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The low-thrust spacecraft trajectory problem can be reduced to only a few parameters using calculus of variations

and thewell-knownprimer vector theory. This lowdimensionality combinedwith the extraordinary speed ofmodern

computers allows for rapid exploration of the parameter space and invites opportunities for global optimization.

Accordingly, a general low-thrust trade analysis tool is developed based on a global search for local indirect method

solutions. An efficient propagator is implemented with an implicit “bang-bang” thrusting structure that

accommodates an a priori unknown number of switching times. An extension to the standard adjoint control

transformation is introduced that provides additional physical insight and control over the anticipated evolution of

the thrust profile. The uniformly random search enjoys a perfect linear speedup for parallel implementation. The

method is applied specifically on multirevolution transfers in the Jupiter–Europa and Earth–moon restricted three

body problems. In both cases, thousands of solutions are found in a single parallel run. The result is a global front of

Pareto optimal solutions across the competing objectives of flight time and final mass.

Introduction

T HE extraordinary speeds of modern computers provide new
opportunities for applications of established concepts such as

the primer vector theory [1–3] and the low-thrust spacecraft problem.
Traditionally, indirect optimizationmethods enjoy fewer dimensions
in the search space, but suffer accordingly with extreme sensitivities
to the search parameters. The methods typically have excellent
convergence properties when the initial guess is near a solution, but
the inherent sensitivities imply a small radius of convergence. In
general, a linear or even quadratic Taylor series approximation to the
constraints and objectives is only valid for a very small region
centered about an initial guess. Additionally, indirect methods are
difficult to generalize for higher fidelity models and atypical
constraints. As a result, in this age of modern computing, indirect
methods have lost much of their appeal when compared to the higher
dimensioned, direct methods that are generally more stable and
easier to modify for general problems and constraints. In this paper,
the indirect method is revisited in a modern context. More
specifically, the low-thrust spacecraft problem is reduced to a few
dimensions using the well-known primer vector theory, and the low
dimensionality combined with the fast modern computers allows for
a broad perspective of optimal trajectories in a multiobjective
landscape.

Before the advent of the modern computer, the only optimal
control problems that could realistically be solved were those with
analytic solutions. The low-thrust spacecraft problem is generally not
amenable to analytic solutions and therefore cannot be solved in any
practical sense without numerical methods. The anticipation and
introduction of the computer in the 1950s and 60s then paved theway
for Lawden [1], Marec [2], Jezewski [3], Melbourne and Sauer [4,5],
and others to apply the well-established principles of calculus of

variations [6,7] specifically to the low-thrust spacecraft trajectory
problem. Primer vector theory was born and the young astrodynamic
community enjoyed a quantum leap in terms of its ability to find
optimal spacecraft trajectories. Of course, in addition to the finite-
thrust application, primer vector theory is also useful for impulsive
trajectory optimization. See, for example, [8–13]. However, in this
paper we limit our discussion and application to low-thrust, constant
specific impulse (Isp) trajectories. For a sampling of other recent
calculus of variations applications to low-thrust trajectory design, see
[14–20].

When primer vector theory was first introduced, even with a good
initial guess, a single solution required nontrivial computational
times. Direct approaches with the huge dimensions that are common
today were not realistic and as a result, the indirect methods received
more attention primarily because they were feasible at the time. As
the decades progressed and Moore’s law [21] came to fruition, the
higher dimensioned problems became more and more feasible, and
scores of techniques were introduced to solve (with unprecedented
success) the optimal control problem and the general nonlinear
programming problem. Representative large-dimensioned methods
include collocation or pseudospectral techniques [22–24], dynamic
programming [25], static dynamic control [26], and sequential
quadratic programming [27].

Although the higher dimensioned problems receive the most
obvious benefits from computational speedups (because previously
unapproachable problems are now readily solvable), the benefits
bestowed on the lower dimensioned problems have received much
less attention. For optimization or root-solving problems, it is often
possible to perform exhaustive searches over the full range of the
unknowns when the dimensions are sufficiently small and the
objective or constraint function is sufficiently easy to calculate [28].
Even in cases when exhaustive searches are not feasible, a variety of
techniques can be employed to rapidly sample and navigate global
regions of search space. Thus, the problems of few dimensions are
equally poised to benefit from the impressive speeds of modern
computers.

In this paper, an efficient low-thrust trade analysis tool is described
in a general context and implemented for practical examples dealing
with multirevolution transfers in the Jupiter–Europa and Earth–
moon restricted three body problems (RTBPs). The solution method
is outlined including a modified adjoint control transformation, an
implicit “bang-bang” thrusting structure, analytic derivatives for a
local targeting search, and a uniformly random approach to a global
search for mass optimal solutions across a wide range of flight
times.
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The tool is described and tested on two specific examples. The first
is a target phase-free transfer between two distant retrograde orbits
(DROs) at Europa, while the second is a target phase-free transfer
from a distant near-circular orbit at Earth to a DRO at the moon. The
method and equations are developed in a general three-dimensional
form. However, the two examples are constrained to the planar case
for simplicity.

Because the search space is uniformly populated with a random
number generator, the speed improvements are linear for parallel
implementation across independent processors. Tens of thousands of
solutions are documented leading to well-defined Pareto fronts of
nondominated solutions in the competing objectives of flight time
and �v. Resulting transfers generally have on the order of 5–15
revolutions and 0–50 implicitly solved bang-bang switching times.
In the extreme cases, we find solutions approaching 100 revolutions
and 100 switching times.Wenote that [29,30] complement this paper
by solving similar multiobjective multirevolution trajectory
problems. These references do not implement a gradient-based
local search, but instead navigate the global space with evolutionary
techniques that are driven by the propagator described in this paper.

Primer Vector Control Law

For a minimum fuel time-fixed orbit transfer, the optimal control
problem is to minimize the performance index

J ��k�mf� (1)

subject to the dynamic, control, and terminal constraints,
respectively:

_X �
_r
_v
_m

0
@

1
A� f�X; u� �

v
g�r� � h�v� � uT=m

�T=c

0
@

1
A (2)

u Tu� 1; T � Tmaxsin
2� (3)

r f � r���f�; r0 � r���0�; vf � v���f�;
v0 � v���0�; m0 �m�

0 ; tf � t�f; t0 � t�0
(4)

where k is a constant positive multiplier, g and h are respectively
functions of position and velocity only, u is the thrust direction, T is
the thrust magnitude, � is a slack control variable that enforces
inequality bounds on T, � is a timelike variable that uniquely
parameterizes the initial and target orbits, c� g0Isp is the exhaust
velocity,g0 is the standard acceleration of gravity at the surface of the
Earth, Isp is the thruster specific impulse, and the superscript �
indicates a user specified value. Each constraint is accommodated by
augmenting the performance index with a Lagrange multiplier,

J0 � �k�mf� � �T
1 �rf � r���f�	 � �T

2 �r0 � r���0�	
� �T

3 �vf � v���f�	 � �T
4 �v0 � v���0�	 � �5�m0 �m�

0�

� �6�tf � t�f� � �7�t0 � t�0� �
Z
f�T�f � _X� � �1�uTu � 1�

� �2�T � Tmaxsin
2��g dt (5)

The constraints that apply over the whole trajectory are included
inside the integral while the boundary constraints remain on the
outside. The multipliers inside the integral are functions of time
while those on the outside are constants. If all of the constraints are
met, J0 is identical to and has the same extremals as the original
performance index J. We introduce the HamiltonianH, by rewriting
Eq. (5) and expanding the definitions for f and �,

J0 ���
Z
�Ĥ � �T _X� dt (6)

where

Ĥ �H � �1�uTu � 1� � �2�T � Tmaxsin
2��

H � �Tr v� � T
v �g� h� uT=m� � �mT=c

���kmf � � T
1 �rf � r���f�	 � � T

2 �r0 � r���0�	
� � T

3 �vf � v���f�	 � � T
4 �v0 � v���0�	 � �5�m0 �m�

0�
� �6�tf � t�f� � �7�t0 � t�0� (7)

The necessary conditions for a minimum of J0 are derived by
setting the differential, dJ0 equal to zero, thus leading to the well-
known Euler–Lagrange equations and associated boundary
conditions known as transversality conditions. For a detailed
derivation see [7,31]. The Euler–Lagrange equations (8–11) provide
equations of motion for �, the Lagrange multipliers associated with
the state, and provide conditions for choosing the control parameters,
T, u, and �.

_���
�
@Ĥ

@X

�
T

(8)

0 �
�
@Ĥ

@u

�
T

� �vT=m� 2�1u (9)

0� @Ĥ

@T
� �T

�u=m � �m=c� �2 (10)

0� @Ĥ

@�
��2�2Tmax sin � cos � (11)

Equation (9) indicates that either �v is parallel to u or T and �1 are
zero or �v and �1 are zero. Because the latter two are not true in
general, we conclude that u� �v=�v or u���v=�v. To choose the
direction, we rely on the Weierstrass condition [7] or Pontryagin’s
maximum principle. Both reveal that a necessary condition for a
minimum requires that the admissible controls are chosen such that
the Hamiltonian H is minimized at all points along the path. From
Eq. (7), H is clearly minimized when u���v=�v. Eliminating u
from H,

H � �T
r v� �T

v �g� h� � �T=m�S (12)

where a switching function is defined,

S� ��v � �mm=c� (13)

Again applying the minimum principle or the Weierstrass
condition with respect to the other control T, we find that H is
minimized if T � Tmax when S > 0 and T � 0 when S < 0. When
S� 0, then 0 
 T 
 Tmax. This logic is consistent with Eqs. (10) and
(11), where Eq. (11) requires that either �2, cos �, or sin � is zero.
Looking at the thrust constraint in Eq. (7), if cos � � 0, then
T � Tmax. If sin � � 0, then T � 0. Lastly, if �2 � 0, then � is
undetermined and thus 0 
 T 
 Tmax. Furthermore, combining
Eqs. (10) and (13) yields S� �2m. Therefore, if �2 � 0, then T is
undetermined because S� 0.

Lawden’s well-known primer vector control law is summarized in
Eq. (14), where p is defined as the primer vector [1]:

u ���v

�v

� p

p
; T �

8<
:
0 if S < 0

Tmax if S > 0

0 
 T 
 Tmax if S� 0

(14)

Applying Eqs. (8) and (12) the equations of motion for the state
Lagrange multipliers, also known as the costates, become
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_�r ��GT�v; _�v ���r �HT�v; _�m ���vT=m
2

G� @g=@r; H� @h=@v (15)

Note that ifH does not include an explicit time dependence, it can
be shown to be an integral of motion everywhere along the trajectory
as long as Eqs. (8–11) are satisfied. This constant of motion holds
across all switching times and is useful as an integration accuracy
check.

In the casewhereG� GT andH��HT, it is well known and can
be readily shown [13,32] that the primer vector p obeys the same
differential equations as the variational equations that arise from
linearizing the equations of motion for position and velocity in
Eq. (2) while assuming a fixed thrust profile. The second order forms
are

� �r�G�r�H�v �p�Gp�H �p (16)

Therefore, as Marec discusses on p. 59 of [2], the physical
interpretation of the primer vector is as follows: “The optimal thrust
acceleration (paying no attention to boundary conditions). . . points
towards a neighboring moving point being subjected to the same
gravitational field and same thrust acceleration as the moving
(spacecraft).” Thus, it is possible to implement the primer vector
control law without using the costate or variational equations
entirely. The primer thrust direction can be approximated as the
connecting line between two spacecraft propagatedwith neighboring
initial conditions using the state equations only. This physical notion
of the primer vector helps to explain its cyclic nature, and how it is
possible, with only a handful of initial control variables, to navigate a
spacecraft through potentially hundreds of revolutions and switching
times in a strikingly well-organized fashion.

Note that the more complicated formal second order sufficient
conditions for a minimum are not considered in this study.
Alternatively, by seeking an abundance of solutions that satisfy the
necessary conditions, it is anticipated that the best of these solutions
represent minima and therefore implicitly and informally satisfy the
sufficient conditions. For recent applications of primer vector theory
that specifically consider the second order conditions, see [33].

Two Point Boundary Value Problem (TPBVP)

The natural boundary conditions are also first-order necessary
conditions for optimality and are derived in the same manner as the
Euler–Lagrange equations. For the time-fixed orbit transfer problem,
in order for J0 from Eq. (6) to be stationary, it can be shown that

@�=@tf ��Hf ) Hf ���6 @�=@t0 �H0 ) H0 � �7

@�=@Xf � �T
f ) ��T

rf �
T
vf �mf� � ��T

1 �T
3 � k�

@�=@X0 ���T
0 ) ��T

r0 �
T
v0 �m0� � ���T

2 � �T
4 � �5�

@�=@�f � 0 ) �T
rfvf � �T

vf�gf � hf� � 0

@�=@�0 � 0 ) �T
r0v0 � �T

v0�g0 � h0� � 0 (17)

The last two equations are the only ones that do not introduce
additional unknown parameters. Thus, for the specific case of the
time-fixed orbit transfer problem, the TPBVP is reduced to eight
dimensions. The unknown and constraint vectors are given in
Eq. (18). To reduce the number of unknowns, we set �m0 ��1. The
final condition �m ��k is automatically because �m monotonically
decreases.

U 8�1 �
�r0
�v0

�f
�0

0
B@

1
CA C8�1 �

rf � r���f�
vf � v���f�

�T
rfvf � �T

vf�gf � hf� � 0

�T
r0v0 � �T

v0�g0 � h0� � 0

0
BB@

1
CCA
(18)

If the initial or final time is changed to a free parameter, the
associated constraint in Eq. (4) is removed, and from Eq. (17), the
additional transversality condition becomes H0 � 0 or Hf � 0,

respectively. Likewise, if the initial or final � is changed to a fixed
parameter, then the associated unknown and constraint are removed
accordingly from Eq. (18).

Restricted Three Body Problem (RTBP)

The primer vector control law and TPBVP as presented are
applicable for any dynamic system that can be expressed in the form
of Eq. (2). In this paper, both numerical examples are based on the
RTBP. The expressions for g and h specific to the RTBP are given in
Eq. (19).

g�r� �
�r1 � 1 � �� � ��r1 � 1� � �=r3

r2�1� ��
�r3

2
4

3
5

h�v� �
2v2
�2v1
0

2
4

3
5 ����1� ��=	3 � �=r3

�� Gmr=�Gmr � Gm	� 	�
�����������������������������������������
�r1 � 1�2 � r22 � r23

q

r�
��������������������������
r21 � r22 � r23

q

(19)

The RTBP equations of motion are presented in the standard
rotating frame that assumes the two celestial bodies orbit their
common center of mass with a constant separation of 1 length unit
(LU) and an orbital rate of 1 rad per time unit (TU). The coordinate
frame is centered at the smallermass, the r1 axis points away from the
larger mass, and the r3 axis points toward the system angular
momentum. The spacecraft distances to the large and small masses
are denoted as 	 and r, respectively. Similarly, the gravitational
parameters are Gm	 and Gmr. The RTBP is a Hamiltonian system
and admits the integral of motion C, known as the Jacobi constant.

C� �r1 � 1 � ��2 � r22 � 2�1� ��=	� 2�=r � v21 � v22 � v23
(20)

The gradients, G�r� andH�v�, necessary to propagate the costate
equations from Eq. (15) are given in Eq. (21).

G1;1 � �1 � ���2�r1 � 1�2 � r22 � r23	=	5 � ��2r21 � r22 � r23�=r5
� 1

G2;2 � �1� ���2r22 � �r1 � 1�2 � r23	=	5 � ��2r22 � r21 � r23�=r5
� 1

G3;3 � �1� ���2r23 � �r1 � 1�2 � r22	=	5 � ��2r23 � r21 � r22�=r5
� 1

G1;2 �G2;1 � 3�1� ���r1 � 1�r2=	5 � 3�r1r2=r
5

G1;3 �G3;1 � 3�1� ���r1 � 1�r3=	5 � 3�r1r3=r
5

G2;3 �G3;2 � 3�1� ��r2r3=	5 � 3�r2r3=r
5

H�
0 2 0

�2 0 0

0 0 0

2
4

3
5

(21)

Solution Method

Next, highlights of the solution method are discussed and the
global low-thrust trade study algorithm is presented.

Adjoint Control Transformation

Estimating the initial costate values for the TPBVP can be difficult
and nonintuitive. One approach is to solve a simpler problem with
analytic results to approximate the optimal initial costates in the full
problem [34]. For broader applications, Dixon and Biggs [35] first
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introduced the idea to estimate physical control variables and their
derivatives instead of the initial costates in order to reduce problem
sensitivity and provide more of a physical significance. For example
applications of this principle, see [14,15,36]. In particular, [14,15]

provide the mappingM1: �
; _
; �; _�; �v0; _�v0� ! ��r0;�v0�, where

 and � are the in- and out-of-plane orientation angles, respectively,
that represent the direction of the initial thrust u0, in a spacecraft
velocity centered frame. The mapping is summarized in Eq. (22)
where the hat on a vector indicates it is of unit length. Note, this
mapping includes the angular momentum vector and thus can flip
directions frequently unless the spacecraft is in a simple circulating
orbit. To alleviate this problem, alternative definitions of the in- and
out-of-plane directions can be made. For our purposes, however, the
flipping has no consequence because we only use the transformation
at the initial time.

u 0 � �cos�
� cos��� sin�
� cos��� sin���	T

_u 0 �
� sin�
� _
 cos��� � cos�
� sin��� _�
cos�
� _
 cos��� � sin�
� sin��� _�

cos��� _�

2
4

3
5

! � r � v

_!� r � _v

_!� ! � _!=!

_̂!� _!=! �! _!=!2

_v� v � _v=v

_̂v� _v=v � v _v=v2 (22)

R � �v̂j!̂ � v̂j!̂	

_R� � _̂vj _̂! � v̂� !̂ � _̂vj _̂!	

u � Ru0

_u� _Ru0 �R _u0

� v ���vu

_� v �� _�vu � �v _u

� r � _�v �HT�v

To further provide influence over the initial evolution of the thrust

vector, in Eq. (23) we introduce a second mappingM2: �S0; _S0� !
��v0; _�v0�. Estimating the initial value of the switching function and
its derivative provides some control (albeit limited) over the thrusting
structure of the resulting trajectory. This mapping is particularly
useful for multirevolution transfers when multiple switching of the
thrusting is expected or desired. For example, if an initial thrust is
desired to be followed shortly by a switching time, then S can be
initiated as a small positive value and its derivative set to a negative
value. Similarly, if a continuous thrust is desired, then S can be
initiated as a large positive value. By combining M1 and M2 we
replace the unknown values of the initial position and velocity
costates with the physically meaningful quantities 
, �, S, and their
time derivatives. As Senet, Ocampo, and Ranieri [14,35] argue, the
sensitivity of the problem is also reduced because the spacecraft
velocity frame is naturally more amenable to the problem. However,
in this study the adjoint control transformation is only used for
propagating the trajectories in the global search mode, whereas the
local gradient-based targeting directly iterates on the costates.
Therefore, the analytic derivatives are simplified and the
computational efficiency is improved for the large-scale global
search. Furthermore, the sensitivity improvement is more
pronounced for initial phase-free or initial time-free transfers,
whereas both of the examples in this paper are initial time and initial
phase fixed.

�v � S � �mm=c; _�v � _S� �m _m=c � _�mm=c (23)

Implicit Bang-Bang Thrusting

A fast propagator is designed to implement the primer vector
control law including an implicit bang-bang control structure that is
governed by the derived switching function S. A variable step
Runge–Kutta 7(8) integrator is employed that interpolates to an exact
stopping condition when the switching function changes sign; hence
there are no discontinuities in the equations of motion for a particular
leg. The propagator continues to cycle through a thrust leg followed
by a coast leg until a maximum time is met or an alternate prescribed
stopping condition is met. This two-state throttle structure of the
control (on or off) is a tremendous advantage compared to other
optimization techniques that predefine the switching structure of the
trajectory and are forced to leave the switching times as free
parameters. Additionally many other optimizers leave the thrust
magnitude as a continuous variable free parameter because of
gradient issues only to find that the converged solutions do indeed
observe the bang-bang control feature. Although “singular arcs”
exist whereS� 0 forfinite durations, they are rare for practical space
trajectories. Accordingly, the described propagator will ignore the
singular arc, only switching its current thrust state when S crosses the
boundary of zero. The combined state and costate vector Y, and their
equations of motion are given in Eq. (24),

_Y �

_r
_v
_m
_�r
_�v
_�m

0
BBBBBB@

1
CCCCCCA
� f�Y� �

v
g�r� � h�v� � ��v=�v�T=m

�T=c
�GT�v

��r �HT�v

��vT=m
2

0
BBBBBB@

1
CCCCCCA

(24)

Analytic Derivatives

To target the constraints from Eq. (18) (or some variation) using a
gradient-based nonlinear equation solver, the partial derivatives of
the constraints with respect to the unknowns must be provided. The
sensitivity issues common to indirect shooting methods clearly
encourage the use of analytic derivatives rather than estimating them
numerically [17,37]. Although the analytic derivatives lead to great
improvements in accuracy and speed, the setup cost is nontrivial
because they require rederivation each time the unknown or
constraint vector changes. Nonetheless, for multiple-revolution
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solutions that are highly sensitive to small initial perturbations,
analytic derivatives are particularly important. Although not
implemented here, automatic differentiation is an alternative
approach for improved accuracy [38].

Analytic partial derivatives generally are calculated using some
combination of the state transitionmatrix and the chain rule. The state
transition matrix � maps derivatives from one time to another on a
given continuous trajectory because it is equivalent to the partial
derivative of a final state with respect to an initial state. It is obtained
by integrating the variational equations given in Eq. (26). For a
detailed derivation, see, for example, [39]. Thus, for a problemwithn
states, the dimension of the propagation is increased by n2. The
Jacobian for the equations of motion in Eq. (24) is given in Eq. (27).
Note, by setting T � 0, the Jacobian remains valid for a coast
trajectory.

� �t; t0� � @Y�t�=@Y�t0� (25)

_��t; t0� � �@f=@Y�jt��t; t0� ��t0; t0� � I14�14 (26)

�@f=@Y� �

0 I 0 0 0 0
G H ��v=�v�T=m2 0 ��T=m��I=�v � �v�

T
v =�

3
v� 0

0 0 0 0 0 0

�@�GT�v�=@r 0 0 0 �GT 0
0 �@�HT�v�=@v 0 �I �HT 0
0 0 2�vT=m

3 0 ��T
v T=��vm

2� 0

0
BBBBBB@

1
CCCCCCA

(27)

As expressed, the state transitionmatrixmaps perturbations across
trajectory arcs with no discontinuities. However, the goal is to obtain
the partial derivative of the final state with respect to the initial state
and there may be several legs of thrust and coast with discontinuities
across the boundaries (see Fig. 1). In Eq. (28), we string together a
sequence of partial derivatives across N discontinuities using the
chain rule, where each discontinuity is handled by introducing �n,
the partial derivative of the state at tn� with respect to the state at tn�.

@Y�tf�=@Y�t0�
���tf; tN���N��tN�; t�N�1�����N�1� � � ���t2�; t1���1��t1�; t0�

(28)

� n � @Y�tn��=@Y�tn�� � fI14�14 � � _Yjn�
� _Yjn���@S=@Y�= _S	jn�g (29)

When a state Yi at tn� is perturbed (see Fig. 2), it causes the
switching function to shift by �S� �Yi�@S=@Yi�n�. Therefore, the

switching time is perturbed by dt���S= _Sn� � ��Yi�@S=
@Yi�n�= _Sn�. The change in the state Yi at tn � dt due only to the

change in the switching time equals � _Yijn� � _Yijn�� dt. Thus the total
change in the state at tn � dt is given in Eq. (30), the scalar equivalent
of Eq. (29). Note, if the discontinuity is not present across tn, �n

reduces to I.

�Yijn� � �Yijn��1� � _Yijn� � _Yijn���@S=@Yi�n�= _Sn�	 (30)

For implementation in a targeting routine, calculating the partial of
a final time constraint (that is a function of the state) with respect to
the initial state is simply the partial of the constraint function with
respect to the state evaluated at the final time multiplied by the result
from Eq. (28).

Pareto Optimality

In an optimization problem with competing objectives, such as
time of flight and fuel expenditures, a Pareto front represents the best
available solutions with regard to the trade space without the use of
weighting functions. For an arbitrary set of solutions plotted in the
flight time��v plane, by definition, a Pareto optimal solution is one
that finds no other that is better in both flight time and �v. To

determine if a particular solution is Pareto optimal, its flight time and
�v must be compared to all other solutions in the set. If any other
solution is superior in both objectives, then the solution is not Pareto
optimal. See Fig. 3 for an example Pareto front. Note that each Pareto
solution sits on the upper right corner of a gray box that is empty of
other solutions.

Multiobjective optimization via heuristic, gradient-based, evolu-
tionary, and many other methods is a rapidly emerging field with
potential for applications across many disciplines. For a general
introduction, see [40]. In this study, the flight time ��v plane is
populated with local �v extremal solutions across a wide range of
flight times. After the full set is assembled, each solution is examined
against all other solutions to determine Pareto optimality.

With regard to a global trajectory search, the concept of Pareto
optimality is powerful particularly because trajectories are sought
with a priori unknown flight times. If a global search is conducted for

Yi

time
t0 t1 t2 t3 tf

coast

thrust

S switches sign

thrust

coast

0<S0<S0>S S>0

Fig. 1 Implicit “bang-bang” thrusting.

S

timetn

0

due to δYi at tn-

nominal       dt

δS

thrust       
coast       

Yi δYi at tn-

(Yi- -Yi+ )dt
.   .

δYi at tn+

tn

Fig. 2 Small perturbation effects on S and Yi.
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a fixed flight time trajectory, many of the search propagations are
likely to ignorantly pass near solutions with smaller flight times.
However, by checking the constraint functions at each time step
along a trajectory, the scope of the search is onlymarginallywidened,
yet it brings the tremendous benefit of potentially finding a sweep of
optimal or near-optimal solutions for a full range of flight times.
Obtaining solutions formultiple times of flight via parametric studies
and traditional methods can be tedious and difficult to tune.
Furthermore, the parametric solutions inherently are related as a
family of local solutions, whereas the Pareto optimal solutions may
contain a variety of independent solution families and are thus more
likely to represent global minima.

Local Search Strategy

The TPBVP described in Eq. (18) provides an equal number of
unknowns and constraints for the general time-fixed phase-free orbit
to orbit transfer. The necessarymodifications are also given for time-
free or phase-fixed orbit to orbit transfers.

In light of the multiobjective optimization strategy, we elect to
ignore any transversality conditions (i.e., all necessary boundary
conditions except the final position and velocity constraints) with the
presumption that they are implicitly driven to zero in the direction of
the Pareto front. Note, however, for the particular case of the many-
revolution problem, satisfying the transversality conditions bears
little significance because the phase and time of flight variations over
just one orbit have only a marginal impact on the final objectives.

Because we attempt to drive the transversality conditions to zero
implicitly with the Pareto optimization, generally there are fewer
constraints than unknowns. The degrees of freedom relax the
problem and allow for a larger pool of feasible trajectories. In fact,
each trajectory that is feasible in the final position and velocity
constraint actually meets the necessary optimality conditions for the
subproblem that is time and phase fixed to the specific time and phase
of the resulting solution.

For the local search, we use the “feasible point” mode of the
gradient-based sequential quadratic programming software SNOPT
[27] to target the final orbit constraints by adjusting the initial

costates and any free times or phases. The first-order necessary
conditions (ignoring the transversality conditions) are implicitly
satisfied through the enforcement of the primer vector control law.
The feasible point mode of SNOPT is an efficient nonlinear equation
solver that ignores any direct performance index and allows a
different number of constraints and unknowns. For details see p. 78
the of SNOPT manual.†

Global Search Strategy

The global search space primarily consists of the adjoint control

variables �
0; _
0; �0; _�0; S0; _S0�. If the specific problem is free initial
time, free initial orbit phase, and/or free final orbit phase, then t0, �0,
and �f are included, respectively. However, because we check the
constraint violations at every successful step of the orbit propagation,
tf is not a required global guess variable. Additionally, if the final
orbit is a simple closed orbit and �f is some angle that is a function of
the spacecraft state, then �f can be calculated at every step of the orbit
propagation and also removed from the global search list. Of course
bounds must be input for each of the global search variables. The
global search space is populated with uniformly distributed random
numbers.

For each set of randomly generated unknowns, one propagation of
Eq. (24) is required, noting that during the global search mode, the
additional 142 equations associatedwith the state transitionmatrix do
not need to be propagated. The final constraint conditions are
checked at each successful time step during the integration. If the
final conditions are met at any time step to a prespecified tolerance,
then the global search mode is suspended, and the current
subproblem is fed into a full gradient-based targeting routine that
attempts to adjust the unknown vector to drive the constraint
conditions to zero. The state transitionmatrix of course is propagated
along with the state during the local search mode. If the problem

time

∆v

dominated
Pareto optimal

Fig. 3 Pareto front.

1. Input seed for random number generator  
2. Supply subroutines to calculate the initial and target orbits r*0(τ0), v*0(τ0) and r*f (τf ), v*f (τf )
3. Input upper and lower bounds for each of the global search parameters: 

α, β, S, dα /dt, dβ /dt, dS/dt, and problem specific parameters such as t0, τ0, τf  if needed 
DO WHILE  (propagations<propagationsmax)

a. propagations= propagations+1
b. Populate global search parameters with random numbers 
c. Evaluate initial spacecraft position and velocity, r*0(τ0), v*0(τ0)
d. Fix initial spacecraft mass and mass co-state to a normalized 1 and -1 respectively 
e. Apply adjoint control transformation to obtain λλr0 and λv0
f. Propagate spacecraft state and co-state according to the implicit “bang-bang” structure 

 At each successful integration step: 
1) Check for impact or escape.  IF true THEN exit propagation  
2) Calculate the norm of constraints rf– r*f (τf), vf– v*f (τf)

 For the planar DRO problem, it is sufficient to consider τf = atan2(r2, r1)
3) Store the associated flight time (tf = t), and τf for a potential local search initial guess 
4) IF normmin < tolerance THEN 

a) Exit propagation 
b) Call local targeting routine with:  

Unknowns: λ0 and problem specific parameters such as t0, τ0, tf, τf
Constraints: rf– r*f (τf), vf– v*f (τf)

c) IF Converged  THEN record final unknown vector and associated properties
ELSE

IF t >= tmax THEN exit propagation 
ENDIF

END DO 
4. Combine results with those from other processors (if any) 
5. Compare each solution against all other solutions to identify the Pareto optimal set. 

Fig. 4 Global low-thrust trade study algorithm.

Table 1 RTBP and propulsion parameters. All values are converted to

LUs and TUs for implementation

Parameter Value Units

Jupiter–Europa distance 670,987.786940812 km
Jupiter Gm 126,686,537.857796 km3=s2

Europa Gm 3200.99980672059 km3=s2

Europa radius 1560.0 km
Earth–moon distance 384,400.0 km
Earth Gm 398,600.4415 km3=s2

Moon Gm 4902.801076 km3=s2

Moon radius 1738.0 km
Mass unit (m0) 25,000.0 kg
T=m0 0.199374249380613 mm=s2

Isp 7365.0 s
g0 9.80665 m=s2

Table 2 Inputs for examples

Parameter Europa DRO Earth–moon


0, rad �� ��0:05; 0:05	 ��0:05; 0:05	
_
0, rad=TU ��0:05; 0:05	 ��0:5; 0:5	
S0, natural units

a [0.01, 0.21] �m0m0=c� �0; 0:03	
_S0, natural units ��0:002; 0	 ��0:01; 0	
Max flight time
during global search, days

125 125

Global search constraint
tolerance for transferring
to local search

5% 40%

Local search convergence
tolerance

0.00001% 0.00001%

aFrom Eq. (23), S must be greater than �mm0=c in order for �v to be positive. For DRO
and moon examples, respectively, �m0m0=c��0:1902;�0:014185 (natural units).

†Data available online at http://www.sbsi-sol-optimize.com/manuals/
SNOPT%20Manual.pdf [cited 28 May 2006].
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converges, the time, �v, the unknown vector, and other pertinent
characteristics of the solution are recorded. Regardless of
convergence, if the number of global propagations is less than a
user specified maximum, then the algorithm is shifted back to the
global search mode and the process is repeated. In this manner, the
algorithm will ideally accumulate a large sample of solutions that

span a wide range of feasible flight times and �v. The nature of the
uniformly random global search is ideal for parallel applications
because the speedup for additional processors is exactly linear. Once
the solutions are assembled into one large set, the flight time and�v
values for each solution are compared against all other solutions to
identify the Pareto front. Again, as Fig. 3 illustrates, a Pareto optimal
solution finds no other solution that is superior in both flight time and
�v [40].

Figure 4 presents an overview of the global search algorithm.
Tuning the algorithm consists primarily of adjusting the boundaries
on the unknown global search variables. Although the local search is
initiated with the bounded guesses from the global search, once the

Fig. 5 Results from the Europa DRO transfer example. In total there

are 51,032 converged solutions including 3208 that are Pareto optimal.

Fig. 6 Zoomed view of Fig. 5.

Table 3 Results and statistics for examples

Parameter Europa DRO Earth–moon

Number of global propagations 1,808,909 29,451,163
Number of local attempts 106,494 275,602
Number of local converged 51,032 21,372
Number of Pareto optimal 3208 47
Number of processors
(Pentium 4 Xeon 3.2 GHz)

200 400

Run time per processor, min 60 240
Total processor run time, min 12,000 96,000
Average number of local
solutions attempted per
minute per processor

8.87 2.87

Average number of converged
solutions per minute per processor

4.25 0.223

Ratio of non-Pareto optimal
to Pareto optimal

15.91 454.7

Fig. 7 Zoomed view of Fig. 6.

Fig. 8 Representative Pareto optimal trajectories from the Europa

DRO example. The subtitles are labeled (TOF, �v) in days and km=s.
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algorithm transitions to the local mode, it is free to move in any
direction the gradients suggest.

Examples and Results

In this section, the algorithm is tested on two multiple-revolution
problems in the RTBP. Table 1 gives values for the required
numerical parameters. The propulsion inputs and initial mass are
common for each example. The algorithm is run in parallel on the Jet
Propulsion Laboratory’s Cosmos Cluster. The accuracy of the orbit
propagation is such that the Jacobi constant C generally remains
constant to 15 significant digits over a coast leg, and the switching
times are interpolated such that S� 0 to at least 13 digits. As a
separate check, H is found to be constant to at least 11 significant
digits over the entirety of a given trajectory.

In both examples, we solve an orbit transfer with the initial time
and phase fixed and the final time and phase free. Both problems are
constrained to the planar case for simplicity. The unknown vectors
for the global and local searches are given, respectively, in Eq. (31)
while the constraint vector for both searches is Eq. (32). As discussed
earlier, the transversality conditions are implicitly targeted via the
Pareto front in lieu of including them explicitly in Eq. (32). The initial
mass and mass costate are set to a normalized value of 1 and �1,

respectively. Both examples involve targeting DROs in restricted
three body problems. The orbits are numerically parameterized with
a polar angle � as described in [41]. This functional approximation is
required to evaluate the constraint vector inEq. (32) and its derivative
with respect to �.

global search ) UT
4�1 � �
 _
 S _S�; �tf; �f� solved implicitly

local search ) UT
6�1 � ��T

r0 �
T
v0 �f tf� (31)

C T
4�1 � �rTf � r�T��f� vTf � v�T��f�	 (32)

Europa DRO Transfer Example

The first example is a planar transfer from a largeDRO to a smaller
DRO at Europa. Distant retrograde orbits are a simple family of
periodic orbits in the RTBP that evolve from planar retrograde
circular orbits near Europa into near-ellipse shaped orbits
with Europa at the center. See, for example, [32,41]. The initial
conditions are

r1 � 0:07517684416232644 LU

Fig. 9 Example Pareto optimal trajectory and evolution of the costates and switching function.

Fig. 10 Characteristics of all Pareto optimal trajectories from the Europa DRO example. Left: converged unknown vector (initial costates, target orbit

phase, and flight time). Right: calculated values (initial adjoint control variables and Hamiltonian). All values are expressed in natural units.
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v2 ��0:149921522008374 LU=TU

r2 � v1 � 0, while the target orbit is phase free with an r1 axis
crossing of 0.0306707376649 LU. The second columns of Tables 2
and 3 summarize the inputs and results, respectively. The algorithm
is tested first with large bounds on the initial control variables, and
ranges are then successively adjusted to cover the region where most
of the solutions are clustered. The final ranges used in this example
(and the following example) are by no means optimal; in general,
solutions exist for a wide range of bounds and those reported are
found to be sufficient.

Nearly 2 � 106 global search propagations produced 51,032
converged solutions, where 3208 are Pareto optimal. Figures 5–7
show three different views of the resulting converged trajectories
plotted on the plane of the competing objectives: flight time and�v.
Each point on the figures represents a converged trajectory that
satisfies the necessary conditions formass optimality associatedwith
the specific converged value offlight time andfinal target orbit phase.
The Pareto optimal solutions are labeled as downward pointing
triangles and the Pareto front is the set of discrete Pareto optimal
solutions. Note, the reported flight times do not include coasts (if
present) at the beginning or end of the converged trajectories. The
wave structure of the Pareto front is related to the number of
spacecraft revolutions. Although there is no formal evidence of
global optimality, the smoothness and fullness of the Pareto front
gives confidence that its solutions are indeed associated with global
minima.

Example Pareto optimal trajectories are shown in Figs. 8 and 9.
The initial and final orbits are shown as the outer and inner dashed
lines, respectively. The circles on the trajectory plots illustrate the
switching times. Lighter colored lines are the thrusting directions and
are generally aligned opposite to the velocity. Although the exact
directions may be difficult to discern from the figures, the bang-bang
structure of the thrusting is clearly illustrated and leads to solutions

that cycle the thrust on and off twice per revolution. As an example,
the solution in Fig. 9 includes 16 revolutions and 63 switching times.
Note, the solutions maintain similar thrusting profiles across the full
range of flight times. This optimal thrusting structure associated with
the DRO to DRO transfer is an important result that is relevant to the
trajectory design of future low-thrust missions to planetary moons.

Figure 10 plots the initial control variables and associated initial
costates, the final orbit phase, and theHamiltonian against the time of
flight for each of the Pareto optimal solutions. Notice the optimal
final orbit phase is almost linearly related to flight time for much of
the range. The continuity of all the variables further indicates that all
of the Pareto optimal solutions are members of the same family of
solutions. The initial switching functions in this problem are all
positive as the bounds on the global search variables in Table 2
suggest. As expected, the optimal initial thrust angle 
0 departs only
slightly from �, the antivelocity direction. For some applications, it
may be useful to curve fit data fromFig. 10 to approximate the family
of Pareto optimal solutions [16].

Note from the discussion at the bottom of the TPBVP section, one
of the transversality conditions for the time-free orbit transfer
requires the final Hamiltonian to be zero. Figure 10 shows that the
Hamiltonian values for the Pareto optimal solutions cycle roughly
through zero every 1.5 days. As the transversality condition predicts,
this zero crossing coincides exactly with the local extrema across the
flight time seen on the Pareto front. For example, from Fig. 10,H is
near zero and from Fig. 7, minima exist on the Pareto front at flight
times of f28:25; 29:75; 31:25; 32:75g days. Thus both the Pareto
front and the transversality condition lead to the same optimal flight
times. The Pareto front, however, has the significant advantage of
distinguishing a minimum from a maximum or a stationary point,
whereas the transversality condition H � 0 is only a necessary
condition for an extremal with respect to the final time. Looking at
Fig. 10, H appears to quickly pass through zero twice at the top of
each cycle. This first crossing likely corresponds to the minimum on
the Pareto front whereas the second crossing corresponds to the
neighboring maximum almost immediately to the right. To verify,
we would need to target the H � 0 condition explicitly.

Figure 11 shows a sampling of the solutions that are not Pareto
optimal. However, it is emphasized that each trajectory does indeed
meet the necessary conditions for optimality for the time-fixed,
phase-fixed subproblem. The trajectories on the first two rows
generally have different thrusting structures, but suffer relatively
small hits in performance compared to the Pareto optimal solutions.
The last row, however, is composed of the pathological cases that
suffer tremendously in flight time and �v because the trajectories
spiral past the target orbit yet manage to eventually spiral back to the
exact target conditions. In the case of the last orbit in the third row, the
trajectory spirals down to a near-circular orbit around 7900 km,

Fig. 11 Representative non-Pareto optimal solutions. Europa DRO

transfer. Note the final row demonstrates pathological cases that spiral

well past (but eventually return to) the target orbit.

Fig. 12 Results from the Earth–moon transfer example.
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Fig. 13 Representative Pareto optimal trajectories for the Earth to moon transfer example.

Fig. 14 Example Pareto optimal trajectory and evolution of the costates and switching function.

Fig. 15 Grazing moon flyby on the example Pareto optimal solution. Right: Zoomed view.
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coasts for about 50 days, then spirals back to the 20,000 km target
DROwith a total of 80 switching times, 97 revolutions, and a 106 day
flight time. Although this solution is not useful from amission design
perspective, it highlights the capabilities of the local targeting
method. Remarkably, despite the sensitivity associated with nearly
100 revolutions and switching times, the local search routine
successfully drives this solution to convergence with less that
0.00001% error. Generally, a multiple shooting method [18,19,42]
or some type of guidance control law [43,44] is required to target or
optimize a trajectory with so many revolutions.

Earth to Moon Transfer Example

The second example is a planar transfer from a direct near-circular
125,000 km orbit at Earth to a 50,000 km DRO at the moon.
The initial conditions are r1 ��0:674817898022893 LU,
v2 � 1:41785636974331 LU=TU, r2 � v1 � 0. The target orbit is
phase free with an r1 axis crossing of 0.130072840790843 LU. The
third columns of Tables 2 and 3 summarize the inputs and results,
respectively.

The dynamics associated with this second example are more
complicated because the trajectories circulate both primaries.
Accordingly, the algorithm finds converged solutions roughly an
order of magnitude less frequently than in the Europa example.
For the Earth–moon transfer, almost 30 � 106 global search
propagations resulted in 21,372 converged solutions, where 47 are

Pareto optimal. The complicated orbit transfer leads to a variety of
family types. As a result, the solutions populate a much larger region
of the flight time-�v plane than we saw in the previous example.
Based on this scattering, this problem would likely benefit from a
global search technique that drives solutions toward the Pareto front,
such as the evolutionary techniques employed in [29,30]. Looking at
Fig. 12, it is immediately apparent that the solutions are bounded on
the top by the line that passes through (0,0). A similar ceiling is seen
in the Europa example on the far left side of Fig. 6. This linear
relationship between thrust and flight time is of course a result of the
continuous thrusting case.

The diversity of the solutions leads to a disjointed Pareto front as
seen in Fig. 12. For example, the Pareto solutions disappear in the
vicinity of 60 day flight times because the family of solutions on the
left, in particular the one outstanding member at (53.3, 0.726),
dominates all of the nearby solutions that likely are in different
families. Figures 13 and 14 give a sampling of the Pareto optimal
trajectories, and as suspected the solutions towards the left represent
an isolated family that includes a close flyby of the moon. In general,
the trajectories complete from 3–10 Earth revolutions followed by
either a distant or close moon flyby before the DRO insertion.

Figure 15 presents a closer view of the third trajectory on the first
row of Fig. 13. It reveals a powered flyby that closely avoids impact
(and consequently a failed exit from the local search). Its Pareto
optimality status hints that the performance will improve if this
minimum altitude constraint is relaxed. Upon close inspection, all 15
Pareto optimal solutions with flight times less than 60 days include
similar grazing flybys, while the non-Pareto solutions in the vicinity
include similar flybys but at increasing altitudes. Similar to the
rationale of implicitly solving the transversality conditions, the
grazing flyby example demonstrates this method’s ability to enforce
nonlinear inequality constraints without including them explicitly in
the TPBVP.

Figure 16 documents an observed near-linear relationship
between pairs of the Pareto optimal initial costates. Although the
origin of this relationship is unclear, it could prove useful for finding
neighboring solutions. Figure 17 shows the converged values for the
initial costates and associated initial control variables, the final orbit
phase, and the Hamiltonian against the time of flight for each of the
Pareto optimal solutions.

Figure 18 illustrates the converged trajectories for several of the
interesting non-Pareto optimal solutions. Regardless of perform-
ance, it should be reemphasized that each converged solution does in
fact meet the necessary optimality conditions for the phase-fixed
time-fixed subproblem. Although some of the solutions appear to
take the same shape as their Pareto optimal counterparts, others,
particularly those with the longer flight times, take very different
paths. Note, many of the solutions naturally approach the stable

Fig. 16 Empirical near-linear relationships between initial Pareto

optimal costates.

Fig. 17 Pareto front characteristics of the Earth–moon example. See Fig. 10 caption.
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manifolds associated with the unstable families of periodic orbits
about the moon.

Conclusions

A global low-thrust trade study tool is developed in a general form
and applied specifically to multiple revolution orbit transfers in the
restricted three body model. The sensitivity problems generally
associated with indirect shooting methods are combated with
analytic derivatives and an expansive global search that initiates a
local search onlywhen a guess is deemed in the vicinity of a solution.
An implicit bang-bang orbit propagator is described complete with
the equations to map its derivatives across the switching times. As a
result, complicated multiple-revolution, multiple-thrust-arc trajecto-
ries are parameterized using just a few initial control variables and no
patch points. Although the initial setup is admittedly tedious, the
derived equations for the Jacobian and analytic derivatives are valid
for an important class of low-thrust optimal control problems.
Further, as demonstrated by the Pareto optimal solutions that find
grazing flybys of the moon, the method easily allows the inclusion of
nonlinear inequality constraints without modification of the setup by
simply discarding any trajectories that violate the constraint.

The low dimensionality is well suited for a global search for the
local gradient-based solutions. The nature of a global search and the
built-in potential for coasting leads naturally to solutions across a full
range of flight times. The multiobjective search is a powerful tool for
mission designwhere the classic dilemma is to choose between flight
time and fuel.

The Pareto optimal solutions are found in a single parallel run and
may consist of one continuous family or a diverse set of isolated
families or solutions. The Pareto optimality concept is particularly
useful in problems that include many locally optimal solutions as is
the case for the general low-thrust problem. Although there is no
guarantee that a Pareto optimal solution is globally optimal for the
original problem, it does, however, represent a global optimum
among the set of local solutions.

The parallel speedup is exactly linear and is demonstrated by
implementing the algorithm on several hundred nodes. Although this
many processors may be unavailable to most researchers, in both
example cases this proof of concept led to tens of thousands of
converged solutions, clearly more than enough to sample the search
space. For example, if a researcher is limited to one processor
running for 1 day, he or she could expect to find over 6000 and 300

converged solutions, respectively, to the first and second example
problems. Although this approach fails to appreciate the advantages
of the linear parallel speedup, it nonetheless sheds significant insight
into the multiobjective solution space.

The algorithm can be slightly modified to include different
constraints or even alternative search strategies such as explicitly
targeting any transversality conditions or directly minimizing�v. In
any case, the benefits of sampling a low dimensioned search space
remain, and the results can lead to a global perspective of optimal
trajectories across the competing objectives of flight time and �v.
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