = ( a  h k p q I) ' ,  
M=6x3 matrix, 

<=(O 0 0  0  0 l ) T  

and the mass flow equation is: 

The elements of the M matrix are shown in the ap- 
pendix. To eliminate the need for a value of mass, 
equation [2] is non-dimensionalized. Introducing the 
variable 

m ( t )  
q( t )  = - 

m 0 
PI 

with the time derivative of 7\ being 

dq 1 dm - = -- 
dt m, dr 

[dl 

equation [2] is then replaced by 
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P nxt 
b, =- I e(t)sin-dr 

P -P P 
where P is the period of the oscillation. 
Taking the time derivative of equation [ l  I], and 

T .  where - is the initial thrust-to-mass ratio, and the equating it to equation [lo], a transcendental equation 
rn o is formed, 

1 I 
ratio of 2- is replaced in equation [l]  by -- 

m(r )  m, l?(t) tnc-, sinnt+ a,, cosnt, = 
,,=I 

Eccentricitv Control 
One way to solve this problem is to apply a 

forcing function on the eccentricity variable, and ex- Substituting the expressions for the control vec- 
amine the effects of this control law on the other or- tors, a transcendental equation is found for the con- 
bital elements. If the yaw angle of the transfer is trol angle a, 
designated by the angle a, and the pitch angle is des- 

ignated by the angle, P, the control variables uf, us 
(hM,, +k~~,)coscc+(hM,, +kM3,)sina = 

and u,, in the equinoctial reference frame, become: - 

and 

U, = sin fi . 

[6] -(hMZ3 + k ~ ~ ~ ) s i n p + e x n ( - o ~  sinnt+ b, cosnt) 
- - n=l 

[71 COSP 

The coefficients can then be determined after model- 
ing the eccentricity in any fashion desired. 

[81 The significance of equation [13] is that any ec- 
centricity time history (including an optimal solution) 

The eccentricity is related to the equinoctial ele- can be modeled as a Fourier series approximation. If 

ments by the eccentricity time history can be better described 

m by another curve, such as a polynomial, least-squares, 
e =  h + k  P I  splines, or a straight line, the time derivative can be 

Taking the time derivative of equation [9], yields inserted in place of the summation in equation [13]. 

The method examined in this paper is to model 
the eccentricity as an infinite Fourier series. The sine 
and cosine functions have many desirable features. 
They are easily computed by rapidly convergent se- 
ries. Their successive integrals and derivatives are 
again sines and cosines. Finally, they have orthogo- 
nality properties and are periodic. For the continuous 
eccentricity function, the trigonometric series is 

.- - 
where 

P nxt 
a, =LJ e(r)cos-dr 

P -P P 
and 

Inclination Control 
The same principles can be applied to inclination 

control. Just as the yaw angle ct controls the eccen- 
tricity, the pitch angle P controls the inclination. The 
relationship between the inclination and the equinoc- 
tial elements, p and q, is 

i = 2tan-'(p2 + q 2 )  112 [I41 
Taking the derivative of this equation with re- 

spect to time yields: 

di -- 2( Pi, + q4) [I51 
df - (p2  + q2)li2 (1 + p2 + q2) 

Since the variables p and q are influenced by a 
change in the pitch angle, P, the inclination time his- 
tory is independent of the yaw angle directly, and is 
only effected by the yaw angle indirectly, due to the 
yaw angle's effects the semimajor axis and the eccen- 
tricity. The inclination can be modeled in any way 
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desired, and just like the eccentricity, a Fourier series 
was chosen. as: 

1 - 
i(i) = -c, + x ( c n  cosnti- dn sinnr) [I61 

2 
n=l 

where the coefficients can be chosen to model the 
time history, as desired. 

Taking the time derivative of equation [16], and 
equating it to equation [15], the approximate value of 
the pitch angle, P, becomes: 

n(-c, sinnr + d, cosnt) 

~ ( P M , ,  +qM,,) 

In order to begin this analysis, initial sets of co- 
efficients for eccentricity control and inclination con- 
trol must be found. The dynamics of several control 
laws is presented, and the theory regarding the 
Fourier coefficient determination is applicable to any 
of the control laws used. 

da 
Maximization of - Control Law: First Burn 

d t 
Arc in LEO-GEO Transfer 

If there are no attitude constraints, a control law 
where the amount of energy put into the system is 
maximized can be used. This relatively simple con- 
trol likewise maximizes the time rate of change in 
semimajor axis. The energy is found from the simple 
relation, 

P E=--  
2a  

[I81 

Taking the time derivative of equation [18], we get, 

Thus, maximizing the time rate of change of energy is 
equivalent to maximizing the time rate of change of 
semimajor axis. 

Taking the partial derivative of equation [20] with re- 
spect to the control angle a, and assuming that cosp 
is not equal to zero, setting the partial derivative 
equal to zero maximizes the time rate of change in 
semimajor axis, a (since the minimum value of equa- 
tion [20] is 0). Doing this, the control law becomes: 

For many cases, it is not cost effective to have only 
one bum arc for the transfer. In these cases, a coast 
arc is inserted between two burn arcs. The point 
where the coast arc begins is determined from the 
control law used for the first burn. When the apogee 
radius reaches the apogee radius desired, the thrust is 
turned off. 

Plane Change Maneuver in a LEO-GEO Transfer 
Orbit 

The same procedure for determining the velocity 
at which to perform an out-of-plane maneuver can be 
employed for a LEO-GEO transfer as well. When the 
position in the burn arc approaches the perisee ra- 
dius, the perigee radius cannot be changed without 
increasing the apogee radius. Therefore, if the ratio of 
the instantaneous radius and the perigee is less than 
some threshold, say perhaps 1.01, the thrust is turned 
off, and a coast arc is instituted. This allows for a 
longer transfer time, but does not waste propellant. 
This situation occurs only when there are multiple 
perigee passes, which correspond to the lower thrust 
level simulations. 

The plane change can be broken up based on the 
most efficient use of propellant. One way to break up 
the inclination change would be to begin the out-of- 
plane changes when the velocity of the spacecraft in 
the orbit falls below a given value, since the effective 
inclination change is more efficient when the velocity 
is smaller. The out-of-plane control law used in 
equation [17] can be used in this case as well. In all 
cases, it is necessary to iterate on where the out-of- 
plane maneuver begins. If the velocity threshold 
where the inclination change occurs is too high, then 
the inclination change will not be enough to reach the 
final desired value. If the velocity threshold is too 
low, the inclination will change too much. 

Expanding the first row of equation [I] (with the Recircularizine the Transfer Orbit 
non-dimensional transformation on mass), and noting In going into the second burn arc, the goal is to 
that M 1 3  = 0 (from the appendix), becomes change the perigee radius, while keeping the apogee . - . - 

radius constant. This can be done by examining the 
%= ( $ ) ( & ) [ w , ,  cos a r o s  + M , *  sin ~ C O S  b][201 dynamics of the perigee radius. The radius at perigee 

r,,, is found as 
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rp = a(1- e )  [221 

Taking the time derivative of equation [22], the time 
rate of change in perigee radius is 

dr de da 
P = - a - + -  
dt dt dt 

[231 

In addition to changing the perigee radius, the apogee 
radius must remain constant. With the apogee radius, 

r, , given as 

r, = a ( l +  e )  [241 
and setting the time derivative equal to zero, 

de da a = O = a - + ( l + e ) -  
dt dt dt 

[251 

the time derivative of semimajor axis can be solved 
for, as 

Inserting equation [26] into equation [23], the time 
derivative of perigee radius is 

dr 2a de 
P=--- 
dt l + e d t  

~ 7 1  

Putting the previous equation into equinoctial ele- 
ments, equation [27] becomes 

In order to obtain the control angle that keeps the 
apogee radius constant, we next take the partial de- 
rivative of equation [25] with respect to the control 
angle, a, and setting it equal to zero, that control an- 
gle becomes 

In order to determine whether to use the positive 
or negative value of a, the second derivative test on 
equation [28] shows that, in order to attain a local 
maximum, the constraint 

1 
-(hM2, + k M 3 , )  > 0 
cos a 

must be satisfied. 
Short of a numerical optimization process, there 

is no simple way to determine the best way to per- 
form a three-dimensional transfer where the orbit 

plane is changing at the same time as the shape of the 
planar orbit. However, some simplifications and as- 
sumptions can be made to allow for an easier solution 
procedure. 

Oualitv of the Solution 
In order to study the quality of solutions, a 

measure of how good the coefficients perform must 
be determined. For the coplanar transfer, the best 
case (the one that requires the lowest amount of pro- 
pellant) is the two-impulse Hohmann transfer. The 
impulsive change in velocity for the first burn is 
computed from the well-known equation: 

while the impulsive change in velocity for the second 
bum is 

Av2 = 81 - d ]  XEJ [321 

Relating the amount of Avi (i=1,2) applied to the 
amount of mass used, 

L 

where: 

mi =mass of spacecraft after ith bum 

For an inclination change maneuver, the Av re- 
quirement is 

Ai 
Av = 2vsin- 

2 
[341 

which corresponds to a mass cost of found in equa- 
tion [33]. 

The cost is presented as a function of the specific 
impulse used. However, in order to eliminate the de- 
pendence on specific impulse, the cost can be 
changed into an "effective Av". Integrating the mass 
ratio rate equation [5], yields 

where 

1 during burn arc 
6 = {  0 

during coast arc 
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The mass ratio changes only during the bum arc, so 
equation [35] reduces to 

where .t is the total bum arc time duration. The 

termq(to) is the mass ratio at the beginning of the 

burn arc, while the termq(tf)  is the mass ratio at the 

end of the burn arc. Soiving equation [36] for the 
specific impulse term, yields 

1 1 n ( w f  ))- 1n(Wo))  -- - - 
Av 

[371 
go I,, 

Inserting equation [37] into equation [36], and solv- 
ing for the effective Av gives, 

There has been various amounts of results pub- 
lished that give the "optimal" transfer parameters for 
a wide range of initial thrust-to-mass ratios. Each 
"optimal" case published has its own merits and limi- 
tations, and therefore is not used to gauge the results 
presented in this dissertation. The Hohmann transfer 
approximation is still the best gauge to judge the 
quality of the results for the high-thrust cases, while 
perturbation methods provide a good gauge to the 
low-thrust cases. 

Results 
In this section, the transfer analyzed uses initial 

thrust-to-mass ratios ranging from very high (100,000 
Nkg)  to very low (0.01 Nlkg). This transfer is a 
combination of orbit shape change and orbit plane 
change. 

The simulation begins with a circular orbit, with 
a radius of 7,000 krn, inclined to the orbit at 28.5', 
and ends with a circular orbit with a radius of ap- 
proximately 42,241 krn, with zero inclination. For 
numerical approximations, the initial eccentricity is 
set at an arbitrarily small value, as is the final eccen- 
tricity and inclination. The locations of the spacecraft 
in the initial and final orbits are arbitrary, and are 
coupled, and are therefore not presented, except that 
the initial mean anomaly is chosen so that the first 
burn arc ends at an equatorial crossing. 

The cases presented here have three major burn 
arcs (the second and third burn arcs are sequential, 
and are effectively one burn arc), and possibly some 
smaller burn arcs in the recircularization maneuver. 
In actual operations, the plane change and recircu- 

larization burns can be combined into one maneuver. 
This would reduce the impulsive cost by approxi- 
mately 400 mlsec, and would likewise decrease the 
effective Av for all of the transfers presented here. 

All of the small bum arcs in the recircularization 
are included in the effective Av for the recirculariza- 
tion. Table 1 shows the costs for this simulation for 
seven orders-of-magnitude in initial thrust-to-mass. 

I I ~ f f ~ ~ ~ i ~ ~  I Effective 1 Effective 1 Totd 1 
AV for for Av Effective 1 ) 1 1 Plane 1 for Re- I A / 

mo First Bum Change circular- ( d s e c )  
I I ( d s e c )  I B U ~  I ization 1 ' I 

Table 1: Three-Dimensional, LEO-GEO Transfer 
Cost 

Zondervan [6] and Redding [3] presented results 
for optimal LEO-GEO transfers. Since the initial 
conditions are not the same in the two references and 
this study, the transfer costs are normalized with re- 
spect to the individual impulsive costs, and are pre- 
sented in Figure 2. 

Current Study Resub 

1 10 

Initial h t - t o - M a s s  Ratio 

Figure 2: Comparison of Current Study Results to 
Zondervan and Redding 

LEO-GEO Fourier Approximation 
A Fourier transformation is applied to the eccen- 

tricity time history for the first burn arc, the inclina- 
tion time history for the plane change maneuver, and 
the remaining eccentricity time history for the recir- 
cularization maneuver in an example LEO-GEO 
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transfer. The eccentricity control portion of the trans- 
fer occurs during the two periods when the eccentric- 
ity is changing. The inclination control portion occurs 
when the inclination is changing. 

Eccentricitv Control for First Burn Arc for LEO- 
GEO Transfer 

The Fourier transformation is applied to an ex- 
ample eccentricity time history for the first burn arc. 
The superposition of the Fourier series approximation 
on the eccentricity time history allowed for creation 
of this figure., which was created using 317 Fourier 
coefficients (159 "a" coefficients, and 158 "b" coef- 
ficients). 

0 5uX) lm 15033 unoo m 3m 35033 

T i  (seconds) 

Figure 3: Eccentricity Time History with Fourier 
Series Approximation 

The curves plotted in Figure 3 are nearly indis- 
tinguishable. To further discern these curves, the 
absolute value of the difference between these curves 
is plotted in Figure 4. 

Time (seconds) 

Figure 4: Absolute Value of Difference Between 
Numerical Approximation and Fourier Ap- 

proximation vs. Time 

Inclination Control for Plane Chanpe Maneuver 
for LEO-GEO Transfer 

During the portion of the transfer where the in- 
clination is changing, a Fourier series approximation 
on the inclination time history is done. An example 
time history is used to determine the associated 
Fourier coefficients. The superposition of these two 
curves is presented in Figure 5. This curve was pro- 
duced using 81 Fourier coefficients (41 "c" coeffi- 
cients, and 40 "d" coefficients). 

Time After Beginning of Burn Arc (seconds) 

Figure 5: Inclination Time History with Fourier 
Series Approximation 

The two curves fairly close, yet distinguishable. 
The absolute value of the difference between the two 
curves is plotted in Figure 6. 

Time After Beginning of Burn Arc (secon&) 

Figure 6: Absolute Value of Difference Between 
Numerical Approximation and Fourier Approxima- 

tion vs. Time 
The inclination time history approximation could 

be better modeled as a linear approximation, which is 
done in Figure 7 ,  and the absolute value of the differ- 
ence is presented in Figure 8. 

Figure 7 :  Inclination Time History with Linear 
Approximation 
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Figure 8: Absolute Value of Difference Between 
Numerical Approximation and Linear Approximation 

vs. Time 

Eccentricitv Control for Recircularization for 
LEO-GEO Transfer 

The Fourier transformation is applied to an ex- 
ample eccenmcity time history for the recircularizing 
part of the results. The superposition of the Fourier 
series approximation on the eccentricity time history 
allowed for creation of Figure 9, which was created 
using 563 Fourier coefficients (282 "a" coefficients, 
and 281 "b" coefficients). 

Numerical 
Approximation 

Approximation 

Time After Beginning of Bum Arc (seconds) 

Figure 9: Eccentricity Time History with Fourier 
Series Approximation 

The curves plotted in Figure 9, just like the oth- 
ers, are indistinguishable. Further discrimination of 
these curves plots the absolute value of the difference 
between these curves in Figure 10. 

Time After Beginning of Bum Arc (seconds) 

Figure 10: Absolute Value of Difference Between 
Numerical Approximation and Fourier Approxima- 

tion vs. Time 

For a more detailed discussion of the results, the 
reader is referred to reference 5. 

Summary, Conclusions and Further 
Study 

This paper outlines a methodology to relax the 
requirement of an extensive numerical analysis of the 
optimal orbit transfer trajectory analysis. Simple, yet 
physically realizable control laws were developed, 
and applied to a number of initial thrust-to-mass ra- 
tios. 

The equations of motion were developed in an 
equinoctial element frame. The general principles 
were developed for several control laws. A Fourier 
series analysis was performed on the eccentricity and 
inclination time histories, and the methodology was 
developed to describe the thrust vector control laws 
as a truncated Fourier series. 

These control laws were pieced together to pro- 
duce the transfer presented in the paper. The first 
bum arc was performed, and changes the apogee ra- 
dius to the final, geosynchronous radius, while the 
perigee radius increased. When the final apogee ra- 
dius was reached, a coast arc was initiated. The coast 
arc ended when the apogee radius was approached. 
At this point, the spacecraft is traveling the slowest, 
and therefore the out-of-plane maneuver was per- 
formed to bring the inclination down to zero. Once 
that was done, the orbit was recircularized, using the 
control law that increases the perigee radius, while 
keeping the apogee radius constant. The results 
showed that for the higher initial thrust-to-mass ra- 
tios, the cost was within a fraction of a percentage of 
the ideal, impulsive transfer. For the low initial 
thrust-to-mass ratios, the cost was about twice that of 
the impulsive case. In these cases, the final recircu- 
larization was performed with multiple bum arcs, 
each separated by a coast arc. 

The Fourier series analysis technique was per- 
formed for one LEO-GEO case. Given a sufficient 
number of collocation points, the difference between 
the numerical approximation and the Fourier ap- 
proximation was virtually nonexistent. A linear ap- 
proximation was performed on the inclination time 
history, and here again, the difference was very small. 

The methodology presented here was not in- 
tended as a replacement for an optimization study, 
but as a complement to the numerical approach. It is 
best used for an initial design analysis, and for space- 
craft on-board guidance systems. Using the Fourier 
series analysis allows for a rapid reprogramming of a 
spacecraft with the truncated Fourier series based 
control law. 
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The most significant result shown is that this 
method is applicable to a seven order-of-magnitude 
range in initial thrust-to-mass ratios, which covers the 
spectrum of all orbit transfers. It is most accurate for 
the high initial thrust-to-mass ratios. 

The results obtained from this study naturally 
lead to more unanswered questions. Little has been 
published on results for the low-thrust cases, and a 
numerical optimization study would be valuable to 
compare the results presented here with. Addition- 
ally, the initial conditions can be refined to accom- 
modate additional constraints on the final conditions, 
for example, right ascension of ascending node for a 
LEO to GEO transfer, and development of initial 
launch windows characteristics for these cases. 

The best comparison case to demonstrate the 
quality of these solutions is the ideal, impulsive case. 
To better compare the results, a full numerical opti- 
mization using each of the initial thrust-to-mass ratios 
could provide a better comparison of the results, in- 
stead of the limited results published in the literature. 

Finally, an examination of the sensitivity of the 
Fourier approximation by a variation of the Fourier 
coefficients can be performed to determine how many 
coefficients need to be used. Furthermore, shape 
functions other than Fourier series approximations 
can be applied which could model the eccentricity 
and inclination with easier to construct curves. 

References 
Broucke, R.A., and P.J. Cefola, "On The Equi- 
noctial Orbit Elements," Celestial Mechanics, 
Vol. 5 ,  1972, pp. 303-310. 
Kechichian, J.A., "Equinoctial Orbit Elements: 
Application to Optimal Transfer Problems," 
AIAA 90-2976-CP, AIANAAS Astrodynamics 
Conference, Portland, OR, August, 1990. 
Redding, D.C., "Optimal Low-Thrust Transfers to 
Geosynchronous Orbit," Stanford University 
Guidance and Control Laboratory Report 
SUDAAR 539, September, 1983. 
Spencer, D.B., and R.D. Culp. "An Analytical 
Solution Method for Near-Optimal, Continuous- 
Thrust Orbit Transfers", AAS 93-663, 
AASIAIAA Astrodynamics Specialist Confer- 
ence, Victoria, B.C., Canada, August, 1993. 
Spencer, D.B., "An Analytical Solution Method 
for Near-Optimal, Continuous-Thrust Orbit 
Transfers", Ph.D. Dissertation, The University of 
Colorado at Boulder, January, 1994. 
Zondervan, K.P., "Optimal Low Thrust, Three 
Burn Orbit Transfers With Large Plane Changes," 
Ph.D. Diszertation, California Institute of Tech- 
nology, May, 1983. 

APPENDIX 

The constituents of the matrix in equation [I], as 
reprinted from reference [2], are: 

k 
M23 = -(qY- PX) 

Gnu- 
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p= gravitational constant 

h= F - k s i n F + h c o s F  

r i  = uf  f +ug2+uwG 

and 

u ,us,  uw are unit vector components 

in the f, 2 ,  directions, respectively. 
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