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Abstract 

Low-thrust eiliptical orbit transfer missions 
are modeled by calculating the long-term variation of 
the orbital elements. Rate equations are given for 
perigee- and apogee-centered burn arcs with four 
different steering programs. Applications include 
varying the eccentricity at constant semimajor axis, 
transferring fi-om low-earth orbit to a Molniya orbit, 
and transferring to geosynchronous orbit with an 
inclination change. 

Introduction 

Techniques for evaluating low-thrust orbit 
transfers are of current interest because electric 
thrusters will soon be used in missions with significant 
A V such as geosynchronous orbit insertion.‘-5 Exact 
numerical methods to describe low-thrust trajectories 
are computationally intensive and may be more 
elaborate than is needed for the first phase of a trade 
study. Moreover, designing a trajectory to minimize 
trip time or propellant mass could prove to be 
impractical, because the satellite may not be able to 
execute the optimal steering 
electric orbit transfer vehicles. P 

rogram envisioned for 
This paper presents an 

approach for estimating the AV and trip time in 
elliptical orbit transfers by calculating the long-term 
(secular) variation of the classical orbital elements 
using simple steering programs. The method permits a 
rapid assessment of design options for delivering a 
satellite to its final orbit, prior to a 111 optimization 
when the trade-space has been narrowed suffkiently. 

Analysis 

A useful formulation of the low-thrust orbit 
adjustment problem was developed by Burt6 under the 
assumption that thrusting produces a negligible change 
in each element during a single period of the orbit. 
Hence the secular rate of change of one element can be 
calculated by holding the other elements constant 
during one revolution. We extend Burt’s approach to 
the case of discontinuous acceleration by analyzing 
perigee- and apogee-centered burn arcs that can be 
used to transfer from low-earth to Molniya orbit or to 
raise the perigee of an elliptical orbit to 
geosynchronous orbit.’ We solve for the secular rates 
of change of the elements using a specified steering 
program, and then integrate numerically to obtain the 
history of each element throughout the maneuver. 

In Burt’s nomenclature ,f is the thrust per unit 
mass (i.e., acceleration) having the three components 
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e* = 1 - (b/U)2 

Figure 1. Orbital elements and components of acceleration in 
geocentric inertial coordinates. 

shown in Fig. 1. Here, fi is directed outward along the 
radius vector, ft is normal b the radius vector in the 
orbit plane, and f3 is normal to the orbit plane in the 
direction of the angular momentum vector. Table 1 
gives the rates of change of the semimajor axis a, 
eccentricity e, inclination i, right ascension of the 
ascending node R, and argument of perigee w as 
fimctions of eccentric anomaly E. These expressions 
are derived from the Lagrange planetary equations 
listed in Reference 6. We observe in Table 1 that a and 
e are affected by the in-plane componentsf, andf,, that 
i and Sz are affected by the out-of-plane component f3, 
and that w is affected by all three components. 

The magnitude of the acceleration 

f = J(r,)’ + (f2)2 +(f3)2 is taken to be constant 

throughout the mission. Specifying f;, f2, and f3 as 
functions of E defines the steering program and 
determines the relative rates of change of the orbital 
elements. Table 2 listsf,Q andf,(E) in four different 
pitch steering cases, where the in-plane acceleration 
vector is (1) perpendicular to the orbit radius vector, 
(2) tangent to the orbit path, (3) perpendicular to the 
major axis of the ellipse, and (4) parallel to the major 
axis of the ellipse. Cases (1) and (2) are identical in the 
limit of small e. We will treat examples in which the 
yaw steering angle ,8 is fixed, meaning that the out-of- 
plane component of acceleration cf3 = f sin p ) is 
constant during the mission. However, the formulas 
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Table 1. Rates of change of the orbital elements with E, where PL= 398,601 km3 s-*. 
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presented below for the rates of change of the elements 
are also applicable to the case of a slowly varying yaw 
angle. Discontinuous thrusting is represented by 
perigee- or apogee-centered burns where the burn arc is 

either -alEl+a or r-aCLEIz+a,asshownin 
Fig. 2. After inserting a steering program corn Table 2 
into the rate equations from Table 1, the resulting 
expressions are integrated over the burn arc to 
determine the change in each element during one 
revolution. Taking case (1) as an example, the change 
in the semimajor axis is 

Figure 2. Perigee- and apogee-centered bum arcs are 
specified in units of eccentric anomaly E where -a 5 E I +a 
or n-aSEEr+a. 

(1) 

The secular rate of change of a is obtained by 

multiplying Aa times the orbit frequency, namely 

Secular rates of change of a, e, i, R, and w for 
the four steering programs are obtained by applying the 
above procedure to all of the elements, leading to the 
formulas in Table 3. Figure 3 compares secular rates 
for the different steering programs as a function of burn 
arc. When the burn arc is small the steering programs 
for cases (l), (2), and (3) become equivalent, and hence 
there is a convergence in the secular rates of change of 

a and e in the limit of small a as illustrated in Fig. 3. 
Case (2) steering is more effkient than case (1) for 
changing a by either apogee- or perigee-centered 
burns, while changing e is better performed by case (1) 
in apogee burns and by case (2) in perigee burns. Case 
(3) has the in-plane acceleration perpendicular to the 
major axis of the ellipse, which is rather ineffective for 

changing a, but for continuous thrusting (a = x) it can 
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Table 2. In-plane (pitch) steering with four different choices for the in-plane acceleration vector, where 

fl2 yRiiGzF=fCOSB. 
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Figure 3. Comparison of in-plane steering cases (I), (2), and (3) in a GE0 transfer orbit with an apogee altitude of 
35,786 km and a perigee altitude of 185 km. Secular rates of change for a and e are calculated fkom Table 3 with f = 
3 x lo-’ kmls2, and with the burn arc given by a, as defined in Fig. 2. 



Table 3. Secular rates of change of the orbital elements with four different choices for the in-plane acceleration vector. 
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efficiently change e while keeping a constant. Case (4) 
has the in-plane acceleration parallel to the major axis 

of the ellipse, which gives no change in a, e, i, or R, 
but (unlike the other in-plane cases) does produce a 

change in w The formula in Table 3 for the buildup 

rate of AV is derived from the burn duration per 
revolution, 

tbum = 2Jz(a+oesina), (3) 

where the parameter o equals - 1 for perigee burns and 
+I for apogee burns. 

Only the out-of-plane component of 
acceleration f3 affects the orientation of the orbit plane, 
and hence the four in-plane steering cases give the 
same results for i and R in Table 3. The function G(s 

a, e) appears in the rates of change of i, Sz, and Q and 
the graph of G in Fig. 4 shows that apogee burns are 
much more effective than perigee burns for adjusting 
these elements. This graph also indicates that plane 
changing at a fixed yaw angle is inefficient when the 
apogee burn arc extends over more than half of the 

ellipse (a > x/2). A maneuver to change i is best 

performed with w = 0 or x, because the rate of change 

of i is proportional to cos 0. Similarly, a maneuver to 
change Q is best performed with w = rc/2 or 362. Due 
to the i-dependence of the formulas in Table 3, the 

rates of change of Sz and w become infinite as the 
inclination approaches zero, but the rate of change of 

the longitude of periapsis (l-l = R + w) remains finite. 

Earths oblateness has a perturbing influence 

on R and w that is expressed in Table 3 by the 
formulas for the nodal regression rate N(a, e, i) and 
apsidal rotation rate A(a, e, i);* these are added to the 

secular rates of change of R and w due to thrusting. 
Apsidal rotation is a concern for elliptical orbit 

transfers that involve plane changing, because w tends 

to drift away from the optimal value (e.g., w = 0 for a 

Ai maneuver). The examples in this paper take account 
of Earths oblateness, but ignore other perturbations 
such as lunar-solar gravitation and solar radiation 
pressure.’ The effects of satellite eclipsing and 
variable acceleration are also neglected. 

Applications 

The first application we will consider is a co- 
planar transfer between orbits of different 
eccentricities, which yields simple analytic expressions 
for the velocity increment and trip time. The mission is 
performed using inertially fixed steering with the 
acceleration perpendicular to the major axis of the 
ellipse, namely case (3) steering with a = x. The 
semimajor axis a is unchanged during the maneuver, 

and from Table 3 the secular rate of e and the A V are 

, / perigee burns 

0 -.-L--- 

0.0 0.2 0.4 0.6 0.8 1.0 

Figure 4. Dependence of the function G on CY, as defined in 
Table 3. Orbit parameters are the same as in Fig. 3. Secular 
rates of change of i, R, and ware proportional to G. 

(4) 

arcsin et - arcsin e2 I. (5) 

Circularizing a 24-hour orbit with an initial apogee 

radius of 67,000 km (e = 0.58903) gives AV = 1.291 
km/s with At = 50 days at an acceleration off = 3x lo-’ 
km/s’. This describes the low-thrust portion of the 
geosynchronous eymtorial orbit (GEO) insertion 
proposed by Spitzer using a combination of chemical 

and electric propulsion. An acceleration of 3x lo-’ 
km/s’ corresponds to a thruster producing 50 mN per 
kW of input power and a satellite having a power-to- 
mass ratio of 6 W/kg.’ Inertially fixed steering is 
chosen mainly for ease of implementation on 

geosynchronous satellites, but it happens to give a AV 
only a few percent greater than that of an optimized 
steering program. To illustrate this, compare Eq. (5) in 
the limit of small e with Edelbaum’s result for 
changing the eccentricity of a near-circular orbit:” 

Inertially fixed: AV = 0.667,/,ula Ae, (6) 

Edelbaum optimal: AV = 0.6494,ula Ae. (7) 

The next application is a co-planar transfer 
from a circular low-earth orbit (LEO) to a 12-hour 
Molniya orbit (a = 26,554 km, e = 0.7) that allows 
viewing the high-latitude regions of the earth from an 
inclination of i = 63.44” where the apsidal rotation rate 
is zero. Figure 5 shows the history of a and e for a 
transfer using perigee burns and case (2) steering with 
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GTO to GE0 transfer 
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Figure 5. Semimajor axis and eccentricity vs. time for a co- 
planar LEO-to-Molniya transfer withf‘= 3 x 1O-7 km/s* using 

perigee bums, case (2) steering, and a = n/2. 

a = x/2, corresponding to tangential thrusting along 
half of the ellipse. The fast part of the transfer ends at 
303 days, when a = 26,554 km and e = 0.5976. The 
maneuver technique then changes to case (3) steering 
with continuous thrusting perpendicular to the major 
axis, which brings e to the desired value in 13 days 
while a remains constant. Because the first segment of 

this mission uses perigee-centered burns, the AV and 
trip time are less for case (2) steering (3.49 km/s, 316 
days) than for case (1) steering (3.79 km/s, 331 days). 
A reduction in trip time to 224 days and an increase in 

AV to 5.79 km/s are attained by thrusting continuously 

(a = x) to reach a circular orbit at a = 26,554 km, 
followed by a maneuver to change Corn e = 0 to e = 
0.7. Alternatively, if the burn arc is reduced by 

choosing a = 55” then both a and e reach their target 

values after 520 days with a greatly reduced AV of 2.75 
km/s. However, these results all imply that low-thrust 
propulsion is not a very attractive option for transfers 
to highly eccentric orbits. 

As an example of an elliptical orbit transfer 
with a plane change, we consider moving to GE0 from 
an orbit having an apogee altitude of 35,786 km, a 
perigee altitude of 185 km, and i = 28.5”. This requires 
increasing the semimajor axis while bringing the 
eccentricity and inclination to zero. Figure 6 shows the 
history of the orbital elements for a transfer using 

apogee burns with case (1) steering, a burn arc of a = 

7t/2 (i.e., half of the ellipse), and a yaw angle held 
constant at p = 42.2”. The latter is chosen to make a 
and i reach their target values at the same time (117 
days), from which point the orbit is circularized using 
case (3) steering with continuous in-plane acceleration 
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Figure 6. Orbital elements vs. time for a GTO-to-GE0 
transfer withf= 3 x lo-’ km/s’ using apogee bums, case (1) 

steering, a = 11/2, and a constant yaw angle of fl= 42.2”. 

perpendicular to the major axis. To get around the 
problem of apsidal rotation, the argument of perigee is 

initialized at w = -15” and drifts naturally toward w = 

0” as i approaches zero. The total AV is 2.38 km/s for 

the low-thrust mission with a = n/2, compared with an 

impulsive (high thrust) AV of 1.84 km/s. Using a > 

n/2 shortens the trip time slightly but incurs a large AV 

penalty, while using a < 7112 gives a modest A V savings 
at the cost of a much longer trip time. 

To illustrate how our method can assist in top- 
level trade studies, we consider a transfer to GE0 for a 
range of initial conditions. In this scenario the launch 
vehicle initially places the satellite in an orbit with a 
variable apogee radius, a perigee at LEO, and i = 28.5”. 
The on-board chemical system then fires at apogee to 
reach a park orbit having a perigee radius of 15,000 km 
and a variable inclination. This perigee radius is 
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Park orbit to GE0 Atlas HAS to GE0 via park orbit 
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Figure 7. Velocity increment vs. trip time to reach 
geosynchronous equatorial orbit from a park orbit with a 
perigee radius of 15,000 km. Park apogee radius (km) and 
inclination (“) are specified on the graph. 

selected to minimize exposure to high-energy protons 
during the low-thrust segment of the mission. The 
spacecraft travels to GE0 by the same approach as in 
Fig. 6 at an acceleration off = 3 x 1 Ow7 km/s2, with the 
yaw angle p and the initial w chosen to give i = 0” 

when a = 42,164 km. Figure 7 shows AV as a function 
of trip time for the low-thrust maneuver with the park 
apogee and inclination displayed parametrically. For a 
given apogee radius, there is a linear relation between 
AV and trip time, governed by the choice of park 
inclination (more Ai means a longer trip and greater 
Al’). For a given park inclination, AV cm be either a 
decreasing or increasing function of trip time 
depending on park apogee radius. It is perhaps 
surprising to see for i I 16” that the AV to GE0 

increases as the park apogee radius increases. This 
comes about because the park orbit eccentricity 
increases with apogee radius, and the higher AV for 
circularization more than offsets the lower AV needed 
to change a. A different trend can be seen for i > 16” 
when an intermediate apogee radius (ca. 49,000 km) 
gives the minimum AV, due to the penalty associated 
with plane changing at lower radii. 

Typically the mission planner seeks to 
maximize payload mass at GE0 for a given trip time, 
which is not necessarily achieved by minimizing the 
low-thrust AV. With a given launch vehicle, the 
attainable spacecraft mass in the park orbit depends on 
apogee radius and inclination (i.e., decreased mass if 
the orbit is higher and less inclined). Hence, the results 

2700 
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Figure 8. Satellite mass vs. trip time to reach 
geosynchronous equatorial orbit fiorn an Atlas IIAS booster 
via a park orbit with a perigee radius of 15,000 km. Park 
apogee radius (km) and inclination (“) are specified on the 

graph. 

in Fig. 7 must be combined with performance figures 
for the launch vehicle and on-board chemical system to 
optimize the mass-vs-time trade-off to GEO. This is 
depicted in Fig. 8 for the case of an Atlas IIAS booster 
with the park perigee radius futed at 15,000 km. On- 
board propulsion systems are assumed to have specific 
impulses of 314 s (chemical) and 1600 s (electric). 
Several interesting trends are evident in Fig. 8. If the 
park orbit is confined to i = 0” (equatorial), then the 
best apogee radius is around 50,000 km, and the 
satellite mass at GE0 is 2420 kg with a 60-day trip 
time (an improvement of at least 400 kg over an all- 
chemical propulsion system). Further mass gains are 
possible if the spacecraft can perform yaw steering to 
change inclination during the low-thrust segment of the 
mission. A satellite mass of 2610 kg and an SO-day 
trip time are achieved when the park orbit inclination is 
i = 12” and the apogee radius is 43,000 km. No 
additional benefit is obtained for park orbit inclinations 
greater than i = 20”. Similarly, apogee radii greater 
than 55,000 km are to be avoided, because they give a 
sharp reduction in GE0 mass with little or no savings 
in trip time. One exception to this would be for an 
equatorial park orbit (i = 0’) with a 24-hour period 
(e.g., 69,328&m apogee radius, 15,000~km perigee 
radius) that is circularized with inertially fixed steering 
while in view of a single ground station.’ Here the 
mission planner may decide that operational simplicity 
is of greater value than incremental gains in mass and 
trip time. 
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