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Abstract

The ADCS concept in MIST reflects the limitations of the CubeSat in terms of space, power and on-
board computer computational capability. The control is constrained to the use of only magnetic torquers
and the determination to magnetometers and Sun sensors in spite of the the under-actuation and under-
determination during eclipses. Usually small satellites with a similar ADCS and demanding requirements
fail, therefore MIST would be a design reference for this kind of concept in the case it succeeds.

The objectives of this thesis work are the feasibility assessment of the concept to meet the nominal
requirements in MIST and the consideration of alternatives. Firstly, the importance of gravitational
stabilization and different configurations for the inertial properties are analyzed based on the linear
stability regions for nadir pointing spacecraft. Besides, extended stability regions are derived for the
case when a momentum wheel is used to consider alternative options for passive stabilization in terms of
the inertial properties. Then a controller based on the Asymptotic Periodic Linear Quadratic Regulation
(AP LQR) theory, the currently most extended and effective for pure magnetic control in small satellites,
is assessed. Also a Liner Quadratic Regulator design by means of numerical optimization methods, which
has not been used in any real mission, is considered and its performances compared with the AP LQR.
Regarding attitude determination a Linear Kalman Filter is designed using the AP LQR theory. Finally,
a robustness analysis is conducted via Monte Carlo simulations for those control and determination
strategies.



Sammanfattning

Systemet för attitydstyrning och -bestämning i nanosatelliten MIST reflekterar sm̊a satelliters
begränsningarna i utrymme, elkraft och omborddatorkapacitet. Regleringen är begränsad till styrning
med magnetspolar som genererar kraftmoment. För attitydbestämningen används magnetometrar och
solsensorer trots under-manövrering och -bestämning vid solförmörkelse. Vanligtvis misslyckas sm̊a satel-
liter med liknande reglersystem och höga krav, s̊a om MIST lyckas skulle den bli ett referenskoncept.

Målen med detta examensarbete är att utföra en genomförbarhetsstudie av ett reglerkoncept för att
möta de nominella kraven för MIST samt undersöka av alternativa reglersystem. Effekten av gravitation-
sstabilisering och olika masströghetskonfigurationer har analyserats med hjälp av linjäriserade stabilitet-
sregioner för en nadirpekande satellit. Stabilitetsregionerna förstoras d̊a ett roterande hjul införs i ett al-
ternativt stabiliseringskoncept eftersom det roterande hjulet p̊averkar de effektiva masströghetsmomentet.
Regleringsalgoritmen som utvärderats i detta arbete är baserad p̊a teorin om Asymptotisk Periodisk Linjär
Kvadratisk Regulering (AP LKR), den som är mest använd samt effektiv för ren magnetisk styrning av
sm̊a satelliter. En utformning av ett koncept baserat p̊a Linjär Kvadratisk Reglering med numerisk opti-
mering, vilket inte tidigare verkar använts för ett riktigt rymduppdrag, har undersökts och jämförts med
AP LKR-regleringen. När det gäller attitydbestämningen s̊a har ett linjärt Kalmanfilter utformats för
AP LKR-regleringen. Slutligen s̊a har en robusthetsanalys gjorts genom Monte Carlo-simuleringar för
styrnings- och bestämningsstrategierna.



Resumen

El concepto para el ADCS en MIST refleja las limitaciones de los CubeSats en cuanto a espacio,
potencia y capacidad computacional del ordenador a bordo. El control está restringido al uso de sólo
magnetopares y la determinación a magnetómetros y sensores de Sol a pesar de la imposibilidad de
actuación según todos los ejes y el conocimiento incompleto en actitud durante eclipses. Normalmente
pequeños satélites con un ADCS similar y exigentes requisitos fallan, por la tanto MIST seŕıa una referencia
de diseño para este tipo de concepto en el caso de que tenga éxito.

Los objetivos de este trabajo fin de máster son la evaluación de la viabilidad del concepto para
cumplir los requisitos nominales en MIST y la consideración de alternativas. Primero, la importancia de
la estabilización gravitacional y diferentes configuraciones para las propiedades másicas son analizadas
en base a las regiones de estabilidad lineales para veh́ıculos espaciales apuntando según nadir. Además,
regiones de estabilidad extendidas son deducidas para el caso en el que una rueda de momento es usada con
el fin de considerar opciones alternativas de estabilización pasiva en términos de las propiedades másicas.
Después un controlador basado en la teoŕıa del Asymptotic Periodic Linear Quadratic Regulation, el
actualmente más extendido y efectivo para control magnético puro en pequeños satélites, es evaluado.
También un diseño de LQR por medio de métodos de optimización numérica, el cual no ha sido usado
en ninguna misión real, es considerado y sus prestaciones comparadas con el AP LQR. En relación a la
determinación de actitud un Linear Kalman Filter es diseñado usando la teoŕıa del AP LQR. Finalmente,
un análisis de robustez es llevado a cabo a través de simulaciones de Monte Carlo para esas estrategias
de control y determinación.
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1 Introduction

1.1 Background

CubeSats were invented in 1999 as an educational
tool. They were conceived to be small and simple
enough for university students, and with standard
sizes to accommodate them in the rockets. Launches
of CubeSats increased significantly in 2013. The
number of deployments that year was nearly half of
the total until then. Currently not only universi-
ties are investing in them but the governments and
private companies as well. This interest is due to
its low cost, the availability of standardized parts,
the increased launch opportunities and its versatility
[14, 20].

MIST is the first student satellite at KTH, a 3U
CubeSat to be built between during 2015 to 2017
and launched soon after that. The payload consists
of 7 technical and scientific experiments. The exper-
iments have been proposed from inside KTH, from
two Swedish companies and from the Swedish Insti-
tute of Space Physics in Kiruna.

The Attitude Determination and Control System
(ADCS) concept of MIST consists of magnetic tor-
quers (MTQs) for control whereas magnetometers
(MGMs) and Sun sensors are used for determina-
tion. This is not the common practice for small
satellites with demanding ADCS requirements and
usually fails. The reasons are the under-actuation
of pure magnetic control (PMC) and lack of com-
plete attitude information associated to magnetome-
ters during eclipses. Moreover, magnetic cleanli-
ness must be assured and a large effort is required
[1, 2, 4, 7, 8, 13, 14, 48, 49, 50].

A momentum wheel (MW) has been proposed for
MIST. It would remove the under-actuation problem
of PMC and has a higher level of torque that would
make the spacecraft dynamics faster. Nevertheless,
there are also the following downsides:

• It has a limited angular momentum storage ca-
pacity as there is only internal momentum ex-
change. Because of that momentum dumping
with actuators may be needed as well.

• It is prone to failure due to the presence of a
moving part.

• It occupies more space and it has a higher
power consumption.

Currently, there is not a lot of space left inside the
CubeSat and then it is unlikely that this option is
considered.

There is also a prototype of a propulsion module
that will be tested in MIST from one of the experi-
ments. However, these thrusters will not be used for
active attitude control. Their only mission related to
pointing is to divert the CubeSat from the nominal
attitude (described in Sec. 1.2).

In the case of attitude determination the gyro-
scopes in the on-board computer could be used to
deal with the under-determination during eclipses.
However, this proposal has been ruled out to reduce
power consumption and simplify the on-board data
handling.

To sum up, the ADCS concept in MIST is quite
challenging and would provide important design rec-
ommendations for small satellites with similar prob-
lems in the case it succeeds. It would decrease the
cost and power consumption and save space being
especially attractive for CubeSats, which are a new
revolution in space of increasing interest used for a
wide range of applications.

1.2 Problem Statement

The nominal ADCS requirements for MIST are,
[23]:

• Nadir pointing with the axis of the minimum
moment of inertia along nadir and another
body axis parallel to the direction of flight.

• An accuracy of 15 deg for nadir pointing during
sunlight.

• An accuracy of 5 deg for attitude determination
during sunlight.

The other ADCS requirements, de-tumbling and
nadir pointing acquisition, will not be considered in
this report.

The main objective of this thesis work is to make
an assessment of the ADCS concept’s feasibility.
Moreover, alternatives are also considered for either
the case where it is not possible to meet the require-
ments with the current concept or when there is still
possibility to have complementary ADCS hardware.

Other aim is to compare different attitude control
and determination strategies for the current concept.
New algorithms will be also explored to see whether
there is a possibility to improve the performances ob-
tained with traditional methods.

As to the extension of the work less effort will be
put into the study of alternative concepts and those
related to determination strategies due to the lack of
time.
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These objectives will be accomplished by means
of literature survey, analytical studies and numeri-
cal simulations. The Princeton CubeSat Toolbox is
available for simulations. However, as it is the aca-
demic version the functionality is limited and it is
necessary to write complementary codes.

1.3 Previous Work

During the previous semester de-tumbling analy-
ses, survey for ADCS simulation toolboxes and pre-
liminary attitude control studies for the nominal
pointing requirement were conducted.

The preliminary work for nominal pointing con-
ditions consisted of literature survey and numerical
simulations where perfect attitude knowledge was as-
sumed. The objective was to make an initial assess-
ment of the ADCS concept’s feasibility and evaluate
the performances when a MW is considered. The
studies conducted in this report will be a continua-
tion of these initial analyses.

2 Literature Study

CubeSats and micro-satellites with a mission pro-
file in terms of ADCS similar to MIST are analyzed.
The aim is to know the usual control and determina-
tion strategies as well as the achievable performances
for PMC and when there is lack of complete attitude
information during eclipses. Moreover, slightly differ-
ent alternatives to MIST’s ADCS concept are studied
as well.

The basic properties about some of the missions
studied are summarized in the Table 2.1. Other satel-
lites have been also analyzed and will be mentioned
later on as references as well.

There are two commonly used control algorithms
for PMC. One of them is the Linear Quadratic Regu-
lator (LQR) used in Gurwin-Techsat, PRISMA, Hok-
ieSat and COMPASS-1 [4, 6, 8, 13]. Other less ex-
tended method is the COMPASS controller and it
is considered in Gurwin-Techsat and UWE-3 [4, 10].
It is interesting to note that both algorithms were
used in Gurwin-Techsat and it was launched in 1998.
Then giving that, for example, UWE-3 (2013) and
PRISMA (2010) are relatively recent missions it
could be concluded that there have not been signifi-
cant breakthroughs in PMC for nadir pointing since
at least 20 years ago.

The COMPASS controller feedbacks the differ-
ences in BCF and OCF1 of both Earth magnetic
field and its derivative, which are then used for com-

puting the control magnetic moment. The values in
BCF could be obtained directly from MGMs. As to
those in OCF precise position knowledge and mag-
netic field model are enough. Thus, it is possible to
achieve nadir pointing using only MTQs and MGMs
in principle.

Table 2.1: Missions studied for attitude control.

Feature Gurwin- PRISMA UWE-3 COMPASS-1
Techsat (TANGO)

Mass (kg) 48 50 1 1

Size
(cm× cm× cm) 45× 45× 45 80× 75× 32 10× 10× 10 10× 10× 10

Mean
Altitude

(km) 810 700 645 635

Orbit
Inclination

(deg) 98 98 98 98

Control 3 MTQs 3 MTQs 6 MTQs 3 MTQs
Hardware 1 MW 1 RW

Control
Magnetic
Moment
(Am2) 1 2.5 0.05 0.1

Residual
Dipole

Moment
(Am2) - 0.1 0.05 -

Determination 3 MGMs 3 MGMs 9 MGMs 3 MGMs
Hardware 6 Sun 3 Gyroscopes 5 Sun

Sensors 6 Sun Sensors
1 Fine Sun Sensors

Sensor

The LQR is based on a linearized model around
OCF. It minimizes a cost function that considers con-
trol accuracy and effort. For that an optimal feed-
back matrix is obtained by solving a system of or-
dinary differential equations. In the case of time-
invariant systems the problem is reduced to the Al-
gebraic Riccati Equation (ARE). The problem with
PMC for satellites is that the system is time-varying
since the magnetic field changes throughout the orbit.
However, there are methods to simplify the problem
by recovering the ARE:

• A technique is the Asymptotic Periodic LQR
used in PRISMA and Gurwin-Techsat. It as-
sumes that the magnetic field is periodic, which
is more or less true with the orbital period, and
the weight of the control effort in the cost func-
tion is large enough. Under these conditions an
average of the magnetic field over an orbit can
be used for the ARE [11].

• A very similar alternative to the Asymptotic
Periodic LQR is used in HokieSat. The differ-
ence is that now the control magnetic moment
used is assured to be perpendicular to the Earth

1The coordinate systems BCF and OCF are explained in Sec. 3.1.
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magnetic field by means of a mapping function
[9].

The most common estimation method is the Ex-
tended Kalman Filter (EKF), which is an version
of Kalman filter valid for nonlinear systems. It is
used in PRISMA, HokieSat and UWE-2 [6, 8, 49].
Other similar extensions for nonlinear systems are
also considered such as Isotropic Kalman Filter (IKF)
in UWE-3 and Unscented Kalman Filter (UKF) in
SEAM [2, 50].

The Kalman filter minimizes the uncertainty in
the estimation of the state vector. It uses a process
model to predict and a measurement model to cor-
rect the initial estimate. The problem is that those
models are supposed to be linear and nearly all prac-
tical applications imply nonlinear equations. Both
EKF and IKF are based on linearized models. The
difference between them it is that IKF assumes the
same covariance in all the directions for the state vec-
tor simplifying the estimation procedure [48]. On the
other hand UKF propagates the mean and covariance
through the nonlinear models based on the Unscented
Transformation to reduce linearization errors [50]. It
is more accurate than EKF and it requires a similar
computational effort [51].

In addition to the determination hardware in
MIST, UWE-2 and UWE-3 have gyroscopes and
SEAM has star trackers. Then, they all have sen-
sors to complement the magnetometers and avoid the
lack of complete attitude information during eclipses.
From numerical simulations it is known that the esti-
mation error is around 0.2 deg for UWE-3, 30 deg in
UWE-2 and 0.02 deg in SEAM [48, 49, 50]. The high
performance of SEAM is because of the star track-
ers. In the case of UWE-3 it should be mentioned
that there were some errors not taken into account
in the modeling of sensors, thus the actual accuracy
is expected to be worse. Regarding in-orbit results
it is known that the EKF has been proved reliable
for UWE-3 having an accuracy around 5 deg [1]. Be-
sides, SEAM has not been launched yet and there is
no published information for UWE-2.

The missions PRISMA and COMPASS-1 have
similar ADCS concepts to MIST: PMC and only
magnetometers available during eclipses. In the case
of PRISMA, simulations showed a nadir pointing ac-
curacy of 5 deg and a estimation error around 2 deg
[6]. Afterward in-orbit results indicated a pointing
error of 15 deg and an accuracy in the estimation of
3 deg [7]. As to COMPASS-1 it is known from flight
results that its ADCS failed due to large errors in the
Sun sensors [13].

In spite of having a reaction wheel (RW) UWE-3

was supposed to test several PMC algorithms such
as COMPASS for nadir pointing [10]. But finally
it ended with a residual magnetic moment which has
the same order of magnitude as that for control. This
is possibly due to the magnetization of the antennas,
made out of stainless steel. Thus the original plan
was not able to be conducted [1].

Gurwin-Techsat has only magnetometers and
then it is more restrictive than MIST in terms of
estimation. Simulations suggested that the LQR and
COMPASS can meet the pointing requirements with
an accuracy of 8 deg and 1 deg, respectively. However
it was necessary a small momentum bias in the case
of the COMPASS controller to achieve the stabiliza-
tion. From flight results it is known that a failure of
the LKF (Linear Kalman Filter) used for the LQR,
possibly due to magnetic disturbances of the stopped
MW, impeded the activation of the controller. For
the COMPASS controller, in-orbit results showed a
nadir pointing accuracy of 3 deg as long as there is a
small momentum bias [4].

Finally the following conclusions should be
pointed out:

• A determination concept less restrictive than
that in MIST could have a worse performance
comparing PRISMA and UWE-3. The possi-
ble reason is the high level of magnetic dis-
turbances in UWE-3, which affects the magne-
tometers. It is likely that with the same mag-
netic cleanliness the results in UWE-3 would be
slightly better.

• Similar ADCS concepts to MIST and slightly
different alternatives usually fail with the on-
board magnetic disturbances being the main
reason.

• One of the few missions analyzed with reported
ADCS success is PRISMA. From its flight re-
sults it could be inferred that it is possible to
meet the ADCS requirements in MIST as long
as the magnetic cleanliness is assured.

• The Gurwin-Techsat also succeeded with its
COMPASS controller. It has a higher nadir
pointing accuracy than PRISMA using only
magnetometers for estimation. However, MW
was used.

3 Modeling

3.1 Generalities

The coordinate systems that will be considered
for the study of attitude control and determination
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are:

• Earth-Centered Inertial (ECI) frame.

• Body Coordinate Frame (BCF). The z axis has
the minimum moment of inertia and is toward
the deployable solar panels. Then the x axis is
parallel or perpendicular to the panels with the
y axis completing a right handed frame.

• Orbit Coordinate Frame (OCF). The z axis is
pointing toward zenith and the y axis is perpen-
dicular to the orbital plane. The x axis com-
pletes a right handed frame. Besides, the direc-
tion of the y axis is so that the x axis is near
the direction of flight.

Under the nominal pointing condition BCF coincides
with OCF [22].

Table 3.1 contains the reference conditions nec-
essary for attitude studies. Nearly all the results in
this report are obtained according to these values.
Nevertheless, some of them are uncertain and could
be different in some cases. Those results where other
conditions are considered will be pointed out.

The orbital parameters correspond to the Two-
Line Element Set (TLE) of the Reference Orbit 1 in
[22]. The most doubtful value here is for the alti-
tude and it is possible to end with a lower orbit up
to 400 km.

The moments of inertia (Ix, Iy and Iz) are esti-
mated assuming a cuboid with a plate in the top for
the deployable solar panels. The mass of the pan-
els are obtained from the specifications [41]. Then
regarding the cuboid a mass is supposed according
to the typical densities of CubeSats. Furthermore, it
has been assumed that the panels are along BCF x
axis. As mentioned before there is other configura-
tion with the panels along BCF y axis. In that case
the moments of inertia Ix and Iy merely switch their
current values.

The values xG, yG and zG represent the position
for the center of mass. They are given with respect
to a coordinate system with the same orientation as
BCF and whose origin is the geometric center of the
cuboid above mentioned. Here, it is only an assump-
tion that the center of mass coincides with the that
geometric center.

In the part of actuators the parameters corre-
spond to the capabilities of the MTQs and MW.
Specific explanations about them can be found in
Sec. 3.4. The values are from the specifications of
the actuators bought for MIST [38, 40].

Regarding the disturbances the parameters are
explained in Sec. 3.3. The residual dipole is obtained

as the algebraic sum of the on-board electronic equip-
ment and set in the worst direction: perpendicular to
the orbital plane. This assumption is since the orbit
is polar and then the Earth magnetic field lines are
mainly inside the orbital plane. Studies for increasing
residual dipole will be conducted.

Table 3.1: MIST reference conditions.
Element Parameter Value

Orbit Eccentricity 0.001
Inclination 97.94 deg

Mean Altitude 645 km
Period 97.57 min

Inertial Ix 0.037 kgm2

Properties Iy 0.051 kgm2

Iz 0.021 kgm2

xG 0 mm
yG 0 mm
zG 0 mm

Actuators ḣwmax 0.23 mNm
hwmax 1.7 mNms
µCmax 0.2 Am2

Disturbances µDx 0 mAm2

µDy 5 mAm2

µDz 0 mAm2

CD 2.1
Solar Panel ρSa 0.75
Solar Panel ρSs 0.17
Solar Panel ρSd 0.08
Solar Panel ρSt 0
Radiator ρSa 0.15
Radiator ρSs 0.69
Radiator ρSd 0.16
Radiator ρSt 0

ρEa 1
ρEs 0
ρEd 0
ρEt 0

Sensors ωm 55 nT√
Hz

bm 50 nT
Mm 0.5 %
ωs 0.01 1√

Hz

bs 0.015
Ms 0.5 %

The drag coefficient varies from 2 to 4 as indicated
in Sec. 3.3 and the value here is only an initial guess.
Higher coefficients will be considered when analyzing
the performances.

The optical coefficients for radiation pressure
with the subscript S are for Sun and those with E
are for Earth. The default values from the Princeton
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CubeSat Toolbox are used [27].

Finally there are errors for the sensors (explained
in Sec. 3.5). In the case of magnetometers the
datasheet is used [39]. Regarding the Sun sensors
it is known from the supplier that a reasonable error
range is 2 to 6 deg and then the parameters are se-
lected to reproduce that range2. These errors depend
on the temperature and this usually changes over a
relatively broad range during a mission.

3.2 Spacecraft

Complete Model

The CubeSat is modeled as a rigid body with
movable parts to take into account the possible addi-
tion of a momentum wheel. On the other hand, the
variable inertial properties caused by the use of the
thrusters will not be modeled. This is since it will
oblige to also consider the torque thrusters produce
and as it was mentioned in Sec. 1.1 while they are
used nadir pointing is not required.

Moreover, it is assumed that the motion of the
center of mass is uncoupled with respect to the at-
titude dynamics. The model SGP4 available in the
Princeton CubeSat Toolbox is used to propagate the
orbit based on the TLE of the Reference Orbit 1
mentioned in Sec. 3.1. This is the most common
model for near-Earth orbits, it takes into account the
atmospheric drag and uses low-order Earth gravity
[25, 27].

The attitude dynamics of the motion with respect
to OCF is given by the angular momentum equation

dHG

dt
= Iω̇+ω×Iω+ω×hw = TI+TC+TD. (3.1)

Here I is the inertia matrix of the entire spacecraft
(including the wheel), ω the angular velocity of the
CubeSat and hw the angular momentum of the wheel
with respect to the CubeSat.

Regarding the torques in the Eq. 3.1, TI is the
contribution of the inertial forces and it is

TI = −IΩ̇−Ω×IΩ + 2ω× (IGU − I) Ω−Ω×hw.
(3.2)

In this expression Ω is the angular velocity of OCF
with respect to ECI frame, Ω̇ its derivative in that
frame, IG the moment of inertia around the center of
mass and U the identity matrix.

The other torques in Eq. 3.1 are disturbances TD

(described in Sec. 3.3) and control torque TC (in
Sec. 3.4).

The equation of angular momentum is comple-
mented by the kinematic relations between angular
velocity and parameters that defined the attitude.
Both 3-2-1 Euler angles and quaternion will be used
in these equations.

Linear Model

Apart from the above a linear model is also de-
rived. This will help to get preliminary results with
less computational effort and understand better the
problems studied.

The linear model is defined considering the fol-
lowing assumptions:

• The equations are linearized around the orbital
attitude given by OCF.

• There is no orbital eccentricity e, thus Ω is di-
rectly the mean motion Ωo.

• The only disturbance is gravity gradient.

• The momentum wheel is along the BCF y axis.

Furthermore dimensionless parameters are intro-
duced considering that:

• Time derivatives and angular velocities are
nondimensionalized with Ωo.

• Usual values of the magnetic field Bc in the or-
bit of the CubeSat and magnetic moment µc
the actuators are able to provide are used for
nondimensionalization.

• The control torque given by the momentum
wheel is nondimensionalized with hwyoΩo being
hwyo the angular momentum in equilibrium.

Based on those considerations it is obtained the
state-space representation

ẋ = Ax + Bu, (3.3)

where the terms represent:

• x is the state vector containing the dimension-
less angular velocity in BCF and 3-2-1 Euler
angles.

xT =
[
p? q? r? ψ θ φ

]
. (3.4)

• A is the system matrix. It is expressed via
the inertial ratios σ1 =

Iy−Iz
Ix

, σ2 = Iz−Ix
Iy

and

σ3 =
Iy−Ix
Iz

.

2The worst case is 5 to 7 deg when the Earth albedo is not modeled. Nevertheless, here an in-between situation has been
assumed.
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A =

0 0 σ1 − 1 +
hwyo

IxΩo
0 0 −4σ1 − hwyo

IxΩo

0 0 0 0 3σ2 0

1− σ3 − hwyo

IzΩo
0 0 −σ3 − hwyo

IzΩo
0 0

0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0


.

(3.5)

• u is the input vector. It comprises the dimen-
sionless control magnetic moment and torque
provided by the MW in BCF.

uT =
[
µ?x µ?y µ?z ḣwy

?
]
. (3.6)

• B is the input matrix. The Earth magnetic field
is in this term and it is in OCF. Its variation
over the orbit makes the system time-varying.

B =
Bcµc
IyΩ2

o



0 Bz
Bc

Iy
Ix

−By

Bc

Iy
Ix

0

−Bz
Bc

0 Bx
Bc

−hwyoΩo

Bcµc
By

Bc

Iy
Iz
−Bx
Bc

Iy
Iz

0 0

0 0 0 0
0 0 0 0
0 0 0 0


.

(3.7)
Similar linear models and their derivations can be
found in literature [15, 16, 18, 19].

3.3 Disturbances

Here the models for torques caused by distur-
bances are described. Usual contributions of gravity
gradient, residual dipole, aerodynamic torque and ra-
diation pressure are considered.

Most of the models associated to the disturbances
considered are functions already implemented in the
Princeton CubeSat Toolbox [21, 27]. The only model
that is not in the toolbox is the World Magnetic
Model 2015 (WMM 2015) and then the function
available in MATLAB is used.

Gravity Gradient

The model considered in this case is the most
commonly used. It corresponds to the gravity field of
a spherical and homogeneous body. Moreover when
computing the torque only the first-order term of a
Taylor expansion is considered. This expansion is in
terms of Lc

rG
, where Lc is a typical length of the Cube-

Sat and rG is the distance of the center of mass to
the Earth.

Based on the assumptions stated above the grav-
ity gradient torque is

TGG =
3µE
r3
G

uG × IuG. (3.8)

Where µE is the gravitational parameter of the Earth
and uG is the unit vector for the center of mass’s po-
sition.

In the case the orbital eccentricity is small the
gravity gradient torque given by Eq. 3.8 can be sim-
plified as

TGG = 3Ω2
ouG × IuG, (3.9)

where Ωo is the mean motion.

Residual Dipole

The magnetic disturbances of the on-board elec-
tronics are summarized in a total residual dipole.
Then using the general expression for the torque a
magnetic dipole produces it is obtained that

TRD = µD ×B. (3.10)

In this equation µD is the residual dipole moment
and B is the Earth magnetic field.

For the Earth magnetic field the WMM 2015 and
the tilted dipole model are used. The latter is only
for cases where simplifications are required to un-
derstand better and quicker the fundamentals of the
problems analyzed.

Aerodynamic Torque

This disturbance is due to the interaction between
the atmosphere and the spacecraft surface.

At orbital altitudes the density is low enough to
have a collisionless flow. Under this assumption the
air particles impact the surfaces giving rise to a mo-
mentum exchange in the direction of the relative mo-
tion, which in turn produces a force in the same di-
rection.

Given flat surfaces the force for the face i is given
by

FADi =

{
1
2ρCDAi cosαiVw‖Vw‖ if cosαi > 0
0 if cosαi ≤ 0

.

(3.11)
Where Vw is the relative velocity of the flow, ρ its
density, CD the drag coefficient and Ai the area of
the face i. Besides, cosαi = − Vw

‖Vw‖ · ni being ni the
unit outward normal of surface i.

The condition in cosαi is to rule out the faces
not being impacted by the incident flow. CD varies
between 2 and 4 depending on the amounts of air
particles absorbed and reflected. In the case all the
particles are absorbed it is 2 and when they all are
reflected it is 4.
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As for ρ the model AtmJ70 is used. This model
takes into account the solar radiation and the geo-
magnetic storms providing reasonable predictions.

Once the forces are computed the torque is ob-
tained supposing that the point of application for
each face is its geometric center. Denoting ri as the
position for the geometric center of the face i with
respect to the center of mass it is obtained that

TAD =
∑
i

ri × FADi. (3.12)

Radiation Pressure

This disturbance is due to the interaction of
the photons emitted by a source and the faces of
the spacecraft. A photon striking a surface can be
absorbed, specularly reflected, diffusely reflected or
transmitted. In relation to the fractions of the in-
coming photons for a surface it is true that

ρa + ρs + ρd + ρt = 1, (3.13)

where ρa is the fraction absorbed, ρs specularly re-
flected, ρd diffusely reflected and ρt transmitted.

Assuming flat surfaces the force produced in the
face i is given by

FRi = −pAis ·ni
[
2
(
ρss · ni +

ρd
3

)
ni + (ρa + ρd) s

]
.

(3.14)

In this equation p =
Fp

c is the radiation pressure be-
ing Fp the flux density of the source and c the speed
of light. s is the unit vector for the position of the
source with respect to the center of mass

As in the case of the aerodynamic torque here is
also the condition in s · ni = cos γi, that is, when
a face is not illuminated by the source (cos γi ≤ 0)
there is no force.

Once the force for each surface is computed the
torque is obtained as in the case of the aerodynamic
torque with

TR =
∑
i

ri × FRi. (3.15)

The sources considered are the Sun, the Earth
albedo and the direct radiation from Earth.

3.4 Actuators

MIST has three single-axis MTQs and a possi-
ble MW. There are a lot of details to be added to
the ideal models, however only the control limits are
considered for now.

The torque provided by the MTQs is the same as
that for the residual dipole in Sec. 3.3,

TCm = µC ×B for ‖µC‖ ≤ µCmax. (3.16)

Here µC is the control magnetic moment and µCmax
is its the saturation value.

As to the MW the control torque is given by

TCw = −ḣw for ‖ḣw‖ ≤ ḣwmax and ‖hw‖ ≤ hwmax.
(3.17)

In this equation ḣwmax and hwmax are the saturation
values for the control torque and angular momentum,
respectively.

3.5 Sensors

A model for the sensors is obtained based on the
work [24] done for MIST and [28] conducted previ-
ously for other project. The inaccuracies considered
for the sensors are:

• Bias. It is a static offset that could change from
one operating cycle to another.

• Noise. This is a random error and it is usually
modeled as Gaussian white noise3.

• Scale factor. This is proportional to the actual
value of what is measured and comes from the
sensitivity of the sensors, that is, the minimum
value they are able to distinguish.

• Crossed-coupling. It is due to errors in the
manufacturing and misalignment in the place-
ment of the sensors. Those errors cause that
the measurement in one axis is affected propor-
tionally by the other axes.

The mathematical expressions based on the
model described above are

B̃ = bm +MmB + ωm (3.18)

for the magnetometers and

ũS = bs +MsuS + ωs (3.19)

for the Sun sensors. Here the terms in the left-hand
side are the measured Earth magnetic field (Eq. 3.18)
and Sun vector (Eq. 3.19). In the right-hand side the
1st term is bias, the 2nd represents scale factor and
crossed-coupling and the 3rd is noise.

3It is a stochastic process where the current instant is uncorrelated with respect to other instants. Thus, it has a constant
power spectral density and it is equally important in all the frequencies. Besides, it follows a Gaussian distribution.
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4 ADCS Algorithms

4.1 Attitude Control

The LQR computes an input vector for the linear
model in Eq. 3.3. This input vector minimizes for
any initial condition the cost function given by

J =

∫ T

0

(
xTQcx + uTRcu

)
dt, (4.1)

where T is time chosen to evaluate the performance,
Qc is the weighting matrix for control accuracy and
Rc for control effort.

The general solution of this Calculus of Variations
problem is

u = −R−1
c BTP(t)x. (4.2)

Here P(t) is an unknown matrix to be determined
through a system of ordinary differential equations.

In the case of time-invariant systems P is con-
stant and the problem is simplified to the ARE as
mentioned in Sec. 2 and which is given by

PA+ATP − PBR−1
c BTP +Qc = 0. (4.3)

However, as seen in Sec. 3.2 the input matrix changes
along the orbit and then the system is time-varying.
Thus, different approaches with a constant P are con-
sidered in Sec. 7 for a practical design.

Finally it should be mentioned that despite the
fact that this controller is the most extended for PMC
it can be used for any other actuator.

4.2 Attitude Determination

The attitude determination method that will be
implemented in the simulation models is the LKF.
It is also known as LQE (Linear Quadratic Estima-
tor) and is not common for small satellites. The only
mission found where it was used is Gurwin-Techsat
[4].

Adding uncertainties w to Eq. 3.3 it is obtained
a linear stochastic model for the system given by

ẋ = Ax + Bu + w. (4.4)

The LQE uses it for a replica of the system to esti-
mate the state vector as

˙̂x = Ax̂ + Bu + L (y − ŷ) . (4.5)

Here x̂ is the estimated state vector and the 3rd term
of the right-hand side is the feedback of the measure-
ments. This feedback is necessary since the uncer-
tainties in Eq. 4.4 make the estimation drift and it

is based on a stochastic linear measurement model
given by

y = Cx + v. (4.6)

In Eq. 4.6 the terms represent:

• y is the output vector and contains the mea-
surements of the magnetometers and Sun sen-
sors minus the Earth magnetic field and Sun
vector in OCF, respectively.

yT =
[

∆Bx ∆By ∆Bz ∆uSx ∆uSy ∆uSz
]
.

(4.7)

• C is the output matrix. It comprises the Earth
magnetic field and Sun vector in OCF.

C =



0 0 0 By −Bz 0
0 0 0 −Bx 0 Bz
0 0 0 0 Bx −By
0 0 0 uSy −uSz 0
0 0 0 −uSx 0 uSz
0 0 0 0 uSx −uSy

 . (4.8)

• v represents the errors in the sensors.

Now returning to the feedback term in Eq. 4.5 L is
the gain matrix and

ŷ = Cx̂ (4.9)

is the estimated output vector.
The uncertainties w and v are supposed to be

Gaussian white noises in the LQE theory but actu-
ally they are quite complex to modeled. Regarding
the errors in the sensors there are several components
of different nature as discussed in Sec. 3.5. In the case
of w it contains the nonlinear effects and the lack of
complete knowledge for the torques acting over the
CubeSat. However, it is well-known that the assump-
tion of Gaussian white noise does usually not worsen
significantly the performance of the estimator.

The gain matrix L is computed by minimizing the
covariance of the state vector’s estimation error being
the solution

L = Pe(t)CTR−1
e . (4.10)

Here Pe(t) is the covariance of the estimation error
and Re is the covariance of the sensors. The only un-
known is Pe(t) and it is necessary to solve a system
of ordinary differential equations to obtain this ma-
trix. For time-invariant systems Pe is constant and
it comes from the ARE

APe + PeAT − PeCTR−1
e CPe +Qe = 0, (4.11)

where Qe is the covariance of the uncertainties in the
system model. The problem is that C changes over
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the orbit and along the year. When comparing LQE
and LQR in Sec. 4.1 there are a lot of similarities.
This is since there is a duality and it can be used for
a practical design of the LQE based on an approach
for LQR (discussed in Sec. 7.3).

5 Disturbances Analysis

Here the importance of the different disturbances
considered now for MIST is assessed. The study will
be not only for the reference conditions but for other
conditions as well given the uncertainty of some pa-
rameters in Table 3.1.

Table 5.1 summarizes the relevance of the dis-
turbances for the reference conditions. The proce-
dures followed to estimate the aerodynamic torque is
in Sec. 5.1 and the residual dipole torque in Sec. 5.2.

In the case of the torque caused by radiation pres-
sure it has an order of magnitude given by

TR ∼ pcAcL = 0.03µNm, (5.1)

where pc = 3µPa is the usual value of radiation
pressure, Ac = 0.03 m2 the characteristic area of the
CubeSat and L = 0.3 m its length.

Table 5.1: Disturbances under reference conditions.
Disturbance Order of Magnitude

(µNm)

Residual Dipole 0.2
Aerodynamic Torque 0.02
Radiation Pressure 0.03

Returning to the linear model described in
Sec. 3.2 the term IyΩ

2
o in Eq. 3.7 is a characteristic

torque associated to the inertia of the CubeSat. It
represents the gravity gradient torque as well as the
motion. Considering the reference altitude it turns
out to be

IyΩ
2
o = Iy

µE
r3
G

= 0.06µNm. (5.2)

This result indicates that the disturbances prevail
over the inertia of the CubeSat under the reference
conditions. Hence, the open-loop system’s motion
will be determined by the disturbances rather than
by its own properties.

When talking about a closed-loop system the con-
trol torque conducts the motion since it will have usu-
ally the same order of magnitude as the maximum
disturbance torque given by the residual dipole. The
MTQs have a saturation value of 0.2 Am2 according
to Table 3.1. Thus, the residual dipole is not a prob-
lem.

5.1 Aerodynamic Torque

The order of magnitude of the aerodynamic
torque is

TAD ∼ ρcAcV 2
c L. (5.3)

In this expression ρc is the typical value of the atmo-
spheric density, it depends on the altitude and can
be obtained from Fig. 5.1. Then

Vc =

√
µE
rG

(5.4)

is the velocity of the CubeSat and it is also a function
of the altitude.

Assuming that the deployable solar panels are
long BCF x axis they are the main contribution.
Moreover the torque they produce is along the BCF
y axis.

In the case of the reference altitude it is obtained
that ρc = 5 · 10−14 kg/m3, Vc = 7 km/s and therefore

TAD ∼ 0.02µNm. (5.5)

400 500 600 700 800
Altitude [ km ]

10-15

10-14

10-13

10-12

;
# k

g/
m

3
$

Figure 5.1: Atmospheric density.

As it was mentioned in Sec. 3.1 it is possible
to end with an altitude as low as 400 km. Under
that condition the velocity of the CubeSat remains
with the same order of magnitude after analyzing
Eq. 5.4 whereas the density becomes much larger as
ρc = 6 ·10−12 kg/m3. Hence, the aerodynamic torque
also has a huge increase being now

TAD ∼ 2µNm. (5.6)

When MTQs are used the control magnetic moment
required is

µC ∼
TAD
Bc
∼ 0.05 Am2, (5.7)

which is reasonable given their saturation value.

9



5.2 Residual Dipole

The Earth magnetic field has an order of magni-
tude given by

Bc ∼ Bs
(
RE
rG

)3

, (5.8)

where Bs = 50µT is the typical value on the Earth’s
surface and RE is the radius of the Earth.

As pointed out before the worst case for MIST
is when the residual dipole is normal to the orbital
plane. Hence, in that case the torque it generates are
along BCF x axis and z axis.

Under the reference conditions Bc = 40µT and
the residual dipole torque is

TRD ∼ BcµD = 0.2µNm. (5.9)

The Earth magnetic field does not change its or-
der of magnitude for an altitude of 400 km according
to Eq. 5.8. Thus, the altitude is not a key factor for
this disturbance.

The most important parameter here is the resid-
ual dipole moment and as indicated before in Sec. 2 it
is the main cause of failures in ADCS concepts simi-
lar to MIST. Although the estimation now is 5 mAm2

after adding algebraically the contribution of all on-
board electronic devices, there is a large possibility
to end with a higher value due to unidentified mag-
netic effects of some components in the spacecraft.
CubeSats such as UWE-3 and SEAM4 ended with
magnetic disturbances of 0.05 Am2. Given this µD
the disturbance torque is similar to the case of the
aerodynamic torque for an altitude of 400 km.

6 Passive Stabilization

6.1 Gravity Gradient

The environmental torques over the spacecraft
corresponding to the gravity gradient and inertial
forces could contribute to the stabilization of the at-
titude around OCF. This type of passive control is
called gravitational stabilization and it is a problem
that has been analyzed thoroughly in the literature
[15, 16, 18, 19].

The stability analysis is based on the linear model
derived before in Sec. 3.2. Assuming no momentum
bias in the system matrix given by Eq. 3.5 and com-
puting its eigenvalues the conditions for stability are

σ1 > σ3, (6.1)

σ1σ3 > 0 (6.2)

and

(1 + 3σ1 + σ1σ3)2 > 16σ1σ3. (6.3)

The stability only depends on the inertial ratios σ1

and σ3. Thus it is possible to plot the stability re-
gions in the plane σ1-σ3 shown in the Fig. 6.1.
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-0.5

0

0.5
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<
3

Lagrange Region

A! DeBra-Delp Region

A Resonance Line

Previous Con-guration
New Con-guration

Figure 6.1: Gravity gradient stability regions.

In order to understand better the results in
Fig. 6.1 it should be explained the contributions to
the stability of the torques involved:

• Gravity gradient. The axis with the minimum
moment of inertia needs to be along the local
vertical for stability.

• Centrifugal torque. The axis perpendicular to
the orbit plane has to have the maximum mo-
ment of inertia for stability.

• Coriolis torque. It provides gyroscopic stability
irrespective of the inertia matrix.

Furthermore the six possible moments of inertia’
orders defined the same number of regions in the σ1-
σ3 plane as shown in Fig. 6.2. Thus based on this
figure it can be concluded that: the Lagrange re-
gion is stable due to gravity gradient and centrifu-
gal forces, and the DeBra-Delp region because of the
Coriolis forces. The latter is not usually used as the
gyroscopic stability disappears when there is energy
dissipation in the spacecraft.

4The information for UWE-3 is from Table 2.1. As to SEAM it is also a KTH project and there are a lot of data available
about it.

10



-1 -0.5 0 0.5 1
<1

-1

-0.5

0

0.5

1

<
3

Iy > Ix > Iz

Ix > Iz > Iy

Iy > Iz > Ix

Iz > Ix > Iy

Ix > Iy > Iz

Iz > Iy > Ix

Figure 6.2: σ1-σ3 plane.

The configuration of MIST at the end of the last
semester was with the deployable solar panels along
BCF y axis. This makes it to be in the 4th quad-
rant of the Fig. 6.1, that is, in a unstable region. In
Fig. 6.2 it is seen that the rotation is around the axis
with intermediate moment of inertia while the axis
with minimum moment of inertia is along the local
vertical. Thus, according to what was discussed be-
fore the instability in this case is due to centrifugal
forces. Fig. 6.3 shows the results in open-loop ob-
tained with a more realistic nonlinear model where
similar assumptions are made as in the case of the
linear model. It is possible to observe that the insta-
bility is in yaw. There are large oscillations around
ψ = −90 deg as expected since for that orientation
MIST is in the stable Lagrange region.
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Figure 6.3: Uncontrolled system in old configuration.

In principle, the instability with the panels along
BCF y axis could be handled using a controller. How-
ever, in the case of PMC it is not possible to al-
ways assure stability in the closed-loop system due

to the under-actuation. Thus, there are periods of
time when the system is basically uncontrolled and
they can give rise to significant deviations from OCF
if they are long enough. The same simulation as in
Fig. 6.3 is run again with a controller now. The re-
sults are in Fig. 6.4 and it seems that the pointing
error will always become large at some point due to
under-actuation.
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Figure 6.4: Controlled system in old configuration.

The decision then was to rotate the panels and
put them along the direction of flight. Now the new
configuration is in the stable Lagrange region but
near the line associated to a phenomenon known as
Pitch-Orbital Resonance as seen in Fig. 6.1. As it
will be discussed in Sec. 6.3 this phenomenon can be
handled when a controller is used. Therefore, no fur-
ther modifications are necessary in terms of inertial
properties.

Table 6.1: New configuration stability margins.
Parameter σ1 σ3 σ1-σ3

Lower Margin 0.14 0.68 -
Upper Margin 0.18 0.14 -

Margin - - 0.10

Table 6.1 contains the stability margins of the
new configuration. They represent the allowable vari-
ations of the inertial ratios. The columns σ1 and
σ3 are obtained keeping one of the ratio constant
and changing the other one. In the case of σ1 the
lower limit is Eq. 6.1 and the upper limit is actually
Eq. 6.16, which is a property of the moments of iner-
tia and not a stability condition. As to σ3 the lower
margin corresponds to Eq. 6.2 and the upper mar-
gin to Eq. 6.1. Then the column σ1-σ3 is the margin
when both ratios are changed at the same time. It
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has been computed for the worst case and here that is
the displacement that breaches the condition Eq. 6.1.

6.2 Momentum Bias

The previous configuration could be stabilized
with a momentum bias along BCF y axis. This is
known as dual-spin stabilization. Analyses about this
combined with the gravitational stabilization are less
common in the literature and will be covered here
with some extension. Similar studies can be found in
[34] and [35].

The characteristic polynomial of the system ma-
trix given by Eq. 3.5 is(

λ4 + bλ2 + c
) (
λ2 − 3σ2

)
= 0 (6.4)

where

b = (σ1 + η)

(
σ3 + η

1− σ3

1− σ1

)
+ 3σ1 + 1, (6.5)

c = (4σ1 + η)

(
σ3 + η

1− σ3

1− σ1

)
(6.6)

and

η =
hwyo
IxΩo

. (6.7)

It should be mentioned that the term
hwyo

IzΩo
of the

Eq. 3.5 does not appear in these coefficients. This is
due to the relations

hwyo
IzΩo

=
hwyo
IxΩo

Ix
Iz

= η
Ix
Iz

(6.8)

and
Ix
Iz

=
1− σ3

1− σ1
. (6.9)

As in the case without momentum bias the eigen-
values λ = ±

√
3σ2 correspond to pitch and it is un-

coupled with respect to the motion in the other two
angles. This is since the momentum wheel is along
BCF y axis and the torque produced is perpendicular
to the axis of rotation. Thus, given that the motion
in pitch is still independent the condition in Eq. 6.1
or Ix > Iz remains true for stability.

Regarding the other angles the roots of the char-
acteristic polynomial are

λ2 =
−b±

√
b2 − 4c

2
. (6.10)

After the same analysis as in pure gravitational stabi-
lization the conclusion is that for stability λ2 must be
real and negative. Based on this fact the remaining
stability conditions are

c > 0, (6.11)

b > 0 (6.12)

and

b2 > 4c. (6.13)

From the conditions in Eq. 6.1, Eq. 6.11, Eq. 6.12
and Eq. 6.13 it can be concluded that now there is
one parameter more affecting the stability: η as well
as σ1 and σ3. Hence, once a value for η is set it is
possible to plot similar stability regions such as in
Fig. 6.1.

Before continuing some clarifications should be
made about the Lagrange and DeBra-Delp stability
regions. The Lagrange region is stabilized by torques
that depends on the attitude and not on the angular
velocity, thus it is said to be statically stable. The
stability in the DeBra-Delp region is due to Corio-
lis forces and it is said to be statically unstable but
gyrically stabilized [15].

Moreover the Lagrange region also turns out to
be stable for finite motions when applying the Lya-
punov’s method. On the other hand, up to now it has
not been possible to demonstrate the nonlinear sta-
bility or instability for the DeBra-Delp region [34, 36].

Once the above clarifications have been stated the
new stability regions are analyzed. The Fig. 6.5 is
for a positive value of η. The momentum bias in this
case increases the stability contributions of the static
torques. Thus, the Lagrange region broadens while
the DeBra-Delp area decreases as it is shown in the
Fig. 6.5.
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Figure 6.5: Dual-spin stability regions for η = 0.3.

On the other hand Fig. 6.6 is for a negative value
of η. Now the static terms are weakened. That is why
the Lagrange area decreases and the DeBra-Delp re-
gion grows.

Furthermore under the assumption η � 1 it is
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obtained that

b ≈ η2 1− σ3

1− σ1
(6.14)

and

c ≈ η2 1− σ3

1− σ1
. (6.15)

The conditions in Eq. 6.11 and Eq. 6.12 are verified
automatically since it can be demonstrated that

|σ1| < 1 (6.16)

and
|σ3| < 1. (6.17)

Then the remaining stability requirement for the mo-
tions in yaw and roll gives rise to

1− σ3

1− σ1
>

4

η2
≈ 0, (6.18)

which is again the condition Eq. 6.1. Therefore,
when η � 1 the Lagrange (η → ∞) or DeBra-Delp
(η → −∞) region occupies the entire lower-right tri-
angle.
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Figure 6.6: Dual-spin stability regions for η = −0.2.

In the case of MIST, Fig. 6.5 shows that for
η = 0.3 it is already possible to stabilize the pre-
vious configuration. However, when using a negative
η with a similar magnitude it seems that the CubeSat
is still far away from being stable as seen in Fig. 6.6.
Then Table 6.2 contains the stability limits for both
configurations and it is observed that it is necessary
η < −1.29, which is a order of magnitude larger than
the case of a positive momentum bias.

Table 6.2 has as well the column ηmax correspond-
ing to the maximum angular momentum storage ca-
pacity of the MW (taken from Table 3.1). It is seen
that it is possible to control the stability in both con-
figurations. Moreover, as it is known η is the ratio be-
tween a typical angular momentum the MW can pro-
vide and the CubeSat has along the orbit. Hence, the

values of ηmax in both configurations are relatively
high and there are a lot of possibilities when modify-
ing the stability regions with the MW in MIST.

Table 6.2: Stability conditions and wheel capability.

Configuration Conditions ηmax

Previous η > 0.27 or η < −1.29 31.06
New η > −0.38 or η < −3.30 42.81

Finally, it should be mentioned that in spite of be-
ing able to stabilize with a negative momentum bias
this option should not be considered. This is due to
the problems of the DeBra-Delp region pointed out
before.

6.3 Pitch-Orbital Resonance

The motion in pitch is triggered when there is
eccentricity in the orbit. This is since the rotation
of the local vertical is not uniform and at the same
time the gravity gradient will try that the axis with
minimum moment of inertia follows it.

If a small eccentricity is taken into account in the
linear model of Sec. 3.2 then an additional term cor-
responding to the Euler forces will appear in pitch.

In Eq. 3.2 the inertial torque for the Euler forces
is

TE = −IΩ̇. (6.19)

As mentioned before in Sec. 3.2 Ω̇ is the derivative
of the OCF angular velocity in ECI frame. From
Kepler’s Second Law and the orbit equation rG =
h2/µE

1+e cos ν it is obtained that

Ω =
h

r2
G

= Ωo
(1 + e cos ν)2

(1− e2)3/2
, (6.20)

where h is the specific angular momentum associated
to the orbit and ν the true anomaly. The derivative
of Eq. 6.20 in time with respect to ECI frame for
e� 1 is

Ω̇ = −2Ω2 e sin ν

1 + e cos ν
≈ −2Ω2

oe sinM. (6.21)

In Eq. 6.21 the relation between true anomaly ν
and mean anomaly M for small eccentricity ν =
M + 2e sinM was used. Then considering until first-
order terms in the Taylor expansion for Eq. 6.19 only
the equation of motion in pitch is modified becoming

θ̈ − 3σ2Ω2
oθ = 2Ω2

oe sinM. (6.22)

Similar approaches for studying the Pitch-Orbital
Resonance can be found in [15] and [16].
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Eq. 6.22 indicates that the additional term has
the orbital frequency given that M = Ωot + Mo.
Hence, there is resonance when the frequency of the
system in pitch is equal to the mean motion and that
condition is

σ2 = −1

3
. (6.23)

Moreover, it is possible to express σ2 as

σ2 =
σ3 − σ1

1− σ1σ3
, (6.24)

that is, a function of σ1 and σ3. Then taking into
account Eq. 6.23 and Eq. 6.24 it is obtained the res-
onance line in Fig. 6.1.

As pointed out in Sec. 6.1 the new configuration
of MIST is near the resonance line. The solution to
Eq. 6.22 has a order of magnitude

θ ∼ e

3σ2 + 1
, (6.25)

where it is observed that higher the eccentricity larger
the amplitude. MIST has an intended eccentricity of
0.001 (from Table 3.1) and then θ ∼ 2 deg for the new
configuration. Thus, in principle there is no problem
but as mentioned before in Sec. 3.1 the inertia matrix
used is just a rough estimation and it is possible that
σ2 is actually even closer to −1

3 . Furthermore, it is
difficult to get such a low eccentricity and analysis
must be conducted about this problem.

0 5 10 15 20 25 30

-20

0

20

3
[
/
]

e = 0:001
e = 0:003

0 5 10 15 20 25 30
Orbit No

-20

0

20

3
[
/
]

e = 0:006
e = 0:01

Figure 6.7: Eccentricity in uncontrolled system.

Fig. 6.7 represents the effect of increasing eccen-
tricity in open-loop. These results are obtained from
a nonlinear model where the only disturbance con-
sidered is the gravity gradient. It is seen that the
amplitude begins to be unacceptable around 0.45 rad
or 25 deg for a eccentricity of 0.01. In the case of
e = 0.001 the amplitude is more or less 8 deg. Thus,
it has not grown 10 times for e = 0.01 as the linear

solution would indicate. The nonlinearity decreases
its growth rate and the maximum allowable eccen-
tricity is actually smaller than what the linear model
would predict.

The same simulations are run again for a con-
trolled system in Fig. 6.8. Here the amplitude is also
larger when the eccentricity increases but now it is
kept at quite a low value even for e = 0.02, which
is relatively high for a LEO orbit. Thus, the closed-
loop system is able to handle the resonance problem.
There are 2 reasons that explain this conclusion:

• The orbit for MIST is polar and then the under-
actuation is more or less inside the orbital
plane. Hence, it is always possible to gener-
ate a torque in the pitch axis with the MTQs
and even higher eccentricities than 0.02 are not
a problem in principle.

• It takes time to accumulate energy in the sys-
tem and therefore to have a large pointing error.
Fig. 6.7 shows that it is necessary 10 orbits to
reach the maximum amplitude for e = 0.01. It
also seems that higher the eccentricity less time
is required. However, simulations suggest that
it is still several orbits even for e = 0.02. More-
over, if there was an orbit with less inclination
the under-actuation in pitch would last only a
portion of an orbit. Then the resonance prob-
lem can be also mitigated for relatively large
eccentricities in more equatorial orbits.
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Figure 6.8: Eccentricity in controlled system.

7 ADCS Design

7.1 Asymptotic Periodic LQR

As mentioned in Sec. 2 if the Earth magnetic field
is periodic and the weighting matrix for the control
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effort Rc in Eq. 4.1 is large enough the matrix P
from Eq. 4.2 is constant and can be obtained from
the average

PA+ATP−P 1

T

∫ T

0

(
BR−1

c BT
)
dtP+Qc = 0, (7.1)

where T is taken as the orbital period.
The ARE in Eq. 7.1 can be seen as that associated

to the time-invariant system given in closed-loop by

ẋ =
1

T

∫ T

0

(
A− BR−1

c BTP
)
dtx, (7.2)

which is the average over an orbit of the CubeSat’s
linear model. Moreover, the term between parenthe-
ses is the average of the closed-loop system matrix.

In the design of a LQR it is possible to adjust
the control accuracy and effort via the matrices Qc
and Rc, respectively. They need to be defined rela-
tively with respect to each other since the cost func-
tion has the same optimum as it multiplied by a con-
stant. Based on the requirements stated in Sec. 1.2
and the limitation of the MTQs in Table 3.1 reason-
able choices seem to be

Qc =

 ( 1
0.001 rad/s

)2
U 0

0
(

1
0.5 rad

)2 U
 (7.3)

and

Rc =

(
1

0.05 Am2

)2

U . (7.4)

These selections have also considered the limited
computational capability. Demanding performances
imply quick poles in the averaged closed-loop sys-
tem and high update rates for digital implementa-
tion. The maximum update required is given by the
estimator since it needs to have poles around 4 times
faster than the controller and a reasonable update
rate for it is 10 times the velocity of its poles. It is
known from the supplier that the MTQs and MGMs
can be configured from 1 to 8 Hz. Then the fastest
pole with the above Qc and Rc is 0.05 1

s as seen in
Table 7.1. In this case the execution rate of the esti-
mator is around 2 Hz and there is still some margin
to the maximum of 8 Hz.

Table 7.1: AP LQR performances.
Performance Index Value

J 0.0282
Jx 0.0202
Ju 0.0080
|λ|max 0.05 1

s

The cost function considered in Table 7.1 corre-
sponds to Eq. 7.5. Regarding Jx and Ju they are
the parts associated to control accuracy and effort
in Eq. 7.5, respectively. From these results it can be
concluded that the performances obtained are around
5 % of the values 0.5 rad and 0.05 Am2 used for the
weighting matrices, that is, 2 deg and 0.003 Am2 re-
spectively.

7.2 LQR via Numerical Optimization

The matrix P is obtained by optimizing the
cost function directly with a numerical optimization
method. It seems that the attitude control feedback
in satellites designed in this way has never been im-
plemented in any real mission. Only works at a theo-
retical level have been found when doing a literature
survey and they all claim that it has potential advan-
tages [52, 53, 54].

Here it is possible to consider more factors such as
nonlinear effects, other disturbances apart from grav-
ity gradient, estimation errors and so on. Neverthe-
less, a linear model (in Sec. 3.2) with residual dipole,
the most important disturbance as seen in Sec. 5,
will be used to have a balance between fidelity and
amount of resources available.

The weighting matrices in Eq. 4.1 are assigned
the same values as in the case of AP LQR. Further-
more, the integration time is taken as 10 orbits to be
representative enough and the objective function is
redefined as

J =
1

T

∫ T

0

(
xTQcx + uTRcu

)
dt (7.5)

to try to have an order of magnitude near one when
the desired performance is achieved.

Design of Experiments

Before optimizing it is always recommendable
to obtain some properties of the objective function.
This stage is called Design of Experiments. Here
techniques are used to select representative samples
of the design space with the minimum computational
effort and to process the information associated to
them.

The Latin Hypercube Sampling (LHS) is used to
get samples. This method divides each design param-
eter in N elements with the same length and selects
the points so that each of those elements appear once.
Thus, the number of chosen points is N as well and
each design parameter is evenly sampled [45].

The following details are considered in the sam-
pling:
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• In addition to the standard selection criterion
of LHS it will be imposed that the distance be-
tween the points is maximum. In this way not
only all the influence of all the parameters are
considered but also it is avoided large regions
in the design space without points.

• The solution from AP LQR is used as a refer-
ence to rescale the design parameters as

P?ij =
Pij
PAPij

. (7.6)

• It is assumed that the solution is near PAP and
then the bounds are defined as

5 ≥ P?ij ≥ −5. (7.7)

• The number of points is taken as N = 5000.
This is only a first guess but it seems to be
enough to characterize the objective function.

Table 7.2 summarizes the properties of the sam-
ples obtained with general statistical parameters.
The minimum is lower than what is obtained from
PAP decreasing in a 67 % and then there is possibil-
ity to achieve much better performances. The other
parameters suggest that there are a large diversity of
values and it is confirmed by Table 7.3.

Table 7.2: General statistical parameters.
Parameter Value

Minimum 9.36 · 10−3

Maximum 9.29 · 107

Mean 1.79 · 107

Standard Deviation 1.87 · 107

Before explaining the subsequent results in this
section some assumptions are made about the objec-
tive function:

• There are regions of design space where the sys-
tem is stable and where it is unstable.

• It is considered that there is stability when

J ≤ 10 (7.8)

as a practical approach.

• Taking PAP as origin and supposing that it is
near the optimum there are directions where
the stability increases and where it decreases.
In those where it increases the control effort
is also larger leading to a higher value of the

objective function. As to the other directions
at the beginning the system only becomes less
stable increasing slightly Eq. 7.5 and at some
point it will get unstable with a huge growth in
Eq. 7.5.

Analysis over the results in the Table 7.3 indicates
that:

• There is only 1.98 % of the points stable while
the rest are unstable. Some of them are even
toward the unstable directions but the distance
to PAP has not been enough to make the sys-
tem unstable yet. Thus, there are much more
unstable directions than stable directions.

• Only 2.02 % of the samples are in the range
10−105 and then suddenly there are much more
points in the range 105−107. This is due to the
outsize increase of the objective function when
the system becomes unstable.

Table 7.3: Frequency table.
Range Relative Cumulative

Frequency Relative
[ % ] Frequency

[ % ]

0− 10−2 0.16 0.16
10−2 − 10−1 1.44 1.60
10−1 − 1 0.24 1.84
1− 10 0.14 1.98
10− 102 0.08 2.06
102 − 103 0.12 2.18
103 − 104 0.22 2.40
104 − 105 1.60 4.00
105 − 106 8.72 12.72
106 − 107 30.22 42.94
107 − 108 57.06 100

The derivatives with respect to the design param-
eters are obtained in Table 7.4. A important result
is that the rows 4-6 of P do not affect the objective
function. This can be also deduced from Eq. 4.2 tak-
ing into account that B has zeros in the rows 4-6.
Furthermore, the six variables in bold are identified
as those that actually influence the objective function
due to the following reasons:

• All of them except P?rψ have a derivative higher
than 0.5 in magnitude.

• They are the terms that represent the effects of
the motion in a certain axis for the same degree
of freedom.
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• Two sets of nearby directions in the design
space toward stable and unstable regions can
be found when considering only those terms as
it will be explained later on in this section.

Table 7.4: Sensitivity of the design parameters.

Row
Column p q r ψ θ φ

p −1.86 0.01 0.03 0.20 0.00 −1.37
q 0.10 −0.52 0.00 0.10 1.13 −0.03
r 0.07 0.01 −1.67 0.13 0.04 −0.11
ψ 0 0 0 0 0 0
θ 0 0 0 0 0 0
φ 0 0 0 0 0 0

Points toward the stable directions and unstable
directions among the samples are selected with the
criteria

J ≤ 0.1 and D ≥ 18 (7.9)

and

J ≥ 107, (7.10)

respectively. In Eq. 7.9 D is the Frobenius norm of
the point with respect to PAP and its condition is to
try to rule out samples in stable regions but toward
unstable directions. Due to the conditions considered
in Eq. 7.7 the maximum value of D is 30 and 18 is in
principle a reasonable limit for the distance.

Then scalar products are taken between:

• Stable directions.

• Unstable directions.

• Stable and unstable directions.

All the directions are given by the unit vectors from
the PAP to the points. Moreover, the scalar prod-
ucts between the same vector are not considered as
instances to be studied.

Fig. 7.1 represent the fractions of instances higher
than a certain value of the dot product for each case
above. In principle the stable directions should be
close with respect to each other and the same for the
unstable directions. Moreover, both set of directions
should be mainly opposite to each other. However,
the fractions of scalar products higher than 0.5 are
less than 20 % for either stable and unstable cases.
Furthermore, the line associated to the mixed dot
products between the two sets of points is nearly the
same as the line for unstable directions. This result
is since all the variables in the rows 1-3 of P have

been considered and there are several irrelevant de-
sign parameters.
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Figure 7.1: Directions.

Fig. 7.2 contains the same but taking into account
only the six important variables mentioned before.
Now it is clear the nearness for each set of directions
and that they tend to be opposite to each other. It
should be also pointed out that there is more vari-
ability for unstable directions and this is since this
type of directions is much larger in number. These
results contribute to confirm that the design param-
eters of Table 7.4 in bold are those really important
for the objective function. Furthermore, the assump-
tion made before about the existence of stable and
unstable directions seems to be correct5 considering
their respective nearness and that the points selected
have very different D.
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Figure 7.2: Directions with the key variables.

5It should be reminded that this assumption is always considering the bounds defined before for P?. Otherwise, it is possible
that there are problems in the stable directions when breaching those constraints due to the limitation of the MTQs.
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Optimization

The optimization is conducted using the following
methods:

• Sequential Quadratic Programming (SQP). It
combines quadratic approximations and quasi-
Newton algorithms. Thus, it is gradient-based
and a local method [44, 45].

• Nelder-Mead. This method computes a n-
dimensional analogue of a triangle, that is, a
geometrical figure enclosed within n + 1 ver-
texes in a n-dimensional space. This is called
simplex and it is updated in each iteration by
substituting the worst vertex by a nearby point
with a lower value of objective function. Hence,
it is a local derivative-free algorithm [44, 45].

• Genetic Algorithms (GAs). These are stochas-
tic methods that mimic the evolution process
to find the optimum. It takes a set of points
in the design space as a population of individu-
als and measures their suitability to a environ-
ment given by the objective function. They are
global and derivative-free algorithms [45, 46].

Some considerations are taken into account when
optimizing Eq. 7.5:

• The conditions in Eq. 7.7 are used to keep the
velocity of the poles so that similar update rates
as for the AP LQR are obtained.

• Only the key variables are used for SQP. The
other variables would make the Hessian matrix
of the quasi-Newton method nearly singular.

The results in Table 7.5 are without elaborate
starting points. In the GA the initial population is
generated randomly and a vector of zeros is used for
Nelder-Mead and SQP. The best solution has been
obtained by the GA and the worst by SQP.

Table 7.5: Results without guidance.

Method Total Eval. J Jx Ju
Iter.

GA 105 2120 0.0089 0.0007 0.0082
Simplex 682 1040 0.0138 0.0057 0.0081

SQP 52 982 0.0268 0.0186 0.0082

The Earth magnetic field of the simulation model
is obtained by interpolation and this causes errors
when computing the derivatives numerically. Thus, a
larger number of points for interpolation and a lower

relative tolerance for integration have been used the
case of SQP. Despite that SQP stopped since the step
size was smaller than the tolerance value and without
meeting the criteria corresponding to optimization
problems solved by gradient-based methods. This
means that it was not enough and a better solution
would have been to implement the Earth magnetic
model directly. Furthermore, the time needed to run
a simulation for SQP was around the triple for SQP
and its actual number of function evaluations would
be even larger than in the case of the GA.

Table 7.6: Results with guidance.

Method Total Eval. J Jx Ju
Iter.

GA 79 1600 0.0088 0.0007 0.0081
Simplex 269 531 0.0090 0.0009 0.0081

SQP 12 484 0.0094 0.0011 0.0083

Table 7.6 contains the optimization results with
good initial approximations now. Points from the
conditions Eq. 7.9 are used as initial population of
the GA and the solution by AP LQR is considered
for Nelder-Mead and SQP. Now, all the results are
very similar being that by the GA still the best and
that by SQP still the worst. The GA has obtained
nearly the same solution as without guidance.

Regarding the computational effort the GA still
has the most function evaluations and now SQP is
nearly similar to it taking into account what was
mentioned above. The number of function evalua-
tions is now smaller than the case without guidance
decreasing around 50 % for Nelder-Mead and SQP
and 25 % in the case of the GA.

Table 7.7: Standard deviation of the solutions.

Row
Column p q r ψ θ φ

p 0.33 4.21 1.65 2.74 3.54 0.22
q 1.74 0.80 3.45 1.30 0.25 1.83
r 0.23 4.41 0.15 0.79 5.05 4.00

The solution by the GA with guidance has only
reduced the minimum obtained in the Design of Ex-
periments by 6 %. It means that it was possible to
find the solution with a number of samples that has
the same order of magnitude as the function eval-
uations needed for optimization. Therefore, it sug-
gests that good optimization methods for the objec-
tive function are those able to explore different re-
gions in design space.
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As conclusion, the GA is the best optimization
method for this kind of problems. It is more suitable
than Nelder-Mead since it is a global method. When
comparing with SQP it is not necessary to identity
the key variables.

Table 7.4 shows the variability of the different
P? obtained. It is again clear that the key vari-
ables identified before are those that mainly affect
the cost function since they all have a standard de-
viation smaller than 0.8. Moreover, the results in
Table 7.8 seem to indicate that the exact solution of
the problem for the key variables is in the boundary
defined by Eq. 7.7.

Table 7.8: Mean of the solutions.
Row

Column p q r ψ θ φ

p 4.64 - - - - 4.78
q - 3.59 - - 2.73 -
r - - 4.76 4.08 - -

Fig. 7.3 represents the fraction of dot products be-
tween the solution by the GA with guidance and the
points obtained under the conditions Eq. 7.9 higher
than a certain value. It is seen that the solution is
close to those stable directions as expected. More-
over, as the solutions by the other methods are simi-
lar to the GA this result can be extended to them as
well.

Finally, it should be mentioned that the LQR de-
signed via numerical optimization is stable when con-
sidering the averaged close-loop system introduced
for the AP LQR. Moreover, the solution here is not
a symmetric matrix as in the case of AP LQR.
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Figure 7.3: GA LQR versus stable directions.

Robustness Analysis

The robustness of the AP LQR and Genetic Algo-
rithm LQR are assessed via Monte Carlo simulations.
Random values are obtained using uniform distribu-
tions for the following parameters:

• Mean altitude and orbital inclination. They are
modified within a ±3 % with respect to the ref-
erence conditions.

• Right ascension of the ascending node and ar-
gument of perigee. Here the ranges are between
0 and 2π rad.

• Inertial matrix. The elements in the diagonal
are modified within a ±2 % while the products
of inertia in a range defined by the ±2 % of
Ix+Iy+Iz

3 .

• Residual dipole. It varies from the reference
condition until the double of that value.

• Drag coefficient. It changes in its natural range,
that is, between 2 and 4.

• Center of mass’s position. In each direction a
maximum displacement of 10 mm is allowed.

Two simulation models are considered for this
study. Both takes into account all the disturbances
but one of them supposes perfect attitude knowledge
while the other uses estimator explained in Sec. 7.3.
For each case two sets of Monte Carlo simulations are
obtained with a number of samples Nm = 100.

Table 7.9: Percentage of stable instances without es-
timation errors.

First Second
Execution Execution

AP LQR 79 % 82 %
GA LQR 92 % 98 %

Table 7.9 contains the results without estimation
errors. The percentage of simulations that met the
stability criterion given by Eq. 7.8 is used to mea-
sure the robustness. In both executions of the Monte
Carlo simulations the values obtained are consistent
and this indicates that the Nm chosen was enough.
The conclusion is that both controllers are reasonably
robust being the GA LQR a 15 % better on average.
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Table 7.10: Percentage of stable instances with esti-
mation errors.

First Second
Execution Execution

AP LQR 80 % 72 %
GA LQR 86 % 90 %

The results with estimation errors are in Ta-
ble 7.10. In this case the Nm chosen was also enough.
Both controllers are slightly less robust than before.
Moreover, GA LQR is 12 % better on average now.

7.3 Asymptotic Periodic LQE

As seen in Sec. 4.2, the LQE has the same prob-
lem as the LQR. In principle it is also necessary to
solve ordinary differential equations to get the solu-
tion Pe(t). However, it was mentioned that there is a
duality between LQE and LQR. Thus, it is possible
to consider the AP LQR theory for the estimation
problem.

Now C is the equivalent to B and it needs to be pe-
riodic with the orbital period. The Earth magnetic
field can be supposed periodic as seen before. The
Sun vector in OCF changes over a year but as the
orbit in MIST is Sun-synchronous it could be sup-
posed periodic. Hence, there are enough arguments
to apply the AP LQR theory for the LQE design.
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Figure 7.4: Estimation errors.

Fig. 7.4 represents the performance of the AP
LQE. It is seen that there are peaks in each orbit.
They correspond to eclipses when the Sun sensors are
not available and there is under-determination using
magnetometers only. Also it seems that the errors in
yaw and roll are larger than in pitch. This is since the
orbit is polar and the under-determination is mainly

inside the orbital plane.
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Figure 7.5: Pointing errors.

The pointing error using AP LQR and GA LQR
combined with the AP LQR are represented in
Fig. 7.5. Again the accuracy in yaw and roll are
worse since the orbit is polar and the under-actuation
of MTQs does not affect a lot the motion in pitch.

Table 7.11: Performance under sunlight.

ψ θ φ ∆ψ ∆θ ∆φ
(deg) (deg) (deg) (deg) (deg) (deg)

AP LQR 3.34 2.16 3.76 1.04 0.59 0.68
GA LQR 2.90 2.60 2.79 0.99 0.59 0.68

Table 7.11 and Table 7.12 summarize the perfor-
mance in terms of the Root Mean Square (RMS). It
is possible to see that the estimation errors are nearly
the same for AP LQR and GA LQR. As to pointing
error the GA LQR is slightly worse in pitch but bet-
ter in roll. Taking into account all the angles GA
LQR is more accurate than AP LQR.

Table 7.12: Performance during eclipses.

ψ θ φ ∆ψ ∆θ ∆φ
(deg) (deg) (deg) (deg) (deg) (deg)

AP LQR 3.99 2.84 3.94 1.86 1.54 2.03
GA LQR 4.02 3.24 2.53 1.85 1.59 2.30

The requirements stated in Sec. 7.5 are taken as
the RMS when considering all the angles. If the norm
of a vector containing all the angles is used the max-
imum errors allowed under sunlight for each angle
are 8.66 deg for pointing and 2.89 deg for estimation.
Based on the results from Table 7.11 the conclusion
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is that it is possible to meet the ADCS requirements
with the ADCS concept in MIST under the reference
conditions.
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Figure 7.6: Pointing errors in the frequency domain.

Fig. 7.6 represents the pointing error in the fre-
quency domain. A nondimensionalized frequency f?

is defined with the mean motion Ωo. As expected the
maximum amplitude is around the orbital frequency.
Moreover, the amplitude decreases for high frequen-
cies.

8 Conclusions and Discussions

The following points should be remarked in this
final part of the report:

• Identical ADCS concepts to MIST usually fail
with the on-board magnetic disturbances being
the main reason.

• PRISMA is the only small satellite with the
same ADCS concept as MIST found that suc-
ceeded.

• It is necessary to assure gravitational stabiliza-
tion for PMC. The under-actuation could make
the closed-loop system unstable. In MIST the
orientation of the deployable solar panels was

changed to have this kind of passive stabiliza-
tion.

• An alternative solution to the rotation of the
solar panels is to provide a momentum bias per-
pendicular to the orbital plane with a MW. In
this case it should be in the direction of the
orbital rotation to make the CubeSat be in the
Lagrange region. The nonlinear stability for the
DeBra-Delp region has not been proved and it
disappears when there is energy dissipation.

• The new configuration of MIST is near the
Pitch-Orbital Resonance. However, the closed-
loop system can handle this problem since the
orbit is polar and the under-actuation is inside
the orbital plane.

• An LQR designed via numerical optimization
could improve the pointing accuracy as well
as the robustness of the traditionally used AP
LQR. Simulations results indicate that these
advantages are more noticeable while the es-
timation errors are small. However, this could
be since the estimator has not been uncoupled
from the controller in the simulation models
causing a higher noise in the system then.

• It seems that an optimization method able to
explore different regions of the design space and
derivative-free is the most suitable for an LQR.
There is a large number of variables that do not
affect the objective function and it is necessary
to identify them if a quasi-Newton method is
used. Otherwise the Hessian matrix becomes
singular.

• The simulation results suggest that the ADCS
concept in MIST can meet its requirements un-
der its reference conditions.

• The analyses for different conditions in Sec. 5
are supposing perfect attitude knowledge.
When taking into account large estimation er-
rors they could be not valid.
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