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GRAVITATIONAL ORBIT-ATTITUDE COUPLING
FOR VERY LARGE SPACECRAFT
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Abstract. Motion equations for the gravitationally coupled orbit-attitude motion of a spacecraft are
presented. The gravitational force and torque are expanded in a Taylor series in the small ratio (spacecraft
size/orbital radius). A recursive definition for higher moments of inertia is introduced which permits terms
up to fourth order to be retained. The expressions are fully nonlinear in the attitude variables. A quasi-sun-
pointing (QSP) passive attitude-control mode is used to assess the effects of higher moments of inertia and
gravitational coupling. The attitude motion is detectably coupled to the orbital motion. However, the
higher moments of inertia influence only the attitude motion.
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Nomenclature

total gravitational force and torque and their components of order i in
e=p/r,

angular momentum of spacecraft about 0 and the spacecraft mass center
general moment of inertia about 0 and the spacecraft mass center
second (dyadic), third (triadic), and fourth (tetradic) moment of inertia
about 0 and the spacecraft mass center

A and B (and related components) of the second, third and fourth
moments of inertia about 0, see Equation (9)

Earth’s mass, spacecraft mass

rotation matrix taking & into &, .

position vector from attracting body’s mass center to a general mass
element, to 0 and to the spacecraft mass center

basis vectors of reference frame %,

misalignment angle between b, and the (projected) true position of the
Sun, its oscillatory component and nominal value

unit dyadic (#-identity matrix)

ratio of characteristic spacecraft dimension to orbital radius

pitch angle (about b, axis)

Earth’s gravitational parameter

position vector from O to a general mass element and the spacecraft mass
center

the (projected) true longitude of the Sun and the true longitude of the
spacecraft

angular velocity of reference frame & W1th respect to &

d( )/dt with respect to inertial space , and orbltmg frame # ; and
a body-fixed spacecraft frame &,
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144 G. B. SINCARSIN AND P. C. HUGHES

1. Introduction

The motion of a satellite about an attracting body consists of two components: the
orbital motion and the attitude. Typically, the orbit is assumed Keplerian and the
spacecraft’s attitude motion is studied independently. For purely gravitational
interactions these motions are usually assumed to be uncoupled. While for most
spacecraft this is a reasonable assumption, in reality the two motions are weakly
coupled (gravitationally) such that a change in attitude will perturb the orbit and vice
versa. The magnitude of this coupling is governed by the spacecraft’s mass distribution
and orientation, and its size relative to the orbital radius. Consequently, as future:
spacecraft increase in size the assumption of gravitational orbit-attitude de-coupling
deserves closer examination.

The interdependence of the orbit and attitude motions is shown explicitly by
expanding the differential gravitational force and torque in a Taylor series in the
small parameter ¢ = p/r,,, where p is characteristic of the spacecraft size and r is the
orbital radius. Upon integrating over the spacecraft mass the resulting terms in
both series contain moments of inertia of the spacecraft as well as the orbital radius.
The usual practice is to neglect terms of order higher than ¢*>. However, for much

Fig. 1. Artist’s conception of a solar power satellite.
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GRAVITATIONAL ORBIT-ATTITUDE COUPLING FOR VERY LARGE SPACECRAFT 145

larger spacecraft (see, for example, the proposed 10 km ‘solar power satelite’ in
Figure 1), it is possible that higher-order terms should be included in studying the
coupled problem. This possibility is explored in this paper.

2. Gravitational Force and Torque

2.1. FORCE AND TORQUE ON A MASS ELEMENT

The motion of a spacecraft about an attracting body possessing spherical mass
symmetry is shown in Figure 2. The gravitational force acting on the element of mass
dm = a(p) dv (a(p) is the mass density at r and dvis an element of volume) is

U
dfy =~

rdm, (1)

where u = GM is the gravitational parameter of the attracting body (G is the universal
gravitational constant and M is the mass of the attracting body) and f = r/r is a unit

Spacecraft

(6]
Attracting Body
(inertial)

Fig. 2. Gravitational force on an elemental mass.
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146 G. B. SINCARSIN AND P. C. HUGHES

vector in the direction of r. By observing that
r=r,+p 2)

(p <ry),r~? can be expanded in a Taylor series and along with (2) substituted into
(1) to obtain

# A l’l’ A A nu’ A A :
df, ~ — ?ro dm — F[p — 3(f, p)f,] dm + F[?’(ro'p)p + 2p%, —
0 0 0

A . U X ) )
- l2i(ro ‘p)zro] dm + r—s[%pzp _ lzi(ro -p)p — 12—5(1'0'[))/)21‘0 i
0

A . H A A A
+23(F, p)’F, ] dm — r—ﬁ[%s(ro PP’p —F(E, p)Pp + o, —
0

— 193, p)2p%k, + 23(E, p)E,] dm ()
Here, terms up to 0(¢*) are retained. For current spacecraft ¢ ~ 10”7 (assuming a
geostationary orbit). For very large spacecraft (p ~ 10 km) ¢ ~ 10~# is more typical.
Indeed, this anticipated three-order-of-magnitude increase in ¢ in the next few decades
motivates the retention of the higher-order terms in (3). For conventional spacecraft,

only terms up to ¢* are commonly retained [1, 2].
The gravitational torque acting on dm is given by

dg, =p x df;;. 4)

To maintain mathematical consistency only terms of order ¢* are retained in the
expansion for dg,, after substitution of (3) into (4).

2.2. A RECURSIVE MOMENT-OF-INERTIA DEFINITION

Before integrating to obtain the total gravitational force and torque, it is necessary to
introduce a compact vectorial moment-of-inertia definition compatible with the
¢* and &* terms implicit in (3) and the expansion of (4). This simplifies the formulation
of the nonlinear equations governing the coupled orbit-attitude motion. A set of
equations to fourth order in &, but linear in the attitude variables, has been derived
by Mohan [3] using a Lagrangian approach. Unlike the Newton-Euler approach
adopted here, Mohan used scalar energy functions to formulate the motion equations.
As a consequence the vector nature of the moment-of-inertia quantities intrinsic
to the system can be obscured by numerous combinations of scalar components.
It is not surprising, therefore, that the scalar moment-of-inertia quantities chosen
by Mohan do not permit a convenient vectorial representation.

Meirovitch [4] however, suggests a scalar definition for higher-order moments of
inertia which is readily represented in vectorial form;

Ji= fpp ...pdm (i factors), (5)
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GRAVITATIONAL ORBIT-ATTITUDE COUPLING FOR VERY LARGE SPACECRAFT 147

where J' is the ith moment of inertia about 0, i > 2. The scalar components of (5) are
recovered by expressing the integrand as p,p; ... p, (using cartesian tensor notation)
and evaluating the integral for all possible combinations of «, §,...,ye(1,2,3).
Only (i + 1) (i + 2) distinct scalar components exist for each J*. This also represents
the number of integrations necessary to completely specify the ith moment of inertia.
Unfortunately (5) is only partially compatible with the gravitational force and torque
expansions and does not yield the familiar inertia dyadic for i = 2. The alternate,
more compatible form developed here avoids this problem: Let

lejpdm=mp@, (6)

J? = f[(p'p)é—pp] dm. (7)

Then define

Ji=f[<J"-2><p-p)5—pp<Jf—2>]dm (i>2), 8)

where (J') is the integrand of J* and & is the unit dyadic (J° = | dm = m). As the
scalar components of (8) are simply linear combinations of the distinct components
of (5) no extra integrations are involved. This recursive moment-of-inertia definition
has been shown to be compatible with expansions for df . and dg; up to at least sixth
order in ¢. Also, an extension of the parallel-axis theorem to third and fourth (i = 3, 4)
moments of inertia is possible [5].

2.3. FORCE AND TORQUE ON A BODY

The gravitational force and torque expressions shown in Table I are obtained by
defining (J?£ J J? £ J J* £ )

J4 = | p26dm; Jszppdm

r

JA= | p?pddm; JB=Jpppdm
o

FA = | p*86 dm; JBE = Jpppp dm

vn

v
—_

\O
N

FE=|p*ppddm

LY

J4 = 344 _ JAB. 3B = JAB — JBB
so that

J=JA_JB  (j=234) (10)
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148 G. B. SINCARSIN AND P. C. HUGHES

TABLE I
Gravitational force and torque expressions (to fourth order)

4 4
Force (fa= Y fG,.> Torque(gG= > gGi)
i=0 i=0
um
foo=——T+
o0 g’ 6o =0
pum .. pm
fo, = ‘73—[0@—31'01'0?@] gG1=7r0xP€9
[4] (1]
£, =308 =3k b, -(J — 40)] ¢ g, =35 b xJB¢
G2= 7 2¥oFo 0 G2 3 To )
o o
H A X« « R, A 7oA
f, =;[{§(J—4JB)—§rOrO-(3J— 4J8)} -t ] ¢, 8., = —%r—4r0 x [(J—4J%)i,] £,
0 0

-
o

]
(N1
~
0m|‘:

x [{(3F% — 43%%)-F } £, ] F

u
f,,=— r_"[( (3(33% — 435%) + 864 0
0

+ PR Fy [ — 40335 - 285 ]} £ ) £] F,

and then integrating (3) and (4) over the spacecraft. f;; and g, denote components of
f; and g, containing terms of order i in &. Alternately, the torque expansion given in
the table can be obtained directly from the force expansion by observing that, given
(2) and (4),

rOfo=jrxdfG—gG. (11)

However, since r and df; are parallel, the integral vanishes. Consequently, after
performing the cross-product operation in (11), only the non-f f terms of f; remain
ing,.

f., might be said to represent the gravity-gradient force. Similarly, the gravity-
gradient torque is g, . Often, the point O (shown in Figure 2) is chosen to be the mass
center. If so, both f;, and g;, vanish and the lowest-order perturbing force and
torque are f;, and g,,. These are the terms retained by previous analysts in their
studies of the coupled orbit-attitude motion of spacecraft of the past two decades.
Here, the intent to study very large spacecraft precipitates the inclusion of f

G3?
fG4’ gG3 ’ and gG4 :

3. Role in Equations of Motion

The vectorial equations of motion for a very large spacecraft (f; and g contain &*
terms) of constant mass m experiencing coupled orbit-attitude motion can be written
in the form
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GRAVITATIONAL ORBIT-ATTITUDE COUPLING FOR VERY LARGE SPACECRAFT 149
mig =f,, (12)
he =g, — pg x T (13)

Here, the attracting body is assumed to have a spherically symmetric mass distribution
and M > m. Only gravitational perturbing forces and torques are included at present.
However, additional disturbing functions (e.g., oblateness) can be incorporated
readily. Now, letting @, , be the angular velocity of # | (an orbital frame aligned with
the instantaneous orbital radius and angular momentum vectors) relative to #, (an
inertial frame with origin at the attracting body’s mass center), the orbit equation (12)
becomes

1

*% * *
Fo + gy X T + 204, X b + 04, x (@4, xTg)= -1, (14)

where (") denotes differentiation with respect to #,. Given that the angular momentum
about 0 is

hoszxpdsz‘wb/I (15)
while about the spacecraft’s mass center @ it is

h, = Jpg X pgdm=h,—mpy x (@, X pg) (16)

the attitude motion equation (13) can be transformed into

I'&)b/l + @y X (I'wbu) =8;— Py % g (17)

where the moment of inertia about @ is

I=J_m(p§;5_p@p@) (18)

and @, is the angular velocity of #, (a body-fixed spacecraft frame) relative to # .
Differentiation with respect to %, is represented by (°).

Details of the above procedure and the original motion equations are well known
(see, for example, Hughes [6] or Meirovitch [7]). The unique aspect of (14) and (17)
lies in the f, and g, terms. In particular, the compact vectorial moment-of-inertia
definition adopted in the previous section enables the scalar equivalents of f; and g,
(involving higher moments of inertia) to be expressed in a form fully nonlinear in the
attitude variables. To the authors’ knowledge, this capability is not presently available
in the literature. The scalar e'xpressions for a general spacecraft are not presented here
(the interested reader is urged to consult [5]). Instead, for brevity, the special case of a
planar spacecraft example (Figure 3) will be considered. Several proposed designs
for futuristic antennas and solar power satellites have essentially this shape [8].

Two reference frames are shown in the figure, #, and & . The first is chosen to be
the principal-axis frame whose origin coincides with the spacecraft mass center
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150 G. B. SINCARSIN AND P. C. HUGHES

Fig. 3. Planar-form configuration.

(taken to be the point 0, i.e., p = 0 and therefore f;, =g;, =0and J > 1T' J— I etc).
The second, the attitude-reference frame, is related to # , by a constant rotation. The
orientation of #, with respect to &, determines the spacecraft’s attitude (roll, pitch
and yaw occur about b_,b,, and b, respectively). Elements of the rotation matrix
Q" taking # into &, are denoted by 0% [p, ge(1,2,3)].

The choice of &, as a principal axis frame, of course, implies that I ;=0fori#j,
where I, [i,je(1,2,3) ] are the scalar components of I in #,. Several other inertia
quantities vanish if the triaxially symmetric spacecraft shown in Figure 3 is assumed to
have a uniform mass distribution [o(p) = g, a constant]. In particular, let (x, y, z)
denote the components of p expressed in %, , where | x| < w/2,|y| <h/2,and |z]| <t/2.
Then odd functions of (x, y, z) after integration over dm = adx dy dz become even and
vanish over the cited symmetric intervals. Consequently, I = I* = I = 0 and hence,
f., =g;; =0. Furthermore, several scalar components of ¥ [Iijkm, (i, ), k,mye(1,2,3)]
also vanish. This leaves simply

um
fo= —r—2+fc;2 + 164 8; =862 T 864> (19)
0

where the remaining scalar components for each term in (19) (f; expressed in # | and
g, in #,) are shown in Table II.

© Kluwer Academic Publishers ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1983CeMec..31..143S

—31T CT43T0

3CENEC ..~

rt

GRAVITATIONAL ORBIT-ATTITUDE COUPLING FOR VERY LARGE SPACECRAFT

TABLE II
Gravitational force and torque for planar configuration

151

Force:
Jo21
fczz =

_fG23_‘

fG41

fe42

Lfms_

Torque:

9621
9622

L_gczs_

-

9Gar

9Ga2

L_gca

where

i = 1333
=1
o = t3333
=7

bi iiii

[1] [1) [11 (1]

di 1221

- 2%

a" ﬂz
u llss_%(111+122)}+%{(111_133) ‘;3 +(122‘133) gz}
3rT {(1337111) gal ga7}+{(122*111) gal ‘;3}
]

{(122_133) gaz ga3}+{(122_111) ';az ’;“3}

LT, =4, + )} +35{[(T, =T, + T, (1 - 0%)]0¥ +

[{4Ec1 - 731;1 - 11542}Q§a1 gas -

if_ —7{(Eb1QI;a3 1{.11 + 3E‘d2QZaana1 - E'a1an1 gas)Ql;a; + r4an3 gax +
’ "23 + (3Edelia3 ,ial + Eszgas l;l - EEZQ‘;"l gas) ga;}]
—[{48, ~ 78, ~ 115.11}an2 % -
- 7{(5,,053 05 + 35, 15015 — a2 32033%) gﬂ; +T,0000 +

—_—

= ba yba - ba nyba _ = ba yba \ryba®
+(3_d2 23 22+~b1 13212 —al¥31%33 13}]

[/ ba Nba
(133—122) 23233

5
_— — a? — — a? a a
@ (7T, - 1LBE,, — &) 15— (B8, — &) 21l 1505,

— 245, — By Fy=4,,, — 8,55,
i35 ~ Fuas T, =1, — 8,5,
— r3=*3333_8f1221
- ‘zissi r4 = %(*1 tr 12222) + %(}2332 - {1331) + ({2233 - ’11 133)

+ [(rz - rs) + rl(l - ga;)] ga; - (rl + Iﬂz + r})ina; 3“32}

]

ba

u a
:3‘3 (111—133)QT3 gs
Te .. —1 )Qba ba
| Uy, = 1118158,
— —_ — a?
[{4E, - TE,, - 115, } + T{(E,y +35,,) l;asz +(E, + 5,050 ] 53033
U

— — 2 —_ - 2
- [{48,, ~ 78, — 118,,} + T{(E,, + 38,,) %+ (G, + 5,015 1105505,

Each force and torque component in Table II is grouped in braces according to
ascending order in the attitude variables. For example, consider the expansion for
f 642> Which has two such groups. If the attitude motion were such that Q™ differed
only infinitesimally from the unit matrix (small attitude angles between #, and # ),
the first group in f,, includes all the first-order attitude terms. The second brace
group contains terms exclusively of second and higher order. As such, this term is
neglected in a linear analysis. Here, the Euler parameters (e, , e,, e, , v), which satisfy
the constraint e’e + v2 = 1, are chosen as attitude variables. Consequently, each

Z‘; consists of an algebraic combination of these parameters involving some non-
linearity. In other words, every Q;’J‘; in Table II generates some nonlinear attitude terms
when written out explicitly. If a linear analysis is adopted, then these terms must also
be neglected, however, the inertia quantities within a non-vanishing braced group
remain unaltered.
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152 G. B. SINCARSIN AND P. C. HUGHES

4. Verification of Force and Torque Expansions

4.1. ANALYTICAL VERIFICATION

Two index patterns are noteworthy in Table II. (The same patterns and all that
follows apply equally to a general spacecraft.) The first is skew-symmetry with respect
to indices 1 and 2 in the second and third force components and the first and second
torque components. The second is that the terms premultiplying Q%% and Q%% in the
first force and third torque components obey the same index-switching rule (with the
negative taken only for g ). These patterns lead to confidence in the cited expansions.

Another indication that Table Il is correct is that the g, components obtained from
the expansion of (4) are reproduced by applying (11) directly to the f, components
from the table, on a term-by-term basis (i.e., for each order of ¢). Unfortunately, this
check does not explicitly involve the f;, , force components (where k is the order of
¢ in the terms retained) because the radial force component of f; has no associated
torque.

To rectify this situation the work of Mohan [3] was consulted. While his use of a
Lagrangian approach makes it difficult to obtain f; and g, expansions fully nonlinear
in the attitude variables, it is still possible to compare the linearized version of Table II
with his equations. In fact, Mohan equations are reproduced [5] save for a minor
discrepancy (believed notational) in the third-order moment-of-inertia terms (not
shown here). To resolve this discrepancy an alternate source was sought. Meirovitch
[4] provides a potential energy expression V (to order &*) which is helpful in this
regard. Now, because F , is herein defined so that its 1-axis lies along f, (= fg for the
chosen configuration) taking the gradient in terms of spherical coordinates implies
that

fe1=—(@V/ory), (20)
where
fe1 =§Of6k1; forn = — @OV, /0ory) (21)
and _
V= i V.. (22)
k=0

After reconciling notational differences, the f ., , components from this procedure were
shown to be identical to those given in Table II [5].

4.2. NUMERICAL VERIFICATION

Based on the equations of the previous section, a FORTRAN computer simulation
(~ 3700 lines) was written to study numerically the effects of including higher
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GRAVITATIONAL ORBIT-ATTITUDE COUPLING FOR VERY LARGE SPACECRAFT 153

moments of inertia. This also afforded an opportunity to numerically verify the
expressions in Table II by comparison with analytical predictions. Again, the work of
Mohan [ 3] proves useful. For the chosen configuration (recall Figure 3), the notational
controversy cited above is of no consequence, as f,, = g, = 0. Recall, however, that
while Mohan’s equations are linear in the attitude variables, those used here are not.

The situation chosen for comparison involves an energy transfer between the
in-plane orbital motion and pitch attitude motion of a spacecraft. As shown schemati-
cally in Figure 4, first the pitch oscillations ® slowly subside while the mean orbital
eccentricity e increases; indeed the pitch amplitude is zero when the mean eccentricity
1s at its maximum value. Then the reverse takes place: the eccentricity decreases while
the pitch amplitude increases to its original value. This beating phenomenon, caused
because the period of the pitch oscillations and the orbital period are approximately
equal, repeats itself. Since the two motions are only weakly coupled, energy slowly
transfers from one type of motion to the other. While the analytical predictions which
follow are based on the mean motion, the present simulation actually produces the
detailed motion shown in Figure 4.

Mohan predicts that e reaches its maximum value

Conax = O /€] (23)

Eccen_'rricity Orbital Motion

Mean Motion

Time
(1)

L

/Detoiled Motion

i one orbital period

® Tmax = T/(44/¢)
Pitch Angle * € max=|6VE |

approximately one
orbitol period
———————

Amplitude
Envelope N\

(1)

PitchY Oscifilation Many JOscillatiohs

Attitude Motion

Fig. 4. Schematic of pitch-in-plane motion.
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154 G. B. SINCARSIN AND P. C. HUGHES

at time

T =T/4/9), (24)

where T is the orbital period and @, is the initial pitch angle. \/E is an inertia para-
meter, characteristic of the spacecraft:

u
}22?1‘{5[3(’“ ~ )

_5{4{3333 + 11({2332 B {1111 B 11221) + 7(2f1331 + 11133)}J (25)

&=

2 R?

with

2 “[1_3(2133‘111_122)

nr=——
R3 2 mR?

— é{’l3333 - 4({1111 + 12222) +32(4,55, + {2332) B 8*1221} :I (26)
mR* ’

R is the orbital radius of the reference orbit (the orbit in absence of any disturbances)
and n is the mean angular velocity of this orbit (taken to be circular). Implicit in (23)
and (24) are the assumptions that ® be small and that y (= @0/\/5) > 1. A comparison
of the predicted and simulated results fore_, and t_,, is shown in Table III, for ®, =
= 0.5 deg and y = 10, 11. The agreement is always, better than 10%, and improves
proportionally with an increase in y. The resulting motion is indeed as characterized in
Figure 4; the eccentricity reaches its maximum as simultaneously the pitch oscillation
amplitude becomes zero. Relatively small values of y were chosen to minimize com-
putational time (~ 7_, ) while maximizing e_, through an appropriate choice for ¢.

TABLE III
Results of comparison with Mohan [3]

Tmax > YT
X Predicted Simulated Difference (%)
10 0.783 0.709 9.4
11 0.857 0.784 8.5

emax( X 1 0 - 6)
X Predicted Simulated Difference (%)
10 7.61 7.86 33
11 6.95 7.12 2.4
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GRAVITATIONAL ORBIT-ATTITUDE COUPLING FOR VERY LARGE SPACECRAFT 155

No numerical results for nonlinear attitude effects in conjunction with higher
moments of inertia are available in the literature. The simple check of repeating the
above comparison with the simulation in a nonlinear mode was, however, performed.
The results commonly differ from their linear counterparts in the fifth and sixth
significant digits. As roll and yaw are initially quiescent and no out-of-plane disturb-
ances are present — a condition in which pitch and roll-yaw decouple — it is reassuring
that no roll-yaw attitude or out-of-plane orbital perturbations were excited numeri-
cally. The simulation was also shown to reproduce, to more than ten significant digits,
the exact analytical solution to the nonlinear pitch equation

1,,0 + 30X, —1,,)sin ® cos ® = 0. (27)

A circular orbit, with radius r and a constant angular velocity w_ = (u/r’)'?, was
assumed. Also, the coupling of pitch into the orbit and higher-order moments of
inertia (which preclude an exact analytical solution) were neglected.

Numerical results for coupled out-of-plane (orbital) and roll-yaw (attitude) motions
similar to those for the in-plane-pitch system are absent in the literature as these
motions occur only near the stability boundaries for the coupled system [2], a region
where no practical satellite would be designed. Consequently, no numerical compari-
sons could be made for this type of coupled motion.

5. Numerical Results

5.1. A QUASI-SUN-POINTING ATTITUDE MODE

Prior to discussing the numerical results it is timely to describe briefly the passive
attitude mode in which the spacecraft is placed. A quasi-inertial stabilization scheme
whereby a spacecraft in a circular orbit slowly tumbles about the orbit normal, while
at least one principal axis remains in the orbit plane, was introduced by Elrod in
1972 [9]. The tumbling occurs in the direction opposite to the orbit motion so that, by
correctly choosing the tumbling period, the spacecraft can be made to appear motion-
less, on average, to an inertial observer. In truth, gravitational perturbing torques
cause small attitude oscillations relative to inertial space (up to 18.8°). Hence the name
quasi-inertial.

It is straightforward to introduce a small secular term into this motion, by changing
slightly the period of the tumbling motion [5]. Thus a spacecraft in ecliptic orbit can
be made to track the sun (on average) over one tropical year, rather than remaining
stationary relative to an inertial observer. For an equatorial orbit, the projection of
the Sun’s true position on the equatorial plane can be tracked (on average, over one
year). As before, however, gravitational perturbing torques induce an attitude
oscillation relative to the nominal (per oscillation) pointing direction 8. The ampli-
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tude of the oscillation Af is not significantly greater than that experienced in the
quasi-inertial mode (the maximum amplitude is 18.9°). Mathematically,

=W —-4)+0O
=fy+AB (28)
and
J By dt =0, (29)

where y is (the projection of)) the true longitude of the Sun for a spacecraft in (equato-
rial) ecliptic orbit and 4 is the true longitude of the spacecraft, both measured relative
to the vernal equinox (¢, = 0). Recall that ® is the pitch angle. Also, the spacecraft
is assumed to maintain the pitch axis b, perpendicular to the orbital plane. f is
simply the angle between the (projected) true position of the Sun and the principal
axis confined to the orbital plane, b,, for the present spacecraft (ideally § = 0). This
extension to Elrod’s quasi-inertial mode will henceforth be designated as the quasi-
sun-pointing (QSP) attitude mode.

5.2. DESCRIPTION OF STUDY

The QSP mode offers an opportunity to study a plausible highly nonlinear attitude
motion which can also be practical for certain sun-pointing missions. The solar power
satellite highlighted here (another is also considered in [5]) is a limiting example for
this mode and illustrates the worst case. The intent is to ascertain the effects of higher
moments of inertia. Based on the dimensions [10] and inertia properties for the
chosen spacecraft (see Table IV) it can be argued that, even for this very large
spacecraft, the effect of f., will be minimal, assuming a geostationary orbit. Con-

TABLE 1V
Physical properties of solar power satellite example

Dimensions (km)

h 13.1
w 4.93
t 0.21

Moments of inertia

Zeroth order, Second order, Fourth order,

x 10® kg x 108 kgkm?  x 107 kg km*

m 1806 i, 258 i, 665 b,, =59 i, 783 1,, 523
i, 0367 ,, 704 . 134 1, 783 I, 00134
b, 295 1., 652 b,y —651 i,,, 783 I,,,, 00949
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sequently, it is neglected here. While this may appear somewhat inconsistent in that
g, is retained [recall Equation (19)], the resulting system, in fact, contains the first
perturbations caused by gravity in each type of motion. That is, f_, isto f, as g.,
istog,,.

The numerical procedure adopted involves progressively increasing the amount
of coupling between the orbital and attitude dynamics. As illustrated in Figure 5,
initially a Keplerian orbit is considered, with the orbit ‘driving’ the attitude through
the gravity-gradient torque g.,. The loop is then closed by the addition of f,,
whereby the attitude now perturbs the orbit. This is commonly known as the ‘coupled
problem’. Finally, higher moments of inertia are included by ‘balancing’ the per-
turbations in the system with the addition of g, to the attitude dynamics.

ORBITAL ORBITAL ORBITAL

DYNAMICS DYNAMICS DYNAMICS
N\ A\
—~G62 ~G2 -g‘GZ 'f‘GZ 262
Attitude] Atituge™ Attitude ot
Dynamics Dynamics Dynamicg
(a) Keplerian Orbit and (b) The Coupled Problem: (c) 'Balanced' Coupling
Gravity - Gradient Orbit Affected by (Depends on Higher
Torque (gg,) Only Attitude Motion Moments of Inertia)

Fig. 5. Progressively more accurate models of the gravitational coupling between orbital dynamics and
attitude dynamics.

The typical run duration is one tropical year, while the period of the equatorial-
QSP mode at geostationary altitude is one mean solar day. Consequently, 365.2422
QSP periods occur for each run. Rather than obscure the numerical results by plotting
all of these periods only eight periods, spaced at 46-day intervals, are selected. Essen-
tially they correspond to the equinoxes (day 1 is the vernal equinox), the solstices
and the days midway between. The plot of each selected period has timing symbols
located at 1.2 mean solar hour intervals. Also, the start (S) and finish (F) of each period
is noted, with increasing time indicated by arrowheads.

5.3. ATTITUDE RESULTS

Since g, directly affects the attitude motion (while only indirectly influencing the
orbit) one might expect the most prominent effects from the higher moments of in-
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Fig. 6. Effects of gravitational coupling and higher moments of inertia on the QSP (quasi-sun-pointing)
passive mode.

ertia to occur in the attitude variables. The actual effect of g, is shown in Figure 6b.
The change in 8 caused by this torque is of the same order of magnitude as the f-
variation caused by initially coupling the attitude into the orbit (Figure 6a shows f
prior to coupling). A close examination reveals this variation is predominantly a
small shift in phase of the oscillatory component of f, with some distortion in am-
plitude (Figure 6b). The addition of g, changes the degree of distortion and con-
sequently modifies the magnitudes caused by the phase shift. Figure 6b also shows the
effect of coupling to be cumulative with the change at a given (Af, Af/w,) point
constant from period to period, even though within a given day g and B/w, vary at
different rates (w, = w, — w_, where w, = n/2 rad/sid-hr and w, is the mean angular
velocity of the Sun).

5.4. ORBITAL RESULTS

To completely ascertain the effect of higher moments of inertia in the coupled problem
(for the chosen spacecralft), it remains to consider the changes experienced by the orbit.
Coupling the attitude into the orbit causes changes in the inplane orbital elements:
the semi-major axis a, the eccentricity e, the argument of periapsis w, and the true
anomaly v. The inclination i and the longitude of the ascending node Q remain un-
changed. (Prior to coupling a =42 164 km, e = i =0, and Q, w, and v are undefined.)
The variations in the semi-major axis and the eccentricity are shown in Figure 7.
A polar format is used whereby the change in ¢ and e (relative to their initial values)
is plotted radially versus the true longitude 4 (=Q + @ + v, Q set to zero) of the
spacecraft. This displays the results relative to inertial space over the run duration of
one year.
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{a) 8 = True Longitude (deg) (b) 8 = True Longitude (deg)
R = A Semi-major Axis (km) R = A Eccentricity
(g, = 42164 km) (e, = 0°)

Fig. 7. Typical perturbations to the orbital motion from the attitude motion.

The variation in the direction of the periapsis relative to inertial space (not shown)
is almost independent of the day on which a particular f-oscillation begins. Nomi-
nally, it sweeps through approximately 120° per orbit. However, atypical variations
in @ occur near the beginning (4 = 0°) and the end (4 = 360°) of each orbit. These
variations appear related to the phase difference between the orbit and attitude
motions relative to inertial space. The days that form period pairs (1, 185), (47, 231),
(93,277) and (139, 323) have the same phase difference and show very similar w-
variations. The eccentricity displays the same tendencies (Figure 7b). These are
relatively independent of the chosen day; however, some attitude dependence is
present, with the period-pairs cited above in evidence. A strong dependence on orbital
position is observed. Also, no long-term buildup in e occurs. The variations observed
in the semi-major axis (Figure 7a) also suggest that no e-f-type beating is present for
this coupled problem. The double-lobe pattern shown in the figure results from a
transfer of energy between the attitude and orbit over each quarter-period of the
p-oscillation ; over the first quarter-period the orbit gains energy and the attitude loses
energy; over the second quarter-period the reverse occurs; and the process repeats
itself over the third and fourth quarter-periods. This corresponds directly to changes
in the specific orbital energy & = — p/2a. The amount of energy transferred between
the attitude and orbit is a constant over one year.

The inclusion of g, in the attitude equations does not produce any appreciable
changes to the variations in the orbital elements. Changes that were noted appeared
random and were of the order of the numerical precision possible with the given simu-
lation (16 significant digits).
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5.5. NUMERICAL ACCURACY

The reduction, between periods, of the lobes shown in Figure 7a implies that energy
has been lost from a conservative system. This loss of energy is caused by numerical
error; however, it represents only a 5 x 10789/ change in the total energy over an
entire year and 439 200 integration steps! This is equivalent to a reduction in the
orbital period of 7 x 107 s. Such a high degree of accuracy is also supported by the
extent to which the orbital (see Figure 8) and attitude Euler parameter constraints
are satisfied (recall e”e + v2 = 1). (For computational reasons [11], Euler parameters
were also adopted as orbital variables, although the numerical results are displayed
in classical orbital elements to aid visualization.) These constraints are maintained
to within 10~ '#, the machine accuracy possible for a differencing operation using
IBM double precision arithmetic. It is reasonable to assume, therefore, that the
remaining state variables (the orbital radius, the in-plane velocity components and
the components of the angular momentum associated with the attitude motion)
are also determined very accurately, given that they are obtained using the same
integration scheme and that they are less rapidly varying. All of this suggests that the
simulation is achieving its numerical limit.
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Fig. 8. Typical orbital Euler parameter errors.
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6. Conclusions

Measurable variations in both the orbital and attitude variables occur when the
(small) gravitational coupling between orbital and attitude dynamics is included in
the simulation. However, only the attitude motion is changed significantly by the
inclusion of higher moments of inertia. This change is predominantly a shift in phase
of the oscillation characteristic of the QSP mode. Orbital variations are restricted
to the in-plane elements: semi-major axis, eccentricity, argument of periapsis and true
anomaly. The observed phase shift and orbital perturbations are too small to present
a serious control problem. However, an accurate representation of these gravita-
tionally induced coupled-orbit-attitude perturbations requires the retention of higher
moments of inertia.

Care should be taken not to indiscriminately neglect the contributions from higher
moments of inertia for all very large spacecraft applications; their importance should
be assessed on an individual basis.
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