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Abstract

The object of this study is to derive a set of equations which
predict the results of orbital maneuvers of vehicles using constant low
thrust. These equations are developed by simplifying the problem to
circular orbits in a two ~ body dynamic system, The results are presented
in three parts, The first part solves for the equation of the coplanar
radius change probleme The second finds the equation for the minimum fuel
inclination change problem, The third part of this study puts the
equations fron the first two parts together to solve a minimum fuel
transfer problem involving both radius and inclination changes.

The solution of the minimum fuel transfer problem is not to perform
the total radius change and then perform the total inclination change.
Instead, the solution is to perform both radius and inclination changes

on a per orbit basis,

viii
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ANALYTICAL TQUATIONS FOR ORBITAI TRANSFTR MANTUVIRS

OF A VEHICLE USING CONSTANT LOW THRUST

v I Introduction

The launch of the Space Shuttle Columbia ushered in a new era in the
exploration and utilization of space, Because of the reusability of this
vehicle, the frequency and length of spaceflights will increesc signifi-
cantly, As more and more work and research is performed in Iarth orbit,

the need for new and more fucl efficient propulsion systems will arise,

Since February 1970, one of thesc new propulsion systems has been orbiting
the Tarth, This system, a mercury bombardment ion thruster, is onboard
the SERT II (Space Zlectric Rocket Test II) satellite. It was this
satellite which proved that a constant low thrust could alter the orbit
of a satellite (Ref 1)s In the years since 1970, major advances in fuel
efficiency and thruster service 1ife have been made for electric
propulsion systems (Ref 1,2).

But how can a low level of thrust change the orbit of a satellite?
The answer lies in the fact that the thrust is constant over a long
period of time, The velocity of a four metric ton satellite thrusting at
0.8 Newtons for 30 days can be changed by as much as 1,866,0 kilometers
per hour, This velocity change can be achieved with substantial fuel
savings using electric propulsion instead of a more conventional chemical
propulsion system.(Ref 1),

Changing the velocity of a satellite such as described above can be
used to boost a satellite into a planetary mission orbit, This is only

one of the many uses of electric propulsion systems., Some of the more

immediate uses will be as stationkecping, attitude, and repositioning jets




for satellites, Future uses include the placement and retrival of sat~
ellites in geosynchronous orbit and the movement of large fragile space

structures,

e

As mentioned above, one of the more immediate uses of constant low
thrust will be in the repositioning of satellites, This repositioning
maneuver will require changes in the radius and the inclination of the
satellite!s orbit. Reference 3 (chapter 3) derives a set of equations
which give the change in velocity needed to achieve certain changes in
] radius and inclination, But these equations can not be used for a
H satellite using constant low thrust because they were derived with the

assumption that the vehicle's velocity vector could be changed instan-

taneously. This is a valid essumption for high thrust chemical propuision,
but not for low thrust electric propulsion, Therefore, a set of equations
must be derived for the constent low thrust case,

This paper has three objectives, The first objective is to derive an
equation which will give the amount of radius change per orbit of a vehicle
using constant low thrust, It will be assumed that the vehicle stays in
the plane of its starting circular orbit. This makes the problem similar
to the Holmann Transfer solved in chapter 3 of Reference 3, The solution
of the constant low thrust maneuver will be presented in chapter 2 of this
paper.

The second objective is to derive an equation which will give the
amount of inclination change of a vehicle, similar to the one mentioned
above, using a minimum fuel control profile. It will be assumed that the
vehicle will start and finish in a circular orbit and only change its
inclination, Similar equations for the instentaneous high thrust case
can be found in chapter 3 of Reference 3, The equations for the constant
low thrust case will be derived in chapter 3 of this paper.
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The third objective is to join the equations derived in this study
for radius and inclination changes so that the total orbital transfer
problem can be solved optimally, The problem is to be solved by finding

the amount of each type of change which must be made per orbit to reach

the end conditions in a specified number of orbits,




II The Coplanar Radius Thange Problen

The transfer between any two coplanar circular orbits is a very
simple and useful nmaneuver, Today, this maneuver can be accomplished by
a nunber of different ways. Among these, the most economical is the
Holmann transfer ellipse (Ref 3: 163-165), But these methods are based
on two assumptions that are not valid when the vehicle in question is
using low thrust, The first assumption is that the vehicle can change
its velocity vector instantaneouslys. This assumption is violated since,
vith constant low thrust, it may take hours or days to significantly
change the vehicle's velocity vector, The second assumption is that the
vehicle can accelerate against the pull of the earth's steep gravity well,
Since the acceleration of today's constant low thrust propulsion systems
is on the order of IO—Ag's, the second assumption is no longer valid,
Therefore, with these two restrictions in mind, a new maneuver and a new
equation describing the results of the maneuver must be sought.

The search for the new mancuver began by looking at how the radius
of & circular orbit can be changed without violating the above restrictions,
To overcome the strong pull of gravity, the vehicle must thrust in a
direction vwhich is along gravity'!s weakest lines, This direction happens
to be perpendicular to the lines of force of the earth's gravitational
field, This direction is parallel to the vehicle's velocity vector, It
can be readily seen that if the vehicle thrusts in this direction the
result is a spiral, This type of maneuver fulfills the objective of the
above maneuvers while at the same time does not violate the above restric-

tions. Therefore, this will be the maneuver used to change the radius of

a circular orbit using constant low thrust,




Now that the maneuver has been defined, an equation must be derived
which will describe the results of such a maneuver., If the thrust is low
enough, the spiral can be modeled as a series of concentric circular
orbits with a discrete change in the radius at the point on the circular
orbit where the thrusting was started, By looking at two of the
concentric circular orbits and the curve that joins them (see Fig 1), the

equation which gives the amount of radius change can be found.

Fig 1: Spiral Approximation
The equation for the specific energy of a circular orbit is

gl' Y y
E - - = (')
[

vhere r is equal to the radius of the circular orbit, The time derivative

of Eq 1 can be gotten by using elemental differential calculus, This

derivative is simply

d (E) . d(r) (2)

e ————————

Jdt T2 4t
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Since the energy of the circular orbit cen only be increased by thrusting
in the direction parallel to the velocity vector, the time derivative of

Ec can be written as

dE) . -V

J (3)

where F is a specific force (force/unit mass) and V is a velocity.
Equations 1 and 2 can be equated and the * term solved for to get the

following equation:

k8

j(tr) = (F-V) -7/1—,\3 (4)

The first term of Eq 4 can be evaluated as the magnitude of the two
vectors multiplied by the cosine of the angle between thems Since the
thrust vector is aligned with the velocity vector, the angle between

them is zero and the cosine term becomes one, Also the F and V terms can
be evaluated as the thrust per unit mass and the velocity of a circular
orbit, respectively, This can be done since the distance between the
initial"and final circular orbits is very small, Inserting these

expressions into Eq 4 gives the following formulat

d(x)

d) . 2 T | X
at

M (5)

The next step in the solution of this problem is to separate Bq 5 and
integrate each side with the proper limits. This leads to the solution
form vhich gives the change in radius using constant low thrust as a

function of the thrust per unit mass and the time set to achieve the




change. This solution equation is

-1 -1
R AL W C HES &
¥ Ijx\ ¢ )

(6)

Since the spiral has been modeled as a circular orbit with a discrete
change in the radius at the point where the thrusting was started, Te

can be written in the following form:

n:“+AT 7

This allows Eq 6 to be written as

1 -
Tt AV i (8)
I~ K

The (tf - ti) term can be interpreted as the period of a circular orbit

AY =

because the Ar is very small, From Reference 3 (33), the period of =&

circular orbit is

T -

2T Y‘%
f}? (9)

This allows Eq 8 to be written in its final form as

_ 1 _
AY = T 1]2 \f : (10)

AT
vhere A r is the radius change per orbit using constant specific thrust,
T, at radius rye Now that the equation for the coplanar radius change

has been found the next step is to find the solution of the inclination

change problem,




IITI The Inclination Chanre Problem

The second chapter of this paper dealt with the transfer between two
coplanar circular orbits, But a satellite may need more than & radius
change, it may also need an inclination change. It is the object of this

chapter to develop the equation which describes the inclination change.

Setting Up the Inclination Chanre Problem

In chapter 2, two restrictions were placed on the coplanar circular
radius change problem, These two restrictions must be observed whencver
constant low thrust is used, Just as in the radius change problem, the
thrust must be oriented in a direction which is along a line perpendicular

to the lines of force of the FEarth's gravity gradient, In the radius

change problem, this direction was chosen to be parellel to the velocity
vector of the vehicle. However, in this problem the direction is perpen-
dicular to both the gravity gradient and the velocity vector. Figure 2

shows the orientation of the thrust vector, as described above, to change

the orbital plane in a counterclockwise direction about the x=-axis.

kZ

Fig 2:¢ Thrusl Vector Orientation




The equation for the inclination change problem can be found by looking
at the specific angular momentum equations which describe a two - body
circular orbit, Reference 3 (16-17) proves that for a two - body orbit

the specific angular momentum of the orbit is constant and can be given by

e—

h="7vxV ()

It also proves that T and ¥V form a plane that is fixed in space. This
'plane is called the orbital plance Since h is the vector cross product

of T and ;, h must be perpendicular to the orbital plane, The inclina-

tion of the orbital plane is defined in Reference 3 (58-59) as the angle, i,

between X axis of the Geocentric - equatorial coordinate system and

the h vector (see Fig 3).

K

Fig 3: Geocentric - equatorial Reference Frame
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From Fig 4, it can be seen that the change in h is defined as

Ah = h, - h, )

Fig 4: Inclination Change
The angle between 32 and 31 is the change in inclination between the two

orbit planes. As this change in h becomes small, the angle between

Ah and E, can be approximated by a right angle. Therefore, the angle

between ;1 and ;2 becomes

-

SIN Al = —A—ﬁ- (13)

Since this equation holds only for £>; very small, Eq 13 can be further
simplified by using a small angle approximation for the sine of Ai,

FEquation 13 can now be written as

Al = !_%‘. (1)

10




From Fig L, it can be seen that to change the inclination in the

counterclockwise direction, a moment must be applied abocut the ¥~axis,
From Reference 4 (23), the moment about the x-axis can be defined as the

time derivative of the specific angular momentum, In equation form it is

h- M

(15)

Equation 15 can be rewritten as
JR) |
dt

This form can be separated and substituted into Eq 14 to get the following

form for the change in inclination:
cl'\ = -—‘—\—:‘— cP( (17)

The next step in this derivation is to find the equation for the moment
about the x~axiss From Fig 2, it is seen that the moment about the x~axis
is produced by the component of the thrust vector perpendicular to the

orbital plane, Therefore, the moment can be written as

M:?‘XT (18)

From the notation in Fig 2 and the definition of the vector cross product,

Eq 18 can be written as

M=vyTsin®

(19)




The substitution of Eq 19 into Eq 17 allows the change in inclination to
be written as

di.—.-"—;‘:—sme dt

(20)

The change in time, dt, of Eq 20 can be written as

CP( - _d_@_ (21)

<

or

dt = —35— de (22

The substitution of Eq 22 into Eq 20 allows the change in inclination to
be written as a function of 8 only since r and v are constants in a

circular orbit. The new equation for the inclination change is

2
di - IKVT_ sine de (23)
The next step in this derivation is to integrate the right hand side of
Eq 23 from O to 2 W, But, as stated above, ry hy and v are all constan’
in a circular orbite This leaves the specific thrust (thrust/unit mass)
in the integral. i
It can be readily seen that the greatest amount of inclination char
is achieved by allowing the thrust to be constant over the entire orbit,

However, this wastes fuel because very little inclination change is

achieved when the vehicle is close to the x-axise If fuel usage is no’

12




a problem, then this is the way to achieve the greatest amount of

inclination changec in the shortest amount of time, But on most space-
flights, fuel must be carefully conserved, Therefore thrust histories
vhich are functions of © are of interest, This generalization allows

Eq 23 to be written sas

27
g o) ¢
Al____hvf (®) sine de o

The substitution of the definitions of h and v from Reference 3 (29,34)

allows Eq 24 to be written in its final form as

2%
Al = i/ T(e) sine de (25)
/}A 0

If the form of T(®) is specified, Fq 25 can be integrated to find Ai.
Since fuel has to be conserved, the logical form for T(8) needs to be
chosen to minimize the fuel consumption, This form for T(8) can be found
by solving an optimel control problem where the performance index, fuel

consunption, to be minimized is given by

J = flT(e)| de (26)

The minimum of FEq 26 without a constraint is obviously zero. Therefore
Eq 25 with Ai specified is used as a constraint. This optimal control

problem is solved in the following sections of this chapter,

13




Suboptimal Control Approach

The solution of all but the simplest optimal control problems is
very difficult to finds Therefore certain methods have been developed
to approximate the solution of the optimal control problem (Ref 5). The
method used to solve the inclination change problem is the suboptimal
control method.

Suboptimal Control Problem, The suboptimal control problem is &

i parameter optimization problem. The transformation from optimal control
% to suboptimal control is achieved by assuming that the optimal controls

; of the problem in question can be approximsted by a known mathematical

form having a set of unknown parameters, When this transformation is

used, the performance index, J, becomes

I =TA

(27)

wvhere A is the set of unknown parameters associated with suboptimal

approximation, The optimal A's are found by solving

-ﬁ-%ﬂ =0 ' (28)

Solution Method. There are many methods used to solve the parameter

5 optimization problem stated in the preceding section, The method chosen
to solve the inclination problem is the Conjugate - Gradient method (Ref 6).
The Conjugate - Gradient method is a quasi -~ second order technique
for solving parameter optimization problems, It is very similar to the
Method of Steepest Descent otherwise known as the gradient method. The

only major difference between the two is that the Conjugate -~ Gradient

14




method carries along previously calculated gradient directions in a fading
memory formes It is this fading memory that gives this method its second
order characteristics,
The iterative algorithm for this method is as follows:

1) Guess Aj

2) Compute ¥ J(A9)

3) Let 83 =-93(ad)

4) Compute adt? = +-o(i gd

5) Compute V J(Aj+1)

6) If VJ(AjH) £ Tolerance : Stop

7) Compute st oy J(AjH) + Bij

8) Increment j, go to step 4

There are several terms in the above algorithm that need to be defined,

The first is the o(i term of step 4e This term is a step size that is
computed with 2 1 - dimensional search method found in Reference 7 (55).
This search method finds the minimum of a parabola in the J vs ¢| prlane,
The S terms are directions along which the algorithm searchs for the
optimal A's, The f3 J term is the fraction which tells the algorithm how
much of the previous S's should be used, This is the fading memory of -“lhe
Conjugate - Gradient method. The ﬁj term is determined by the following

fornula,

B'= 7T (e I (29)
|3 ) \*

It should be noted that the same procedure which gives this technique its
second ovder characteristics can also slow the convergence of the algorithm.
Therefore, the Gj is set to zero periodically to prevent the algorithm from
carrying too nmuch past information. A more detailed explanation of the
Conjugate ~ Gradient method can be found in Reference 6,

15




Solving the Constrained Tnclination Problenm

Control Variable Form, It is obvious that the direcetion of the

thrust vector must be in opposite directions on either side of the x-axis
to achieve the inclination change represented in Fig 4« This means that
T(8) is an odd Tunction. Also the form of T(8) must be symmetric about
the 90° point of the orbit., It is at this point that the greatest

moment, and the correcsponding greatest change in inclination, is achieved
by the thrust. Because of thesec twe qualifications, a Fourier sine scries
with the even numbered terms rcmoved was chosen to be the approximate

optimal control form (Ref 8: 35-36, 803 9)s This form is
o0
Te)= » (A, sin(e0e) 0)
=1

Nov that the form for T(®) has been specificd, the integration of Tg 25
can be performeds The evaluzt -r of the constraint equation results in
all the terms except the sin 8 term being zero., This allows the first
coefficient of the Fourier sine series to be solved for, This coefficicni
is

o A
A1 B a1 (31)

Thus for a given inclination change, the first coeflficient of the Fourier
sine series is Jnowne. The rcmaining coefficients, needed to give the
minimun fuel consumption, are unknown. Since the first cofficient is
known, it can be divided oute. This results in T(6) having the following

form.

Al (32)
Tle) = &4 1

16
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vhere W is given by

W= sine + S (P:QH sin (2x-10)
Ty

(33)
where
A - Pt (34)
K-
K-t A‘

with this form for T(G), Eq 25 no longer needs to be used as a constraint,
Now only the Afs need to be found for minimum fuel usage., But because of
this new form for T(8), a new constraint must be useds The first term of
Eq 25 can be locked at as the maximum thrust, while the second term looks
like a throttle control, If no constraint is put on the throttle, the
solution of the optimal control problem would be an infinite spike at

the 90o point of the orbit. Therefore, Zq 33 has the following limits:

O+ TC £ 1 (35)

Numerical Solution. The algorithm for the Conjugate - Gradient

method requires the calculation of the gradient of the verformance index
with respect to the A's, These gradients are found using the central
difference formula described in Reference 10, This formula has the

following form:

_C_J_(_:_D_ - -S(Azm + SAu-\) -3 (A‘Lx-i - SA?.\M)
3A XY | (36)

Keq

where§A was calculated by

2% -1
(37)

SA.., = 1E-04 A,

17
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To find the perturbed J's, the integral of Eq 26 has to be evaluated.
Since the integrand of thils integral involves an asbsolute value, the
areas above and below the x~axis of the T vs & curve have to be cummed,
This means that the roots of the control equation have to be found,

Two methods from Reference 10 (65=71) are used to find the roots.
The first method is the Bisection method, This is a brute force method
which is used to isolate the root. ‘lhen the root is isolated, the
Secant method is used to improve the accuracy of the answer, The
Secant method is a Newton = Raphson method where the derivatives are
replaced with difference approximations,

Included in the root searching elgorithm is an algorithm which
finds the points where the value of T(8) is greater than Thax® Since

the thrust cannot be greater than T the area above this line cannot

nax’
be included in the calculation of the performance index. Thersfore, when
the integral is evaluated, the value of the integrand is constant between
the points where the T(8) curve lies above the Tmax line, The area where
the integrand is constant is calculated by using the formula for the arca
of a rectangle, The areas on either side of the rectangle are calculated
using a Runga - Kutta numerical integrator with a variable step size,
Since the areas on either side of the rectangle are the same, only one
of them has to be calculated. The total area is twice this value plus
the area of the rectangle,

The algorithm was started with only one A in Eq 33+ The A was
changed until the gradient of the performance index was less than or
equal to a set tolerance. The solution was then said to be converged

and enothor A was added, A's were to be added to Eq 323 until the

performance index failed to change with the new addition, ©Dut before

18




this happened, the solution to the optimal control problem was suggestied
from the partial results of the progran,

Solution Results. The Conjugate - Gradient program described above

was run until nine A's had been added to the optimal control equation.
The plot of this equation can be seen in Fig 5, but the program did not
use the total equation, It used the equation until it went above the
'I'max line and then followed the Tmax line until it dropped off to follow
the T(8) equation again. This form can be seen in Fig 6, If the small
wiggles are considered to be noise, then the form which emerges is a
square wave centered about the 90° point of the orbit, To test this idea,
a nine term square wave approximation was used to compute a performance
index, The value of the performance index of the square wave was
substantislly lower than the performance index of the nine term Tourier
sine serieg, Since it takes up to forty terms to accurately describe a
square wave, the performance index can be drastically lowered by using
the square wave instead of the Fourier sine series. Therefore, it was
concluded that the solution of the constrained inclination change optimal

control problem is a square wave with Tmax as its maximum,

Bang ~ Coast -~ Bang Solution

The square wave solution of the inclination change problem was
suggested by the results of the suboptimal control problem outlined in

the preceding sectionse A plot of the square wave cean be seen in Fig 7.

19
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To find the amount of inclination change this control profile gives,
Eq 25 must be integrated between the limits set forth in the graph with

T(8) = Tpax® Eduation 25 can be rewritten as

. Yrow Faw
A‘\ - X Tonax fs'm e do - [S'\\*G deo ] (38)
A F-w ig-w

To evaluate Eq 38, two integrals must be solved, Since thrusting on
either side of the orbit achieves a change in the inclination, the

integral can be simplified to the following form:

Teo
2
\ 2 T x ' )
N —-‘-;—;——"‘—“—— sin © de (39)
T )

The evaluation of this integral and the use of itrigometric formulas to

simplify the integrated form, leads to

. 1-l"’ .
Al = _4__2—/’—:-'25}— SIN W (40)
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where i is the inclination change per orbit using constant specific

thrust, Tmax’ at radius r for w, the thrust time angle.
Now that the equations for the radius and inclination changes have
been found, the two separate equations must be joined to form an equation

vhich can be used to describe the total orbital transfer problem.




IV  The Combined Orbital Transfer Problem

In the preceding two chapters, the problems of the coplanar
circular radius change and the inclination change were solved, Although
the general combined orbital transfer problem could not be solved, the

solution of a specific example problem was found, It is the purpose of

this chapter to define and solve this problem,

Defining the Orbital Transfer Problem

The orbital transfer problem can be stated as follows: Given the

initial and final values of the radius and inclination and the number of

orbits inwhich to achieve these changes, what amounts of radius and incli=

nation changes must be attained per orbit to match the final vaiues? To

simplify the problem, two assumptions were made, The first was that the
vehicle is using full thrust in either the radius change direction or the
inclination change direction, but never dividing the thrust between the
two directionss The second assumption was that the direction of the
thrust vector can be changed instantaneously.

There are two methods which can be used to achieve the final radius
and inclination, The first is to thrust parallel to the velocity vector,
changing the radius, until the final radius is achieved, Then the thrust
is directed perpendicular to the orbital plane, changing the inclination,
until the final inclination is achicveds The second method is to change
both the radius and the inclination in a given orbit, It is‘the second
mefhod which is the most fuel and time efficient., The inclination change
equation, Eq 40, is in the ideal form to handle this situation. But the
radius change equation, Eq 10, is not, Therefore, Eq 10 must be modified

to allow for this situation,

e e———




Modification of the Radius Change Fauation

Equation 10 was derived with the assumption that the entire period
of the circuler orbit would be used for the radius change., But for the
total orbital transfer problem, the time spent changing the inclination
must be subtracted from the period of the orbit. Since the ineclination
thrust time angle, w, of Eq 40 is in radians, the equation for the
* angular velocity of & circular orbit must be used to make the change to
seconds, Also it must be realized that this change has to be multiplied
by four since there are four such times per Brbit. The new equation for

the time to change the radius is

] 3
W:T?c—qm—j!;— (41)

Equation 10 can now be written in the more usable form of

1
AY = - Y
ITE-e[E) ) @
a G

Now that the radius change equation has been modified, the total orbital

transfer problem can be sclved,

Solution of the Orbital Transfer Problem

As stated in the first section of this chapter, the amount of radius
and inclination change per orbit must be found to match the fina) radius
and inclination, Thom
orbits, This will be done by setting up a suboptimal control computer

and inom respectively, after a fixed number of

program similar to the one in chapter 3 of this paper.
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Solution Mcthods The algorithm given in chapter 3 for a suboptimal

control Conjugate - Gradient computer program will still be used for this
problem, But two changes have to be made to the complete program. The
first is to change the form of the control equation, The following form

will be used:

wv = A, +3 (A R) \ )
k=1

wvhere

R=(r-x) // (Yuowm = Vi) (44)

The second change is in the form of the performance indexe The nev

performance index is
Y 7
-3- = (\’; - rﬂbw\) + (\; - \mm} (45)
The>rf and if terms in Eq 45 are the calculated final radius and
inclination achieved using Eqs 40, 42, and 43 in an iterative loop for

the specified number of orbits.

Solution Resultse The suboptimal control progrem described in the

preceding section was run with the following set of specified initial and
final conditionss The initial radius and inclination were:

ry = 4263,0 miles

ii = 10,0 degrees

The final radius and inclination were:

Toom = 4433,057 miles
ihom = 10,746 degrees

The specified final radius and inclination are the resultis of a computer
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progranm which calculated the Ar and the Ai of 1000 orbits with the

following w(r) control profile,

w(")j
h
.
2
-
© $00 1000 No. of
OvrbiXs

Fig 8: Control Profile for Specified Final Conditions
This control profile corresponds to the case where the vehicle does
500 radius change orbits and then 500 inclination change orbits. This
is called the bang-bang orbital transfer maneuver,

The suboptimal control program was started at 900 orbits with a
quadratic control equation, ‘hen the program converged on a set of
coefficients which matched the end conditions, Ta equel to Thom and
if equal to inom’ and satisfied Tq 2&, the number of orbits was
decreased by one and the program started again, The rationale behind
this strategy was that the coefficients of the n orbit case would be
good initial guesses for the (n = 1) orbit cases It was discovered
that after a few orbits had been subtracted from the 900, the program
refused to converge, At this point another coefficient was added to the
control equation. Again the program ran smoothly until a number of orbits
had been subtracted. Since the object of this program was to prove the
existence of a solution to the example problem stated in the first section
of this chapter, the program was terminated after the coefficients for
880 orbits had converged. The converged coefficients for 880, 890, and

900 orbits were chosen to show the results of the program,




The three cases, that were chosen, differed by the number of orbits
and the number of coefficients in the control equation. The three cases
are summarized in Table 1, The coefficients for each of the three cases
can be found in Table 2, Figure 9 shows the plots of w(r) vs r for the
above three cases, Table 3 shows the savings in time between the three
cases chosen to represent the solution of the total orbital transfer
problen and the nominal values for the 1000 orbits. These savings in

time are equal to fuel s--ings since the thrust of the vehicle was

assumed to be at full thrust throughout the entire problem,

Case No, of Orbits No, of Coefficients
1 900 3
2 890 4
3 880 7

Table 1:¢ Sample Results
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Case AO A1 A2 A3 AL A5 A6
2 =o05269 « 183179 1.23758 =LT6 0 0 0
Table 2: Control Equation Coefficients
Case % decrease
1 10,44
2 11.53
3 12,64

Table 3:

Fuel Savings
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v Conclusions and Recommondations

The following conclusions and recommendations are based on the
results of this study.

The equation derived for the coplanar circular radius change, Zg 10,
is no more complex than the equation given in Reference 3 (169) for the
instantaneous high thrust case. Iquation 10 lends itself, very easily,
to computer use,

The equation derived for the inclination change problem, Fq 39, is
glso no more complex than its counterpart in Reference 3 (169), This
equation also is easily implemented on the computer,

The third conclusion of this study is that significant savings
(10% to 127) in fuel and time can be achieved, over the 1000 orbit
bang-bang maneuver, if a simple control profile is followed in the total
orbital transfer problem, This savings in fuel can be translated directly
into an increase in payload weiyhte Therefore increases in mission
capabilities can be achieved without a loss of vehicle performance or an
increase in mission time,

There are three areas which can be exﬁanded on from this study. The
first is to find an analytical equation for w(r) so that the general orbit
transfer problem can be solved, The second is the use of a thrust angle
vhich allows the full thrust to do both radius and inclination changes at
the same time, This paper dealt only with an angle that ali-wed either
radius or inclination changes, but never hboth, Probably the most important
area in which to investigate is the use of complex orbital dynamics, This
paper dealt only with two - body dynamics. Two « body dynamics is a good
approximation for low earth orbits, but as the radius of the orbit is
increased, the accuracy of this approximation decreases, Therefore, for

missions to geosynchronous orbit, complex orbital dynamics must be used.
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