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Abstract

The object of this study is to derive a set of equations which

predict the results of orbital maneuvers of vehicles using constant low

thrust. These equations are developed by simplifying the problem to

circular orbits in a two - body dynamic system. The results are presented

in three parts. The first part solves for the equation of the coplanar

radius change problem. The second finds the equation for the minimum fuel

inclination change problem. The third part of this study puts-the

equations from the first two parts together to solve a minimum fuel

transfer problem involving both radius and inclination changes.

The solution of the minimum fuel transfer problem is not to perform

the total radius change and then perform the total inclination change.

Instead, the solution is to perform both radius and inclination changes

on a per orbit basis.
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ANALYTICAL EQUATIONS FOR ORBITAL TRANS17R ?.A', UV.,RS

OF A VEICLE USING CONSTANT LOW THRUST

I Introduction

The launch of the Space Shuttle Columbia ushered in a new era in the

exploration and utilization of space. Because of the reusability of this

vehicle, the frequency and length of spaceflights will increase signifi-

cantly. As more and more work and research is performed in Earth orbit,

the need for new and more fuel efficient propulsion systems will arise.

Since February 1970, one of these new propulsion systems has been orbiting

the Earth. This system, a mercury bombardment ion thruster, is onboard

the SERT II (SDace 7aectric Rocket Test II) satellite. It was this

satellite which provcd that a constant low thrust could alter the orbit

of a satellite (Ref 1). In the years since 1970, major advances in fuel

efficiency and thruster service life have been made for electric

propulsion systems (Ref 1,2).

But how can a low level of thrust change the orbit of a satellite?

The answer lies in the fact that the thrust is constant over a long

period of time. The velocity of a four metric ton satellite thrusting at

0.8 Newtons for 30 days can be changed by as much as 1,g66.0 kilometers

per hour. This velocity change can be achieved with substantial fuel

savings using electric propulsion instead of a more conventional chemical

propulsion system- (Ref 1).

Changing the velocity of a satellite such as described above can be

used to boost a satellite into a planetary mission orbit. This is only

one of the many uses of electric propulsion systems. Some of the more

imcdiate uses :ill be as stationceeping, attitu~e, and repositioning jets
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for satellites. Future uses include the placement and retrival of sat-

ellites in geosynchronous orbit and the movement of large fragile space

structures.

As mentioned above, one of the more immediate uses of constant low

thrust will be in the repositioning of satellites. This repositioning

maneuver will require changes in the radius and the inclination of the

satellite's orbit. Reference 3 (chapter 3) derives a set of equations

which give the change in velocity needed to achieve certain changes in

radius and inclination. But these equations can not be used for a

satellite using constant low thrust because they were derived with the

assumption that the vehicle's velocity vector could be changed instan-

taneously. This is a valid assumption for high thrust chemical propulsion,

but not for low thrust electric propulsion. Therefore, a set of equations

must be derived for the constant low thrust case.

This paper has three objectives. The first objective is to derive an

equation which will give the amount of radius change per orbit of a vehicle

using constant low thrust. It will be assumed that the vehicle stays in

the plane of its starting circular orbit. This makes the problem similar

to the Holmann Transfer solved in chapter 3 of Reference 3. The solution

of the constant low thrust maneuver will be presented in chapter 2 of this

paper.

The second objective is to derive an equation which will give the

amount of inclination change of a vehicle, similar to the one mentioned

above, using a minimum fuel control profile. It will be assumed that the

vehicle will start and finish in a circular orbit and only change its

inclination. Similar equations for the instantaneous high thrust case

can be found in chapter 3 of Reference 3. The ecouations for the constant

low thrust case will be derived in chapter 3 of this paper.
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The third objective is to join the equations derived in this study

for radius and inclination changes so that the total orbital transfer

problem can be solved optimally. The problem is to be solved by finding

the amount of each type of change which must be made per orbit to reach

the end conditions in a specified number of orbits.



II The Coplanar Radius Change Problem

The transfer between any two coplanar circular orbits is a very

simple and useful maneuver. Today, this maneuver can be accomplished by

a number of different ways. Among these, the most economical is the

Holmann transfer ellipse (Ref 3: 163-165). But these methods are based

on two assumptions that are not valid when the vehicle in question is

using low thrust. The first assumption is that the vehicle can change

its velocity vector instantaneously. This assumption is violated since,

with constant low thrust, it may take hours or days to significantly

change the vehicle's velocity vector. The second assumption is that the

vehicle can accelerate against the pull of the earth's steep gravity well.

Since the acceleration of today's constant low thrust propulsion systems

is on the order of lO-4gs, the second assumption is no longer valid.

Therefore, with these two restrictions in mind, a new maneuver and a new

equation describing the results of the maneuver must be sought.

The search for the new maneuver began by looking at how the radius

of a circular orbit can be changed without violating the above restrictions.

To overcome the strong pull of gravity, the vehicle must thrust in a

direction which is along gravity's weakest lines. This direction happens

to be perpendicular to the lines of force of the earth's gravitational

field. This direction is parallel to the vehicle's velocity vector. It

can be readily seen that if the vehicle thrusts in this direction the

result is a spiral. This type of maneuver fulfills the objective of the

above maneuvers while at the same time does not violate the above restric-

tions. Therefore, this will be the maneuver used to change the radius of

a circular orbit using constant low thrust.
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Now that the maneuver has been defined, an equation must be derived

which will describe the results of such a maneuver. If the thrust is low

enough, the spiral can be modeled as a series of concentric circular

orbits with a discrete change in the radius at the point on the circular

orbit where the thrusting was started. By looking at two of the

concentric circular orbits and the curve that joins them (see Fig 1), the

equation which gives the amount of radius change can be found.

Fig 1: Spiral Approximation

The equation for the specific energy of a circular orbit is

given by

'2. r

where r is equal to the radius of the circular orbit. The time derivative

of Eq 1 can be gotten by using elemental differential calculus. This

derivative is simply

J(E) . _ _ d(r) (2)

. ....... " . .. . .
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Since the energy of the circular orbit can only be increased by thrusting

in the direction parallel to the velocity vector, the time derivative of

E can be written as
c

A (E-L) -vP
at (3)

vhere F is a specific force (force/unit mass) and V is a velocity.

Equations 1 and 2 can be equated and the term solved for to get the

following equation:

M ~~2.r2(4
_I/.)..9) Zr

cit "7 A.)

The first term of Eq 4 can be evaluated as the magnitude of the two

vectors multiplied by the cosine of the angle between them. Since the

thrust vector is aligned with the velocity vector, the angle between

them is zero and the cosine term becomes one. Also the F and V terms can

be evaluated as the thrust per unit mass and the velocity of a circular

orbit, respectively. This can be done since the distance between the

initial-and final circular orbits is very small. Inserting these

expressions into Eq 4 gives the following formula:

2.t (5)

The next step in the solution of this problem is to separate Eq 5 and

integrate each side with the proper limits. This leads to the solution

form which gives the change in radius using constant low thrust as a

function of the thrust per unit mass and the time set to achieve the
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change. This solution equation is

-A.2
-f -J (6)

Since the spiral has been modeled as a circular orbit with a discrete

change in the radius at the point where the thrusting was started, rf

can be written in the following form:

S=Y, +c (7)

This allows Eq 6 to be written as

1
I' - -J

a4 - t)(8)

The (tf - ti) term can be interpreted as the period of a circular orbit

because the &r is very small. From Reference 3 (33), the period of a

circular orbit is

3

C (9)

This allows Eq 8 to be written in its final form as

1(10)

where A r is the radius change per orbit using constant specific thrust,

T9 at radius ri. Now that the equation for the coplanar radius change

has been found the next step is to find the solution of the inclination

change problem.
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III The Inclination Change Problem

The second chapter of this paper dealt with the transfer between two

coplanar circular orbits. But a satellite may need more than a radius

change, it may also need an inclination change. It is the object of this

chapter to develop the equation which describes the inclination change.

Setting Uo the Inclination Change Problem

In chapter 2, two restrictions were placed on the coplanar circular

radius change problem. These two restrictions must be observed whenever

constant low thrust is used. Just as in the radius change problem, the

thrust must be oriented in a direction which is along a line perpendicular

to the lines of force of the Earth's gravity gradient. In the radius

change problem, this direction was chosen to be parallel to the velocity

vector of the vehicle. However, in this problem the direction is perpen-

dicular to both the gravity gradient and the velocity vector. Figure 2

shows the orientation of the thrust vector, as described above, to change

the orbital plane in a counterclockwise direction about the x-axis.

z

r rI

Fig 2: Thruct Vector Orientation
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The equation for the inclination change problem can be found by looking

at the specific angular momentum equations which describe a two - body

circular orbit. Reference 3 (16-17) proves that for a two - body orbit

the specific angular momentum of the orbit is constant and can be given by

It also proves that T and 7 form a plane that is fixed in space. This

plane is called the orbital plane. Since ! is the vector cross product

of r and v, h must be perpendicular to the orbital plane. The inclina-

tion of the orbital plane is defined in Reference 3 (58-59) as the angle, i,

between K axis of the Geocentric - equatorial coordinate system and

the h vector (see Fig 3).

ho

Fig 3: Geocentric - equatorial Reference Frame
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From Fig 4, it can be seen that the change in h is defined as

t ~h .1 (12)

7-A

1Y

x

Fig 4: Inclination Change

The angle between h 2 and h is the change in inclination between the two

orbit planes. As this change in h becomes small, the angle between

A and R, can be approximated by a right angle. Therefore, the angle

between h and h12 becomes

SN A~ In
SI M (13)

Since this equation holds only for &h very small, Eq 13 can be further

simplified by using a small angle approximation for the sine of Ai.

Equation 13 can now be written as

Ah (14)
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From Fig 4, it can be seen that to change the inclination in the

counterclockwise direction, a moment must be applied about the x-axis.

From Reference 4 (23), the moment about the x-axis can be defined as the

time derivative of the specific angular momentum. In equation form it is

M (15)

Equation 15 can be rewritten as

A~) M i (16)

This form can be separated and substituted into Eq 14 to get the following

form for the change in inclination:

The next step in this derivation is to find the equation for the moment

about the x-axis. From Fig 2, it is seen that the moment about the x-axis

is produced by the component of the thrust vector perpendicular to the

orbital plane. Therefore, the moment can be written as

fA= 7 x (1T)

From the notation in Fig 2 and the definition of the vector cross product,

Eq 18 can be written as

M = YTs'N e (19)

11



The substitution of Eq 19 into Eq 17 allows the change in inclination to

be written as

di=rT sN e g
(20)

The change in time, dt, of Eq 20 can be written as

- - (21)

or

(22)

The substitution of Eq 22 into Eq 20 allows the change in inclination to

be written as a function of e only since r and v are constants in a

circular orbit. The new equation for the inclination change is

- T sIN e de (23)INV

The next step in this derivation is to integrate the right hand side of

Eq 23 from 0 to 211 . But, as stated above, r, h, and v are all consta .$

in a circular orbit. This leaves the specific thrust (thrust/unit mass

in the integral.

It can be readily seen that the greatest amount of inclination char

is achieved by allowing the thrust to be constant over the entire orbit.

However, this wastes fuel because very little inclination change is

achieved when the vehicle is close to the x-axis. If fuel usage is r.oW

12



a problem, then this is the way to achieve the greatest amount of

inclination change in the shortest amount of time. But on most space-

flights, fuel muct be carefully conserved. Therefore thrust histories

which are functions of e are of interest. This generalization allows

Eq 23 to be written as
2.W

) 8(24)
V)

The substitution of the definitions of h and v from Reference 3 (29,34)

allows Eq 24 to be written in its final form as
2r

j Te) SiN de (25)

If the form of T(e) is specified, Eq 25 can be integrated to find Ai.

Since fuel has to be conserved, the logical form for T(e) needs to be

chosen to minimize the fuel consumption. This form for T(e) can be found

by solving an optimal control problem where the performance index, fuel

consumption, to be minimized is given by
2'T

I (26T(e)l E (

0

The minimum of Eq 26 without a constraint is obviously zero. Therefore

Eq 25 with Ai specified is used as a constraint. This optimal control

problem is solved in the following sections of this chapter.

13



Suboptimal Control Approach

The solution of all but the simplest optimal control problems is

very difficult to find. Therefore certain methods have been developed

to approximate the solution of the optimal control problem (Ref 5). The

method used to solve the inclination change problem is the suboptimal

control method.

Suboptimal Control Problem. The suboptimal control problem is a

parameter optimization problem. The transformation from optimal control

to suboptimal control is achieved by assuming that the optimal controls

of the problem in question can be approximated by a known mathematical

form having a set of unknown parameters, When this transformation is

used, the performance index, J, becomes

T = S(A) 
(27)

where A is the set of unknown parameters associated with suboptimal

approximation. The optimal A's are found by solving

0 (2)

Solution Method. There are many methods used to solve the parameter

optimization problem stated in the preceding section. The method chosen

to solve the inclination problem is the Conjugate - Gradient method (Ref 6).

The Conjugate - Gradient method is a quasi - second order technique

for solving parameter optimization problems. It is very similar to the

Method of Steepest Descent otherwise known as the gradient method. The

only major difference between the two is that the Conjugate - Gradient

14



method carries along previously calculated gradient directions in a fading

memory form. It is this fading memory that gives this rethod its second

order characteristics.

The iterative algorithm for this method is as follows:

1) Guess A
j

2) Compute V J(Aj)

3) Let Sj =-V J(Aj)

4) Compute Aj+ 1 = Aj + o(C Si

5) Compute V J(Aj+l)

6) If V J(Aj+ 1) A Tolerance : Stop

7) Compute Sj+1 =-V J(Aj+ 1) + Jsj

8) Increment j, go to step 4

There are several terms in the above algorithm that need to be defined.

The first is the o(, term of step 4. This term is a step size that is

computed with a 1 - dimensional search method found in Reference 7 (55).

This search method finds the minimum of a parabola in the J vs c( plane.

The S terms are directions along which the algorithm searchs for the

optimal Ats. The P J term is the fraction which tells the algorithm how

much of the previous Sts should be used. This is the fading memory of 5he

Conjugate - Gradient method. The term is determined by the following

formula.2

J3  = VT(9 )1- (29)

It should be noted that the same procedure which gives this technique its

second order characteristics can also slow the convergence of the algorithm.

Therefore, the j is set to zero periodically to prevent the algorithm from

carrying too much past information. A more detailed explanation of the

Conjugate - Gradient method can be found in Reference 6.
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Solving the Constrained Tnclination Problem

Control Variable Form. It is obvious that the direction of the

thrust vector must be in opposite directions on either side of the x-axis

to achieve the inclination change represented in Fig 4. This means that

T(e) is an odd function. Also the form of T(e) must be symmetric about

the 900 point of the orbit. It is at this point that the greatest

moment, and the corresponding greatest change in inclination, is achieved

by the thrust. Because of these two qualifications, a Fourier sine series

with the even numbered terms removed was chosen to be the approximate

optimal control form (Ref 8: 35-36, 80; 9). This form is

Now that the form for T(O) has been specificd, the integration of "q 25

can be performed. The evaluat,77 of the constraint equation results in

all the terms except the sin @ term being zero. This allows the first

coefficient of the Fourier sine series to be solved for. This coefficient

is

A (31)

Thus for a given inclination change, the first coefficient of the Fourier

sine series is known. The remaining coefficients, needed to give the

minimum fuel consumption, are unk:novn. Since the first cofficient is

known, it can be divided out. This results in T(6) having the following

form.

T (G) 1 (32)

16



where 'D is given by

T( tA e + Y (A I *1 N(2k-1e) (33)
ks2.

where
A AA (34)

With this form for T(G), Eq 25 no longer needs to be used as a constraint.

Now only the Ats need to be found for minimum fuel usage. But because of

this new form for T(e), a new constraint must be used. The first term of

Eq 25 can be looked at as the maximum thrust, while the second term looks

like a throttle control. If no constraint is put on the throttle, the

solution of the optimal control problem would be an infinite spike at

the 900 point of the orbit. Therefore, Eq 33 has the following limits:

O I(35)

Numerical Solution. The algorithm for the Conjugate - Gradient

method requires the calculation of the gradient of the performance index

with respect to the A's. These gradients are found using the central

difference formula described in Reference 10. This formula has the

follo ing form:

J(r) - '(A,., ,. - ( . - 6 A.) (36)

whereA 2k-1 was calculated by

(37)

17



To find the perturbed J's. the integral of Eq 26 has to be evaluated.

Since the integrand of this integral involves an absolute value, the

areas above and below the x-axis of the T vs 9 curve have to be summej.

This means that the roots of the control equation have to be found.

Two methods from Reference 10 (65-71) are used to find the roots.

The first method is the Bisection method. This is a brute force method

which is used to isolate the root. 'hen the root is isolated, the

Secant method is used to improve the accuracy of the answer. The

Secant method is a Newton - Raphson method where the derivatives are

replaced with difference approximations.

Included in the root searching algorithm is an algorithm which

finds the points where the value of T(9) is greater than T max* Since

the thrust cannot be greater than Tmax, the area above this line cannot

be included in the calculation of the performance index. Therefore, when

the integral is evaluated, the value of the integrand is constant between

the points where the T(e) curve lies above the Tmax line. The area where

the integrand is constant is calculated by using the formula for the area

of a rectangle. The areas on either side of the rectangle are calculated

using a Runga - Kutta numerical integrator with a variable step size.

Since the areas on either side of the rectangle are the same, only one

of them has to be calculated. The total area is twice this value plus

the area of the rectangle.

The algorithm was started with only one A in Eq 33. The A was

changed until the gradient of the performance index was less than or

equal to a set tolerance. The solution was then said to be converged

and another A was added. A's were to be added to Eq 33 until the

performance index failed to change with the newr addition. Put before

18



this happened, the solution to the optimal control problem was suggested

from the partial results of the program.

Solution Results. The Conjugate - Gradient program described above

was run until nine A's had been added to the optimal control equation.

The plot of this equation can be seen in Fig 5, but the program did not

use the total equation. It used the equation until it went above the

Tma x line and then followed the Tmax line until it dropped off to follow

the T(O) equation again. This form can be seen in Fig 6. If the small

wiggles are considered to be noise, then the form which emerges is a

square wave centered about the 900 point of the orbit. To test this idea,

a nine term square wave approximation was used to compute a performance

index. The value of the performance index of the square wave was

substantially lower than the performance index of the nine term Fourier

sine series. Since it takes up to forty terms to accurately describe a

square wavel the performance index can be drastically lowered by using

the square wave instead of the Fourier sine series. Therefore, it was

concluded that the solution of the constrained inclination change optimal

control problem is a square wave with Tma x as its maximum.

Bang - Coast - Bang Solution

The square wave solution of the inclination change problem was

suggested by the results of the suboptimal control problem outlined in

the preceding sections. A plot of the square wave can be seen in Fig 7.
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To find the amount of inclination change this control profile gives,

Eq 25 must be integrated between the limitg set forth in the graph with

T(e) = Tma x  Equation 25 can be rewritten as

To evaluate Eq 38, two integrals must be solved. Since thrusting on

either side of the orbit achieves a change in the inclination, the

integral can be simplified to the following form:

'. 2 r Tm, JS' o de2 r mS t4 G 8 E)(39)

The evaluation of this integral and the use of trigometric formulas to

simplify the integrated form, leads to

Ai =Ar I TIIAI_(40)

22



where i is the inclination change per orbit using constant specific

thrust, Tmaxg at radius r for w, the thrust time angle.

Now that the equations for the radius and inclination changes have

been found, the two separate equations must be joined to form an equation

which can be used to describe the total orbital transfer problem.

I
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IV The Combined Orbital Transfer Problem

In the preceding two chapters, the problems of the coplanar

circular radius change and the inclination change were solved. Although

the general combined orbital transfer problem could not be solved, the

solution of a specific example problem was found. It is the purpose of

this chapter to define and solve this problem.

Defining the Orbital Transfer Problem

The orbital transfer problem can b6 stated as follows: Given the

initial and final values of the radius and inclination and the number of

orbits inwhich to achieve these changes, what amounts of radius and incli-

nation changes must be attained per orbit to match the final values? To

simplify the problem, two assumptions were made. The first was that the

vehicle is using full thrust in either the radius change direction or the

inclination change direction, but never dividing the thrust between the

two directions. The second assumption was that the direction of the

thrust vector can be changed instantaneously.

There are two methods which can be used to achieve the final radius

and inclination. The first is to thrust parallel to the velocity vector,

changing the radius, until the final radius is achieved. Then the thrust

is directed perpendicular to the orbital plane, changing the inclination,

until the final inclination is achieved. The second method is to change

both the radius and the inclination in a given orbit. It is the second

method which is the most fuel and time efficient. The inclination change

equation, Eq 40, is in the ideal form to handle this situation. But the

radius change equationp Eq 10, is not. Therefore, Eq 10 must be modified

to allow for this situation.
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Modification of the Radius Change Eauation

Equation 10 was derived with the assumption that the entire period

of the circular orbit would be used for the radius change. But for the

total orbital transfer problem, the time spent changing the inclination

must be subtracted from the period of the orbit. Since the inclination

thrust time angle, w9 of Eq 40 is in radians, the equation for the

angular velocity of a circular orbit must be used to make the change to

seconds. Also it must be realized that this change has to be multiplied

by four since there are four such times per orbit. The new equation for

the time to change the radius is

LX) Y13(41)

Equation 10 can now be written in the more usable form of

t~r= 1
(42)

Now that the radius change equation has been modifiedt the total orbital

transfer problem can be solvod.

Solution of the Orbital Transfer Problem

As stated in the first section of this chapter, the amount of radius

and inclination change per orbit must be found to match the final radius

and inclination, rnom and 'nom respectively, after a fixed number of

orbits. This will be done by setting up a suboptimal control computer

program similar to the one in chapter 3 of this paper.
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Solution Mcthod. The algorithm given in chapter 3 for a suboptimal

control Conjugate - Gradient computer program will still be used for this

problem. But two changes have to be made to the complete program. The

first is to change the form of the control equation. The following form

will be used:

wAO) 4- ~Z(A kR)k (4)

where

The second change is in the form of the performance index. The new

performance index is

The rf and if terms in Eq 45 are the calculated final radius and

inclination achieved using Eqs 40, 42, and 43 in an iterative loop for

the specified number of orbits.

Solution Results. The suboptimal control program described in the

preceding section was run with the following set of specified initial and

final conditions. The initial radius and inclination were:

r, = 4263.0 miles

i i = 10.0 degrees

The final radius and inclination were:

rnom = 4433.057 miles

i - 10.746 degrees

The specified final radius and inclination are the results of a computer
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program which calculated the Ar and the A i of 1000 orbits with the

following w(r) control profile.

o2.

Soo lo '.o

Fig 8: Control Profile for Specified Final Conditions

This control profile corresponds to the case where the vehicle does

500 radius change orbits and then 500 inclination change orbits. This

is called the bang-bang orbital transfer maneuver.

The suboptimal control program was started at 900 orbits with a

quadratic control equation. When the program converged on a set of

coefficients which matched the end conditions, rf equal to rnom and

if equal to inomq and satisfied 7q 26f the number of orbits was

decreased by one and the program started again. The rationale behind

this strategy was that the coefficients of the n orbit case would be

good initial guesses for the (n - 1) orbit case. It was discovered

that after a few orbits had been subtracted from the 900, the program

refused to converge. At this point another coefficient was added to the

control equation. Again the program ran smoothly until a number of orbits

had been subtracted. Since the object of this program was to prove the

existence of a solution to the example problem stated in the first section

of this chapter, the program was terminated after the coefficients for

880 orbits had converged. The converged coefficients for 880, 890, and

900 orbits were chosen to show the results of the program.
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The three cases, that were chosen, differed by the number of orbits

and the number of coefficients in the control equation. The three cases

are summarized in Table 1. The coefficients for each of the three cases

can be found in Table 2. Figure 9 shows the plots of w(r) vs r for the

above three cases. Table 3 shows the savings in time between the three

cases chosen to represent the solution of the total orbital transfer

problem and the nominal values for the 1000 orbits. These savings in

time are equal to fuel s -ings since the thrust of the vehicle was

assumed to be at full thrust throughout the entire problem.

Case No. of Orbits No. of Coefficients

1 900 3

2 890 4

3 880 7

Table 1: Sample Results
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Case A0  A1  A2  A A A5  A6

1 -.23051 .24129 1.41085 0 0 0 0

2 -.05269 .183179 1.23758 -47-6 0 0 0

3 .073167 .13706 1.1349 -.0266 -.01071 -.0044 -.0045

Table 2: Control Equation Coefficients

Case %decrease

1 10.44

2 11.53

3 12.64

Table 3: Fuel Savings
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V Conclusions and Recommendations

The following conclusions and recommendations are based on the

results of this study.

The eouation derived for the coplanar circular radius change, Eq 10,

is no more complex than the equation given in Reference 3 (169) for the

instantaneous high thrust case. Equation 10 lends itself, very easily,

to computer use.

The equation derived for the inclination change problem, Eq 39, is

also no more complex than its counterpart in Reference 3 (169). This

equation also is easily implemented on the computer.

The third conclusion of this study is that significant savings

(10% to 12%) in fuel and time can be achieved, over the 1000 orbit

bang-bang maneuver, if a simple control profile is followed in the total

orbital transfer problem. This savings in fuel can be translated directly

into an increase in payload weiglt. Therefore increases in mission

capabilities can be achieved without a loss of vehicle performance or an

increase in mission time.

There are three areas which can be expanded on from this study. The

first is to find an analytical equation for w(r) so that the general orbit

transfer problem can be solved. The second is the use of a thrust angle

which allows the full thrust to do both radius and inclination changes at

the same time. This paper dealt only with an angle that all.wed either

radius or inclination changes, but never both. Probably the most important

area in which to investigate is the use of complex orbital dynamics. This

paper dealt only with two - body dynamics. Two - body dynamics is a good

approximation for low earth orbits, but as the radius of the orbit is

increased, the accuracy of this approximation decreases. Therefore, for

missions to geosynchronous orbit, complex orbital dynamics must be used.
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