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ABSTRACT

Distant starlight passing through the Earth’s atmosphere is refracted by an angle of just over one

degree near the surface. This focuses light onto a focal line starting at an inner (and chromatic)

boundary out to infinity - offering an opportunity for pronounced lensing. It is shown here that the

focal line commences at ∼85% of the Earth-Moon separation, and thus placing an orbiting detector

between here and one Hill radius could exploit this refractive lens. Analytic estimates are derived for

a source directly behind the Earth (i.e. on-axis) showing that starlight is lensed into a thin circular

ring of thickness WH∆/R, yielding an amplification of 8H∆/W , where H∆ is the Earth’s refractive

scale height, R is its geopotential radius and W is the detector diameter. These estimates are verified

through numerical ray-tracing experiments from optical to 30 µm light with standard atmospheric

models. The numerical experiments are extended to include extinction from both a clear atmosphere

and one with clouds. It is found that a detector at one Hill radius is least affected by extinction since

lensed rays travel no deeper than 13.7 km, within the statosphere and above most clouds. Including

extinction, a 1 metre Hill radius “terrascope” is calculated to produce an amplification of ∼45, 000 for a

lensing timescale of ∼20 hours. In practice, the amplification is likely halved in order to avoid daylight

scattering i.e. 22, 500 (∆mag=10.9) for W =1 m, or equivalent to a 150 m optical/infrared telescope.

Keywords: refraction — lensing — astronomical instrumentation

1. INTRODUCTION

Astronomers crave photons. Simple Poisson counting

statistics dictate that the signal-to-noise of any astro-

nomical observation relying on electromagnetic waves is

proportional to the square root of the number of pho-

tons received per unit time. Since the received photon

rate is proportional to a telescope’s area, then signal-

to-noise generally scales with telescope diameter. Addi-

tionally, a larger telescope offers improved angular reso-

lution, which is is inversely proportional to the diameter.

These two benefits therefore both scale approximately

linearly with telescope diameter, yet the cost scales - at

best - quadratically (van Belle et al. 2004). Besides the

cost of the mirror itself, monolithic mirrors larger than

5 metres become difficult to build due to large structures

Corresponding author: David Kipping

dkipping@astro.columbia.edu

needed to support them.Segmented designs have there-

fore been proposed for our largest planned telescopes,

such as the 25 m GMT, the 30 m TMT and the 39 m

ELT. With GMT priced at $1B and the TMT at $2B,

“post-1980” scaling (van Belle et al. 2004) implies that

a 100 m telescope would cost ∼$35B, which greatly ex-

ceeds the combined 2018 budget of NASA and NSF. A

similar situation is true for space-based observatories,

where the ∼$10B 6.5 m JWST provides an example of

how the funding prospects of yet larger telescopes look

questionable - a point described as a “crisis in astro-

physics” (Elvis 2016).

Faced with the prospect of a stall in our continu-

ously improving view of the Universe, it is timely to ask

whether there exist any “shortcuts” to catching photons

- ways of amplifying the signal without building ever

larger structures. Angular resolution can certainly be

improved using an interferometric array of small tele-

scopes rather than a single giant structure (Monnier
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2003). Photon counts are much more challenging to

greatly increase, since the flux count per unit area is

defined by an astronomical source’s magnitude, imply-

ing the only way to collect more photons is to have a

larger lenses. If we are unable to build such giant lenses

due to their prohibitive cost, the next best thing is to

ask if there exists any naturally occurring giant lenses

that could serve our purpose?

One example of a natural lens is the Sun. Gravita-

tional deflection and lensing of light by massive objects

was predicted by Einstein (1916) and observed for the

Sun nearly a century ago (Eddington 1919). von Esh-

leman (1979) proposed that this lensing could be used

for interstellar communication, with subsequent studies

considering using the lens for astronomical observations

(Kraus 1986; Heidmann & Maccone 1994). Star light

would be focussed along a line starting at 550 AU and

thus an observatory would need to orbit the Sun be-

yond this separation, where it would enjoy enormous

amplification of distant sources. Besides launch opera-

tions, there are challenges with such a mission. It has

been argued that interference from the solar atmospheric

plasma and limited source selection would pose major

challenges to realizing such a proposal (Turyshev & An-

dersson 2003).

When faced with the prospect of flying to 550 AU to

exploit an astrophysical lens, it is natural to ask whether

there are any alternative astrophysical lenses closer to

home? The Earth clearly cannot serve as a practical

gravitational lens given its relatively low mass, but it

does bend light using another physical effect - refrac-

tion. A setting Sun is a little more than half a degree

lower than it appears as a result of this effect. It there-

fore stands to reason that a optical ray passing through

the Earth’s atmosphere, skimming above the surface,

and then emerging out the otherside will refract by just

over one degree. Thus, one might imagine an observer

at or beyond a distance of ∼R cot1◦ ' 360 000 km (ap-

proximately the Earth-Moon separation) would be able

to exploit the Earth as a refractive lens - a concept re-

ferred to as the “terrascope” in what follows. Much like

the gravitational lens, this distance is the inner point of

a focal line, along which high amplification should be

expected.

Refraction through the Earth’s atmosphere to approx-

imately one lunar separation has been known since the

18th century (Cassini 1740), through studies of the lunar

eclipse. This work aims to provide the first quantitative

grounding for the terrascope concept by calculating the

amplification expected, lens properties, image shapes,

lensing timescale and the effects of extinction. As an

initial quantification of these effects, the goal here is not

to perform the most realistic calculation possible, but

rather estimate the approximate effects that might be

expected. Other effects not modeled, such as airglow,

pointing stability and turbulence are briefly explored in

the discussion.

The paper is organized as follows. In Section 2 a nu-

merical scheme for calculating refraction is described, as

well as a simplified atmospheric model. In Section 3, ray

tracing simulations are described detailing how lensing

solutions may be solved for. In Section 4, the simula-

tions are used to compute the amplification expected for

the terrascope as a function of wavelength, observatory

distance and detector diameter. This section also de-

scribes estimates for extinction effects such as scattering

and clouds. Section 5 concludes by describing ignored

effects and practical considerations.

2. MODELING ATMOSPHERIC REFRACTION

2.1. Lensing through a 1D static atmosphere

Consider a luminous source located at a large distance

from the Earth such that it can be approximated as a

point source (we leave consideration of diffuse sources

of emission to future work). Light from the source ar-

rives at the Earth as an approximately plane-parallel

wave with a wavelength λ and can be represented by a

sum of parallel rays, each with an impact parameter b

(see Figure 1). The Earth’s atmosphere is considered to

be described by a one-dimensional temperature-pressure

profile and is unchanging in time. The Earth’s atmo-

sphere is then split up into a series of N shells, within

which the temperature, pressure and refractivity is as-

sumed to be constant.

The total geopotential altitude of the atmosphere is

defined as Z, such that each shell has a thickness of

h = Z/N and a refraction index of nj . Shell indices are

assigned in ascending order such that the deepest layer

have the highest index. The outer shell, shell j = 0,

effectively extends out to infinity and has a refraction

index of n0 = 1.

When the ray of light reaches the boundary between

from shell j − 1 to j, the change in atmospheric density

leads to a change in the light’s speed and thus refraction

occurs as described by Snell’s law

nj−1 sin θi,j = nj sin θr,j , (1)

where the indices i and r refer to “incidence” and “re-

fraction”. The deflection angle of the ray is therefore

αj = θi,j − θr,j . (2)
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Figure 1. Schematic of a N = 3 shell atmosphere where (exagerrated) refraction is calculated by considering the interactions
at each shell boundary.

At the boundary of j = 1 shell, the angle of incidence

can be written in terms of the impact parameter, b, by

the trigonometric relation

sin θi,1 =
b

1

1

R+Nh
(3)

and thus via Snell’s law we also have

sin θr,1 =
b

n1

1

R+Nh
. (4)

The angle of incidence at the boundary of the j = 2

shell can be deduced from this result, by applying the

sine rule inside the triangle subtended from the j = 1

boundary intersection to the j = 2 boundary intersec-

tion to the Earth’s centre:

sin θi,2 =
R+Nh

R+ (N − 1)h
sin θr,1,

=
b

n1

1

R+ (N − 1)j
(5)

And again using Snell’s law this gives

sin θr,2 =
b

n2

1

R+ (N − 1)j
. (6)

Continuing this process, it is easy to show that

sin θi,j =
b

nj−1

1

R+ (N − j + 1)h
. (7)

and

sin θr,j =
b

nj

1

R+ (N − j + 1)h
. (8)

Using Equations (7) & (8) with Equation (2) allows

one to calculate the deflection angle at each shell bound-

ary. In practice, this is done by using the sine addition

rule

sinαj = sin(θi,j − θr,j),
= sin θi,j cos θr,j − sin θi,j cos θi,j ,

= sin θi,j

√
1− sin2 θr,j − sin θi,j

√
1− sin2 θi,j

(9)

such that
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αj = sin−1

[
b

nj−1

1

R+ (N − j + 1)h

√
1−

( b

nj

1

R+ (N − j + 1)h

)2

−

b

nj

1

R+ (N − j + 1)h

√
1−

( b

nj−1

1

R+ (N − j + 1)h

)2
]
.

(10)

2.2. Critical refraction limits

If the impact parameter is low enough, the ray will

eventually strike the planetary surface and thus end its

journey. Consider the critical case of this such that the

ray just grazes the planetary surface tangentially, initi-

ated from an impact parameter bcrit. If this happens,

then it follows that the ray must also reach the deep-

est atmospheric shell. In that shell, one can draw a

right-angled triangle from the planet’s center to the two

intersection points and write that

sin θr,N =
R

R+ h
(11)

Now substituting in Equation (8), we have

bcrit

nN

1

R+ h
=

R

R+ h
, (12)

which may be solved to give

bcrit ≡ RnN . (13)

If the impact parameter is in the range bcrit < b <

R + Nh, then the ray will penetrate the Earth’s outer

atmospheric shell and continue down to some depth be-

fore making its way back out of the atmosphere again.

Let us write that the deepest shell is given by the index

Jlimit. In order to calculate the total deflection angle, ∆,

of a ray, we must calculate Jlimit since ∆ =
∑Jlimit

j=1 αj .

This may be calculated by considering that the cos θi,j
term in the ∆ calculation must be real. The term be-

comes imaginary if sin θi,j > 1. Using Equation (7), one

sees that this corresponds to

1

nj−1

b

R+ (N − j + 1)h
> 1. (14)

Therefore, one may find Jlimit by sequentially calcu-

lating the above inequality from j = 1 up until the con-

dition holds true. At this point, the previous shell is

assigned as Jlimit. The total deflection angle, from the

lowest altitude to space (space-to-space is simply twice

as much) is then computed as

∆ = 2

Jlimit∑
j=1

αj . (15)

2.3. Airmass

Aside from computing the deflection angle and deepest

shell layer of an incoming ray, one can also compute the

airmass traversed, X. The path length can be found by

using the sine rule inside the triangles formed between

the planet’s center and the shell intersection points:

dj =
( sin(θi,j+1 − θr,j)

sin θi,j+1

)(
R+ (N − j + 1)h

)
. (16)

Substituting Equation (7) & (8) into Equation (16),

and after simplification, yields

dj =
√

(R+ (N − j + 1)h)2 − (b/nj)2

−
√

(R+ (N − j)h)2 − (b/nj)2. (17)

The airmass passed through by a ray is proportional

to the path length multiplied by the density. Using the

ideal gas law, the density is proportional to pressure over

temperature (P/T ). Accordingly, airmass is given by

X =

∑Jlimit

j=1 djPj/Tj

X0
, (18)

where X0 is a constant of proportionality defined such
that X = 1 for a ray which travels from sea level to space

along the zenith. This equates to

X0 ≡
N∑
j=1

hPj/Tj . (19)

2.4. Model atmosphere

As stated earlier, this work assumes that within a

given shell, the pressure, temperature and refractivity

are constant. In other words, a one-dimensional static

atmosphere. The purpose of this work is to simply

demonstrate the concept of the terrascope. If worth-

while, future work could be undertaken to use more so-

phisticated atmospheric models accounting for weather,

turbulence, and regional differences. For now, the goal

is merely to compute the approximate feasibility and
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Figure 2. Temperature-pressure profiles for six standard
atmospheres used in this work.

properties of the terrascope, by making reasonable but

ultimately simplifying assumptions.

To accomplish this, the US Standard Atmosphere 1976

(National Geophysical Data Center 1992) was adopted

as a fiducial temperature-pressure (TP) profile. This

atmosphere can be considered to be an average over

the global climate but can be a poor representation

for particular local climates. To investigate the impact

of differing conditions, five other standard TP profiles

were utilized - in particular the same atmospheres as

used by lowtran7 (Kneizys et al. 1988). These are the

“tropical”, “mid-latitude summer”, “mid-latitude win-

ter”, “sub-arctic summer” and “sub-arctic winter” mod-

els (these are shown in Figure 2).

The models define a continuous temperature-pressure

profile from 0 to 85 km geopotential altitude (z) but with

functional changes occurring at six key boundaries dis-

tributed in altitude. Within each of the layers (defined

by sharp boundaries), the lapse rate, L, is varied and

the pressure computed assuming an ideal gas and verti-

cal pressure variation of dP/dz = −ρg (where ρ is the

density of air and g is the acceleration due to gravity).

Temperature, as a function of geopotential altitude,

within the kth layer is defined by

Tk[a] = Tk−1 + Lk(z − zk), (20)

where T0 is the temperature at sea level. The pressure

is then given by

Pk[z] =


Pk−1 exp

(
− −g0M(z−zk)

RTk−1

)
if Lk = 0,

Pk−1

(
Tk−1

Tk[z]

) g0M
RLk otherwise,

(21)

where P0 is the pressure at sea level and g0M/R =

34.1645 K/km.

2.5. Calculating refractivity

The refractivity of air, η, equals the refraction index,

n, minus unity. Given a shell’s pressure and tempera-

ture defined by the US Standard Atmosphere 1976, the

refractivity may be computed using a semi-empirical for-

mula. In this work, the expression of Birch & Downs

(1994) is adopted since the expression is found to be

in better agreement with recent measurements than the

Edlén (1966) formula - largely due to the increase in am-

bient carbon dioxide levels (Birch & Downs 1994). The

refractivity of dry air is thus given by

η = 10−8P
(
C1 +

C2

C3 − σ2
+

C4

C5 − σ2

)
(1 + 10−10P (C6 − C7T

′)

C8(1 + C9T ′)

)
, (22)

where T ′ is the temperature in Celsius, σ is the recip-

rocal of the wavelength of light in a vacuum in units of

nanometres, and C1 to C9 are constants.

The calculations described throughout the rest of the

paper were also repeated using moist air refractivity, in-

stead of dry air, using the appropriate correction (Birch

& Downs 1994). However, this was found to produce

very minor changes to the results and thus the dry air

formula will be used in what follows.

It is instructive to consider the approximate relation-

ship as well. Refractivity is proportional to the gas

density. For an isothermal atmosphere, one expects

ρ ∝ e−z/H , where H is the scale height and z is the

altitude. Accordingly, one expects η ∝ e−z/H too.
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3. RAY TRACING SIMULATIONS

3.1. Generating a training set

Two physical principles are critical in consideration

of the terrascope, refraction and extinction. The issue

of atmospheric extinction will be tackled later in Sec-

tion 4.3, and thus we first deal with refraction using

the expressions found earlier in Section 2 to ray trace

through the Earth’s atmosphere. In what follows, rays

are only traced from space to the point of closest ap-

proach to the Earth’s surface. Since the assumed model

atmosphere is static and one-dimensional, the egress

path will be identical to the ingress path and one may

exploit this symmetry to save computational effort.

Before a ray can be traced, it is first necessary to

choose how many shells (N) will be used for ray tracing

experiment. In general, the greater the number of shells,

the more accurate the integration, but at greater com-

putational expense. Further, it is necessary to choose

up to what geopotential altitude the atmosphere termi-

nates, Z (technically the atmosphere extends to infinity

but this of course is not computationally reasonable, nor

are the standard atmospheres well-defined above 86 km).

In preliminary ray tracing experiments, it was noted

the deflection angles follow a generally smooth trend

with respect to impact parameter until the impact pa-

rameter approaches R + 86 km. At the 86 km boundary,

the refractivity is discontinuous, jumping off a mono-

tonically decreasing smooth function down zero. This

appears to introduce peculiar behavior for extreme im-

pact parameters and thus Z =80 km was adopted in an

effort to avoid this regime. A high but computationally

efficient resolution was chosen such that each shell has a

thickness of h =10 cm, corresponding to 800,000 steps.

Let us choose a particular wavelength, λ, of light to

work with. Using this wavelength, one still needs to
choose an impact parameter, b, before ray tracing can

be executed. To generate a suite of examples, let us de-

fine a grid of impact parameters varying from R to R+Z

uniformly spaced in geopotential altitude. Since the nu-

merical resolution of the atmosphere is itself 800,000,

the resolution used for b cannot be higher than this and

a reasonable choice is to adopt an order-of-magnitude

lower to ensure the highest possible scan yet retain reli-

able results. Accordingly, a resolution in b of 80,000 was

adopted (i.e. 1 m step sizes).

These experiments essentially generate a training set

from which one can learn the relationship between b and

deflection angle, ∆ (as well as other properties). How-

ever, the set is conditioned upon a specific choice of λ.

To build a complete training set, it is necessary to also

vary λ. This is done by creating a grid from λ =0.2 µm

to 30 µm with 219 examples spaced log-uniformly. This

wavelength range corresponds to the range of support for

the lowtran7 extinction model that will be used later

(see Section 4.3).

In each run, the total deflection angle, ∆, is recorded,

as well as the minimum geopotential height achieved

by the ray1 (“depth”), D, and the airmass traversed

through, X. It was found that impact parameters close

to the 80 km boundary exhibited slight trend differences

than the bulk, suggestive of a numerical error. To alle-

viate this, samples with b >77 km were excluded, as well

as samples for which the ray strikes the Earth, leaving

a total of 10,606,382 ray tracing experiments that were

saved.

3.2. Interpolation scheme

In order to generalize the numerical results to arbi-

trary values of b and λ, one can apply interpolation to

the training data.

3.2.1. Critical impact parameter, bcrit

For each ray tracing experiment, only X, D and ∆

are saved and so these are the three terms that require

interpolation. However, a useful product of these is bcrit,

the impact parameter at which D = R. Since the sim-

ulations iterate through in 1 metre steps in b, one may

simply cycle through the list until D < R and save the

previous example as bcrit, which will have a maximum

associated error of 1 m.

In total, there are 220 training examples of bcrit ver-

sus λ. When cast as bcrit against λ−2, the relationship

appears quasi-linear and thus it is using this param-

eterization that the interpolation is performed. Since

the number of samples is relatively small, it is feasi-

ble to perform Gaussian process (GP) regression (Stein
1999; Rasmussen & Williams 2006), in this case using

a squared exponential kernel. Using exhaustive leave 1-

out, this process is repeated to evaluate the error in

the final estimates. The final interpolative function,

shown in Figure 3, has a maximal error of one metre,

which is the numerical error of the training set to begin

with. It therefore represents an excellent predictor and

is adopted in what follows.

3.2.2. Airmass, X, and depth, D

For airmass and depth, a Gaussian process regres-

sion is impractical due to the much larger and two-

1 In this way, b and D are closely related; b is the minimum
separation between the Earth’s center and the ray in the absence
of refraction, whereas D is the same but with refraction turned
on.



The Terrascope 7

1976 US Standard1976 US Standard Tropical AtmosphereTropical Atmosphere
Midlatitude SummerMidlatitude Summer Midlatitude WinterMidlatitude Winter
Subarctic SummerSubarctic Summer Subarctic WinterSubarctic Winter

0.3 1 3 10 301.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3

λ [μm]

b c
rit
-
R

[k
m
]

Figure 3. The critical impact parameter as a function
of wavelength. Impact parameters below this will refract so
much they strike the Earth. The different lines shows the
effect of varying the climate model.

dimensional training set of over 10 million samples. In-

stead, this large sample is suitable for a dense interpola-

tive net. As with bcrit, it was found that λ−2 provides a

more linear basis for training for both X and D. The 2D

bilinear interpolation therefore maps {λ−2, b} → X and

D. Examples of the interpolative function are shown in

Figure 4.

To provide further intuition and context, we also show

the “effective” refractivity of the Earth’s atmosphere in

Figure 4. This is computed by taking the computed

deflection angles and solving for the equivalent refrac-

tivity needed for that deflection using a single-layer at-

mosphere.

Using leave 1-out, one may evaluate the error of these

interpolations. This is done by leaving a random exam-

ple out, re-training the interpolation, and then evalu-

ating the residual between the omitted sample and the

interpolated prediction of said point. Since the train-

ing is relatively expensive computationally, the afore-

mentioned Monte Carlo experiment is limited to 1000

realizations.

This process revealed the bilinear scheme is able to

perform excellent interpolation across the grid. The rel-

ative airmass residuals show a non-Gaussian distribution

with a standard deviation of 0.68%, a mean absolute er-

ror of 0.13% and a 99.9% of samples exhibiting an ab-

solute error less than 0.11%. For depth, the standard

deviation of the absolute residuals is 0.030 m, the mean

absolute error is 0.012 m, and 99.9% of samples have an

absolute error less than 0.20 m.

3.2.3. Deflection angle, ∆
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Figure 4. Simulation results are shown in dark gray, in-
terpolative functions in dashed colors. Upper: Airmass tra-
versed for a ray traveling through the Earth’s atmosphere
from space to its closest approach to the Earth as function
of impact parameter. Middle-upper: Depth of the ray at
closest approach. Middle-lower: Deflection angle of the ray
by the time it reaches closest approach (rays interior to the
critical impact parameter are omitted). Lower: “Effective”
refractivity of the atmosphere, calculated as described in the
main text.

For deflection angle, it was found that simple bilinear

interpolation did not provide particularly stable results,

too closely tracing out the small numerical errors found

in the simulations rather than smoothing over them.
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Another problem with this scheme was that as the sim-

ulations approach b → bcrit, there is no training data

for deflection angle since it cannot be defined below this

point. This led to unstable extrapolations in the final

shell.

Instead of bilinear interpolation, a Gaussian process

with a rational quadratic kernel is trained on each wave-

length slice independently. The training data is also

thinned by a factor of 100 to expedite the training (leav-

ing approximately 750 samples per slice). Rather than

use ∆ as the target function, we use log ∆ which be-

haves quasi-linearly with respect to (b−R), the indepen-

dent variable for the training. The GP is used because

it smooths over the numerical noise introduced by our

machine-precision calculations.

Calling the GP predictor is computationally slow, and

so a library of predictions is generated for later use. This

library samples the original simulations at a thinning

rate of ten along the b-axis, giving 7506 samples. The

library is then interpolated using splines in cases where

needs to evaluate the deflection angle at intermediate

choices of ∆. Comparing to the original samples, the

agreement of the final interpolations is better than 1.9%

for all samples, with a standard deviation of 0.83%. The

interpolated function is shown in Figure 4.

3.3. Computing on-axis amplification

Amplification is defined here as the intensity received

by a detector using the terrascope relative to the inten-

sity the same detector would receive in the absence of

the Earth. The latter of these two terms is simply the

incident flux multiplied by the collecting area of the de-

tector, π(W/2)2, where W is the diameter/aperture of

the detector. In the same way, the intensity received by

the terrascope can be computed by simply considering

the effective light-collecting area. In what follows, it is

assumed that the source, the lens and the detector are

all perfectly aligned, which is referred to as “on-axis”.

The setup is illustrated in Figure 5. A ray of wave-

length λ and impact parameter of b− is refracted by an

angle ∆− such that it strikes lower tip of the detector

located at a distance of L. Another ray with the same

wavelength but a higher impact parameter, b+, is re-

fracted by an angle ∆+ < ∆− and eventually strikes the

upper tip of the detector. It follows that all rays of wave-

length λ and impact parameter b− ≤ b ≤ b+ will strike

the detector. In the on-axis case considered here, along

with the assumption of a 1D atmosphere, the problem

is symmetric about the x-axis and thus the lensing re-

gion is circular ring of area π(b2+ − b2−), meaning that

the amplification A, is given by

A = ε
b2+ − b2−
(W/2)2

, (23)

where ε is a loss parameter describing the degree of

extinction. Rather than forming a single focus point,

light focusses along a line much like the case of gravita-

tional lensing. The maximum distance of the focal line

is infinity, but the inner distance is well-defined and it is

labelled as F in what follows. This distance corresponds

to a ray striking the Earth at the critical impact param-

eter, bcrit (for a given wavelength). The focal distance

is given by simple trigonometry

F = bcrit cot ∆crit (24)

where

∆crit ≡ lim
b→bcrit

∆(b). (25)

In the wavelength range of 0.2 µm to 30 µm, the inner

focus point varies from '200 000 km to '350 000 km, de-

pending on the wavelength and climate model (see Fig-

ure 6). This indicates that it would be possible to fo-

cus light at the lunar distance itself since the focal line

extends to infinity past this inner point. Accordingly,

observatories at or beyond the lunar distance could be

feasible locations for the terrascope detector.

The impact parameters b+ and b− dictating the ampli-

fication can be derived by geometrical arguments. Con-

sider a ray of impact parameter b+ which deflects by

angle ∆[b+] such that it strikes the upper tip of the de-

tector located at a distance L. Since the offset from the

x-axis of the upper detector tip is W/2 and thus one can

write that

b+ − L tan ∆[b+] = W/2. (26)

Similarly, consider a ray which passes a little deeper

through the planetary atmosphere at impact parameter

b−, such that it deflects enough to strike the lower tip

of the detector, which satisfies

b− − L tan ∆[b+] = −W/2. (27)

In practice, solutions for these two impact parameters

are found through a numerical Nelder-Mead optimizer,

because of the subtle dependency of ∆ upon b (see Sec-

tion 3.2).

This optimization is repeated for various choices of L,

W and λ. For λ, the original grid of 220 wavelengths was
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Figure 5. Illustration of a detector of diameter W utilizing the terrascope. Two rays of different impact parameters, but the
same wavelength, lens through the atmosphere and strike the detector. The ring formed by those two rays enables a calculation
of the amplification. In this setup, the detector is precisely on-axis.
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Figure 6. Location of the inner focal point of the terras-
cope as a function of wavelength. Rays cannot focus interior
to this point because they would strike the Earth’s surface.
Results shown for six different model temperature-pressure
profiles.

adopted. For L, it was found that the inner focus of the

shortest wavelength with the US Standard Atmosphere

1976 model was 281 700 km and thus a uniform grid was

adopted from this distance out to 1 500 000 km (the Hill

sphere of the Earth) with 101 steps. Finally, for W , five

fiducial diameters are adopted: 10−2, 10−1, 100, 101 and

102 metres.

3.4. Analytic estimates

Although the numerical experiments provide the most

precise view, it is instructive to consider the approx-

imate scaling relations expected. One can note that

the ∆ function is approximately log-linear and thus

can be approximated as ∆ ' ∆0e
−(b−R)/H∆ where H∆

is an effective scale height for the lensing, equal to

6.911 km to within three-decimal places for all rays be-

tween λ =0.2 µm to λ =30 µm. Using this approximate

formalism, Equations (26) & (27) can be combined to

give

W =∆b+

L

(
tan

(
∆0e

−(b−−R)/H∆

)
− tan

(
∆0e

−(b+−R)/H∆

))
(28)

where ∆b = (b+ − b−). Taking a small-angle ap-

proximation, replacing b− = bmid − ∆b/2 and b+ =

bmid + ∆b/2, and then Taylor expanding for small ∆b

(thin ring approximation) gives

∆b

(
1 +

L

H∆
∆0e

− bmid−R

H∆

)
= W. (29)

In order to reach the detector, one may write that ∆ '
b/L, or simply ∆ ∼ R/L by noting that R � (b − R).

This allows us to write that

∆b ∼ W

1 + (L/H∆)(R/L)
,

∼ W

(R/H∆)
, (30)

where the second lines has used the fact R � H∆.

Whilst one might naively intuit that ∆b ∼ W , the gra-

dient in the refractive index means the rays needs to

be closer together than this, since even a slight angular

difference is magnified over the large distance L. The

denominator is of order 103 and thus implies that for a

one-meter diameter detector, the lensing ring is about a

millimetre thick.
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The above allows one to approximately estimate the

amplification, A. If one writes that b+ = b− + ∆b, then

Equation (23) becomes A = εb2−((1+ ∆b
b−

)2−1)/(W/2)2.

Since ∆b � W and b− ∼ R, then provided W � R

(which practically speaking will always be true), one

may write that ∆b
b−
� 1. This permits a Taylor ex-

pansion of A such that

A ' 2εb−∆b/(W/2)2 (31)

which can be further refined by adopting b− ∼ R and

using Equation (30) to write

A ∼2εR
W

(R/H∆)

( 4

W 2

)
,

∼8εH∆/W. (32)

Since H∆ =6.911 km, then A/ε ∼ 55000/W , which

gives a first estimate for the approximate degree of am-

plification expected. The effective aperture size is given

by
√
A and thus equalsWeff ∼ 235ε1/2

√
W/(metres) metres.

3.5. Computing off-axis amplification

The alignment of the source, lens and detector is in-

stantaneous. Whilst useful for estimating the limiting

amplification, practically speaking the source spends in-

finitesimal time at this position and so the useful lensing

time is defined by the off-axis positions. Amplification

still occurs off-axis but now the rays which reach the

detector must be deflected by different angles, depend-

ing upon whether the rays travel above or below the

mid-plane.

Consider that the Earth is offset from the line con-

necting the source and the detector’s mid-point by a

distance Q, as shown in Figure 7. Although in reality

the Earth is three-dimensional and rays can take differ-

ent paths than the four lines shown in this diagram, the

four rays represent the most extreme affected paths as

a result of the translation shift. All four rays can reach

the detector provided the following four conditions hold

true

L tan ∆[b−,d]− b−,d = +W/2 +Q,

L tan ∆[b+,d]− b+,d = −W/2 +Q,

L tan ∆[b−,u]− b−,u = +W/2−Q,
L tan ∆[b+,u]− b+,u = −W/2−Q. (33)

Or more generally, received rays satisfy

L tan ∆[bd]− bd −Q ≤ |W/2|,
L tan ∆[bu]− bu +Q ≤ |W/2|. (34)

Naturally, if Q & (R + Z), then no deflection is re-

quired and rays will arrive at the detector unlensed

above the detector axis.

Consider a ray which now lives out of the plane,

with a ẑ-axis offset of βd,z. For a ray below the x̂-

axis, the incident ray has a detection axis offset in

the ŷ-direction of βd,y + x, which when combined with

the z term gives a Euclidean offset from the detector

axis of βd =
√

(βd,y +Q)2 + β2
d,z but an impact fac-

tor from the planet of bd =
√
β2
d,y + β2

d,z. One may

write that βd,y = bd cosφ and βd,z = bd sinφ, where

φ is the azimuthal angle about the x̂-axis of the inci-

dent ray. Now the total offset from the detector axis

is given by βd =
√
b2d +Q2 + 2bdQ cosφ. Similarly,

if the incident ray were above the detector axis, then

βu =
√
b2u +Q2 − 2buQ cosφ. For a circular detector of

radius W/2, rays will strike the detector if

L tan ∆[bd]−
√
b2d +Q2 + 2bdQ cosφ ≤ |W/2|,

L tan ∆[bu]−
√
b2u +Q2 − 2buQ cosφ ≤ |W/2|. (35)

If Q = 0 in the above (i.e. on-axis), then these ex-

pressions are identical to the previous equations in Sec-

tion 3.3. Also, setting φ = 0 recovers Equation (34).

Accordingly, one twists φ in the range −π/2 < φ < π/2

for both expressions and expects them to meet at the

extrema (which is indeed true). Moreover, one can gen-

eralize the above pair into a single expression where

−π/2 < φ < 3π/2:

L tan ∆[b]−
√
b2 +Q2 + 2bx cosφ ≤ |W/2|,

(36)

Unlike the on-axis case, the ring of lensed light no

longer forms a circle and more closely resembles an egg-

shape, which is illustrated in Figure 8. This occurs be-

cause each lensed ray now requires a different deflec-

tion angle to reach the detector, as a result of the offset

between the source, lens and detector. This, in turn,

means that the lensing depth - which strongly controls

the deflection angle (see Figure 4) - is different for each

lensed ray. For Q� R, the shape is essentially circular,

for Q ∼ R the shape is highly oval, and for Q � R,

up to a maximum critical point, the shape disappears

behind the planet.

4. CALCULATION RESULTS

4.1. Aperture scaling

For a one-metre diameter telescope, typical non-

extincted amplifications are found in the range of
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Figure 7. Same as Figure 5 except for off-axis lensing. Only the extrema rays in the z = 0 plane are shown.
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Figure 8. Numerically computed shapes of the lensing strata for three different offsets (red lines).These are the altitudes
of the rays above the Earth in order for them to come to a focus point at distance L. Black lines show the critical impact
parameter inside which rays strike the planet. They represent a kind of refractive surface, below which rays will eventually the
intercept the physical surface - which is located at the origin. Calculations use the US Standard Atmosphere 1976, λ =0.2 µm
and L = RHill. Shapes are exaggerated by virtue of the subtraction of R off both axes.

50,000 to 80,000 - using the numerical methods de-
scribed in Section 3. For a one-metre aperture, the

lensing ring is just over a millimetre in thickness. For

other aperture sizes the thickness is found to scale with

the inverse of the aperture diameter (see Figure 9) i.e.

∆b = (b+ − b−) ∝ W . These numerical results agree

with the approximate analytic estimates deduced earlier

in Section 3.4.

Changing the telescope aperture has a dramatic im-

pact on the amplification. A clear pattern is that the

amplification scales as 1/W . For example, the amplifi-

cation of a 10-metre detector is 10 times less i.e. 7,000

to 8,000. This result was also found in our earlier ap-

proximate analytic estimates in Section 3.4. This scaling

result indicates that one may simply consider the results

for a fixed fiducial detector and scale appropriately. In

what follows, W =1 m is adopted and thus the amplifi-

cation of such an aperture is denoted as A0.

Taking the amplification and the aperture size used,

one can estimate what the effective aperture of the tele-

scope would have to be to match the terrascope. Using

the scaling law just described, this allows the effective

aperture to be compactly expressed as

( Weff

metres

)
=

√
A0ε

( W

metres

)
(37)

This reveals that the effective aperture of the terras-

cope equals the actual aperture when W = A0 metres

i.e. ∼80 km, setting an upper limit for the useful size of

a terrascope observatory.

4.2. Distance dependency

Figure 9 shows the amplification as a function of L,

illustrating how there is an overall drop-off in amplifi-

cation away from the inner focus. Although the overall
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Figure 9. Amplification (lower panel) of 1 metre detec-
tor using the terrascope as a function of separation from the
Earth, L, for four different wavelengths of light. The up-
per panel shows the corresponding depth of the ray, and the
middle panel shows the lensing ring width.

maxima occurs at the inner focus, a curious second max-

ima occurs at around L =500.000 km but appears highly

chromatic. These maxima all corresponds to rays with

a depth of 'H∆ revealing their commonality.

Consider fixing L to several plausible options as de-

picted in Figure 10, which shows the wavelength depen-

dent amplification for a one-metre aperture. The deep-

est telluric depth of the rays received by the detector

is shown in the second panel of that figure, illustrating

how redder light needs to travel deeper to reach the ob-

servatory. The airmass traversed is shown in the top

panel.

In all cases, the rays travel through a substantial

amount of airmass and thus one might question whether

atmospheric extinction would overwhelm any gains

made by the terrascope setup. Two forms of extinction

are considered here - clear-sky scattering and intercep-
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Figure 10. The airmass traversed, telluric depth and am-
plification as a function of wavelength for a 1 metre telescope
at five possible locations.

tion with clouds. These are dealt with separately in

what follows.

4.3. Clear-sky extinction

To estimate extinction, the lowtran7 transmittance

and radiance package is used (Kneizys et al. 1988). Prac-

tically speaking, the code used is a python wrapper

implementation of lowtran7 (available at this URL),

where the TransmittanceGround2Space.py script is

run setting the zenith angle to 90◦. lowtran7 computes

transmittance from the UV/optical out to 30 µm and

thus this defines the wavelength range considered inn

what follows.

The code is run for 41 choices of observer height, from

0.01 km to 100 km in log-uniform steps. The 100 km run

is so close to 100% transmittance it is defined as such in

what follows to provide a crisp boundary condition for

interpolation. Intermediate observer heights are then

interpolated as desired using splines.

https://github.com/scivision/lowtran
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Figure 11. Amplification after extinction expected for a
1 metre diameter telescope at the Earth’s Hill radius (top),
half the Hill radius (middle) and the Moon’s separation (bot-
tom). Six atmosphere models are shown (same color cod-
ing as Figure 6), which control temperature-pressure profiles
(and thus refractivity profile) as well as the extinction com-
puted using lowtran7. All models assume no clouds. Stan-
dard photometric filters highlighted in gray, except for L,
M and N which are slightly offset to encompass the optimal
regions.

The amplification after extinction for a given obser-

vatory may now be computed. This is done by evaluat-

ing the lowtran7 spectral interpolator at a depth equal

to the depth traveled by the lensed rays, which is it-

self a function of wavelength. Since lowtran7 assumes

ground-to-space (although “ground” here is really just

a user-chosen altitude), then space-to-ground-to-space

transmission will simply be the self-product. Finally,

this function is then multiplied by the chromatic ampli-

fication function for the lunar observatory.

As a test of the lowtran7 model, the transmission was

converted to an equivalent atmospheric extinction coef-

ficient for some common optical filters. The extinction

coefficient for B-band was found to be 0.45, V-band 0.28,

R-band 0.19, I-band 0.086 and H-band 0.080. These

all line-up with typical coefficients for a good observing

site2

Figure 11 shows the amplification for 1 metre terras-

cope observatory after accounting for the lowtran7 ex-

tinction. Despite the extinction, amplification up to

70,000 remains feasible. One can see from Figure 11 that

extinction is severe for detectors at the Moon’s orbital

radius, since lensed rays need to travel deep through the

Earth’s atmosphere - just a couple of km (see Figure 9).

As we move out in orbital radius, sufficient lensing is

obtained at higher altitudes thereby reducing the effect

of atmosphere extinction, with clear benefits to such de-

tectors.

4.4. Interception by clouds

The grazing nature of the terrascope lensed rays

means that interception by clouds has the potential to

dramatically attenuate the overall transmission through

the atmosphere. Even wispy high-altitude cirrus clouds,

with an optical depth of ∼0.1 and 1 km thickness scale,

can appear completely opaque to terrascope rays since

the path length can be up to ∼100 km. This simplifies

the analysis, since one can simply assume that encoun-

tering any kind of cloud leads to zero transmission. The

real question is then what is the frequency which rays

intercept a cloud?

It is important to recall that for rays lensed onto a

Hill sphere terrascope, the deepest altitude penetrated

by the ray is 13.7 km (see Figure 10), and at this alti-

tude there are almost no clouds. Thus, if L ∼ F , then

the (D − R) ∼ 0 and lensed rays will have to traverse

not only a large airmass but also most likely intercept

opaque clouds during their journey. On the other hand,

observatories away from F require less deflection and

thus need not travel so deep through the Earth’s atmo-

sphere, largely avoiding clouds.

The relationship between L and (D − R) is well-

constrained from our simulations. The first thing to

highlight is that redder than about a micron, the refrac-

tion is almost achromatic and thus the lensing depth

is approximately constant for a given L (this is ap-

parent from Figure 10). Thus, one can simply take

limλ→∞(D−R) as an excellent approximation for wave-

lengths redder than a micron. The second thing to high-

light is that if one varies L from F out to RHill in 100

uniform steps, the relationship is tight and monotonic,

empirically found to be described by

2 See this URL for a pedagogical description of extinction co-
efficients and some typical values.

http://spiff.rit.edu/classes/phys445/lectures/atmos/atmos.html
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lim
λ→∞

(D −R) ' a0(1− a1e
−L/a2), (38)

where for the US Standard Atmosphere 1976 model

one obtains a0 =15.54 km a1 = 1.829 and a2 =551.100 km

(to four significant figures).

To estimate the effect of clouds, this work uses data

from the High-resolution Infrared Radiation Sounder

(HIRS) satellite instrument. Statistical properties of

clouds have been catalogued with multi-year observa-

tions taken from polar orbit and are have been described

in the literature (Wylie et al. 1994; Wylie & Menzel

1998). This work uses the data made available at this

FTP. Within a field of view of approximately 20 km by

20 km, HIRS determines the effective cloud fraction, Nε,

where N is the frequency of clouds and ε is the emissiv-

ity, which approximately equals one minus the transmis-

sion, T .

Averaging over all longitudes, latitudes and months,

the average effective cloud fraction for all clouds below

a pressure level of 950 mbar is 76.6%. At or below a

pressure level of 200 mbar the effective cloud fraction

has dropped to 5.4%. The global averages are shown in

Figure 12 where pressure levels have been converted to

altitudes. It is found that the nine available data points,

for any given location, are well described by a broken

power-law, with a break at around one scale height (as

shown by the smooth function overplotted in the left

panel of Figure 12).

To generalize the HIRS data to arbitrary locations

and altitudes, the data set is first interpolated to a reg-

ularized grid then each location fitted using the bro-

ken power-law. The interpolation is necessary because

no data is available north of 84◦ latitude or south of

−84◦. To interpolate, longitudinal great circles are

drawn around the Earth in one-degree intervals and then

the data is wrapped around to ensure a continuous peri-

odic function. A Gaussian Process with a Mattern-3/2

kernel is trained at each pressure level across all lati-

tudes and used to fill in the missing latitudes. The bro-

ken power-law is then fitted to each one-square degree

location independently, where the free parameters are

two slopes, one offset and one transition point.

To simplify the analysis, only L > RHill/2 is con-

sidered in what follows, meaning that limλ→∞(D −
R) >8.2 km. At these altitudes, only high-altitude cirrus

clouds are present.

With these points established, it is now possible to

estimate the impact of clouds on terrascope rays. It is

stressed that the following is an approximate estimate

and more detailed cloud modeling would be encouraged

in future work to refine the estimate made here. The

purpose of this section is to merely gauge the approxi-

mate feasibility of a terrascope when including clouds.

If one assumes a terrascope detector orbiting in the

Earth’s equatorial plane, then lensed rays will be de-

scribed by a great circle of constant longitude (or re-

ally one constant longitude plus another offset by 180◦).

Since the HIRS public data used here has a resolution

of 1◦, one can draw 180 such great circles - representing

different rotational phases of the Earth. Working in the

equatorial plane is not only a simplifying assumption but

also minimizes the impact of high altitude clouds which

are more frequent at equatorial regions (see Figure 12).

For each great circle, there are 360 different loca-

tions (spread across latitude) sampled in the (interpo-

lated) HIRS data. Since a terrascope detector located at

L = RHill/2 has focused red rays which traverse a depth

of (D − R) =8.229 km, at each location one can eval-

uate the cumulative effective cloud fraction above this

altitude using the broken power-law described earlier.

Effective cloud fraction is not equal to cloud frequency.

Fortunately, for high altitude clouds (>6 km), the ap-

proximate relationship N ' 1
2Nε may be used (Wylie

& Menzel 1998). Thus, at each of the 360 points along

the great circle, the cloud frequency for all clouds above

8.2 km altitude can be estimated.

Since the cumulative fraction is defined as all altitudes

above altitude z, and a terrascope ray indeed is forced to

pass through all altitudes above z, the cloud frequency

N may be interpreted as a time-averaged transmission

fraction for the depth (D − R). The total transmission

can now be estimated by simply averaging over all such

values along the great circle.

The results of this calculation are shown in Figure 13.

A clear exponential trend is apparent in the results,

highlighting as expected how more distant terrascope

observatories are less affected by clouds. For the lowest

(D −R) allowed by our model, of 6 km, L =600.000 km

and the average cloud transmission is 41.4%. Mov-

ing out to RHill/2, the situation is decidedly better

with an average transmission of 64.9% and by the time

L = RHill, 91.9% of the lensed rays make it through the

atmosphere unimpeded by clouds. In conjunction with

the earlier extinction calculations, these results strongly

suggest that a terrascope detector as close to L = RHill

as possible would optimize the setup.

4.5. Off-axis lensing

Off-axis lensing was calculated using the method de-

scribed in Section 3.5. The terrascope detector is fixed

to a distance of L = RHill and to W =1 m in what

follows. The shape of the lensed source around the

Earth was computed for the US Standard Atmosphere

ftp.ssec.wisc.edu
ftp.ssec.wisc.edu
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Figure 12. Left: Effective cloud fraction, Nε, averaged over all months and locations as measured over 11-years by HIRS, as
a function of altitude (Wylie et al. 1994; Wylie & Menzel 1998). Right: Two example cloud maps from the data plotted on the
left. Note how high altitude clouds are much more common around the equatorial regions.
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Figure 13. Estimated transmission through the Earth’s
atmosphere due to clouds for a terrascope detector at a
distance L. At one Hill radius (1 500 000 km), lensed rays
travel no deeper than 13.7 km and thus largely avoid clouds,
thereby losing less than 10% of the lensed light.

1976 model at various off-axis distances ranging from

Q =0 km to Q =40 000 km to 1000 km steps. As with

the images shown in Figure 8, the rings are often egg-

shaped (see Figure 14) and thus the area was calculated

through numerically integration along 2000 uniformly

spaced choices of φ, yielding an amplification value. The

calculation was then repeated across the same grid of

wavelengths used earlier in Section 3.1.

The amplification computed above describes the ide-

alized case with no extinction. Since the shape is saved

in each simulation, this information can be used to es-

timate the fraction of lost light due to clear sky ex-

tinction and also that of clouds, using the same meth-

ods described earlier in Sections 4.3 & 4.4. Since the

depth varies as a function of φ along the ring, the over-

all transmission is given by the amplification multiplied

by the mean of the extinction over all 2000 phase points

(where extinction here includes both the clear sky and

cloud components). The resulting amplifications from

this process are shown in Figure 14.

For offsets of Q >18 900 km, the amplification has

dropped to less than half that as on-axis. This may

be converted into a timescale by nothing that at one

Hill radius, a satellite would have a tangential velocity

of '0.5 km/s. Accordingly, the lensing timescale would

be ∼20 h including both sides of the off-axis lensing, or

roughly a day. During this time, the target has moved

by approximately 1.4◦ on the sky.

5. DISCUSSION

5.1. Magnification

The calculations described thus far concern the am-

plification in flux of a distant source with a terrascope,

but not the magnification in angular size of a source.

Variations in the Earth’s atmosphere already present a

major limiting factor in the resolving power of ground-

based telescope and thus one should expect it to be an
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Figure 14. Off-axis lensing through the terrascope. Panel [A] shows the amplification after extinction for λ =1.74 µm. Panel
[B] shows the simulated lensed images for 41 evenly spaced offset distances from Q =0 km to Q =40 000 km. Panel [C] shows
the spectral amplification at six different offset distances.
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even greater for the terrascope. Even a Hill sphere ob-

servatory, exploiting stratospheric lensing, will observe

rays that have traversed through∼20 airmasses (see Fig-

ure 4) and thus seeing will be of order tens of arcseconds.

In the absence of seeing, it is shown here how a simple

calculation yields the idealized magnification. Consider

two rays traveling from a point-like source at a distance

d � L which is positioned in the on-axis lensing con-

figuration. Consider that the two rays reach the at-

mosphere at impact parameters b+ and b− as depicted

in Figure 5. These rays are traveling, to a very good

approximation, as parallel rays as depicted in the fig-

ure and thus will lens onto the detector of diameter W .

Magnification is truly given by the change in angular

separation between two distant sources rather than the

reverse situation considered here of the divergence of a

point-like source, and so the (de)magnification is given

by (∆b
d )/( W

d+L ) ' ∆b/W . Using the analytic estimate

of Equation (30), this equates to H∆/R ' 10−3.

5.2. Separation of nearby sources

The fact that an off-axis source still produces signif-

icant lensing as much as 1.4◦ is useful, because lensing

events occur over a prolonged timescale, but also po-

tentially problematic. This is because it indicates that

nearby sources, within a degree, will have some frac-

tion of their light also lensed onto the detector and thus

might be concerned about blending.

Consider the on-axis lensing scenario but with an ad-

ditional source offset by an angle θ on the sky. The line

connecting the contaminating source and the detector

does not pass through the Earth’s center (as with on-

axis lensing) but rather is offset by a distance Q, mean-

ing that θ = Q/L. The on-axis lensed sourced travels

through the Earth’s atmosphere at an impact parameter

of bmid, which is equivalent to limQ→0 bmid(Q), whereas

the offset source has bmid(Q). These two lensed images

appear separated in the atmosphere, as seen from the

detector, by an angle of α given by

α =
(limQ→0 bmid(Q))− bmid(Q)

L
(39)

Accordingly, the apparent angular separation de-

creases from θ to α by the ratio

α

θ
=

(limQ→0 bmid(Q))− bmid(Q)

Q
. (40)

Using the numerical results from Section 4.5, this ratio

can be computed for any given wavelength and at any

given phase angle around the Earth. For Q >20 000 km,

all phase angles converge to a α
θ ratio of one over a

few thousand, consistent with the demagnification esti-

mate made earlier in Section 5.1. Since the detector has

a diffraction limited angular resolution of 1.22 λ
W , then

the source separation ability of the terrascope will be

∼ λH∆

WR . This is a few arcminutes for a 1 metre detector

at 1 µm.

Aside from resolving a contaminant through angular

separation, it may be possible to separate sources (to

some degree) based on the distinct temporal lensing light

curves that emerge due to the differing geometries.

5.3. Atmospheric radiance

The Earth’s atmosphere is luminous from airglow,

scattering and thermal emission and this radiance poses

an obstacle to the terrascope. By using a coronagraph

adapted for the Earth, it may be possible to remove flux

from the Earth’s disk, which greatly outshines the sky

brightness. The nulled disk could encompass not just

the planetary bulk but also lower atmospheric regions,

where useful lensing does not occur due to extinction.

This would help remove a sizable fraction of the scat-

tered light. In order to enable off-axis lensing, but avoid

the near opaque cloud deck for low-altitude clouds, a

reasonable choice might be to truncate the lower 6 km

of atmosphere.

Scattering from the upper atmosphere will be ever

present and represents a source of background (rather

than necessarily a source of noise). This background

will be strongly dependent upon the relative position

of the Sun during the observations. Let us denote the

angle subtended from the Earth to the terrascope detec-

tor to the Sun as Θ. If 0◦< Θ <90◦ or 270◦< Θ <360◦,

then the Sun will appear directly in view to the detector

excluding observations during this time. If 90◦+18◦<

Θ <270◦-18◦, then one side of the Earth will be in as-

tronomical twilight where scattered sunlight cannot in-

terfere (except at the instant of Θ = π). If the observa-

tory is exactly in the ecliptic plane, then at any one time

during this range in Θ exactly one half of the Earth’s

circumference will be in astronomical twilight.

Accordingly, it is estimated here that the actual am-

plification from a terrascope will be one half of that de-

picted in the various figures throughout. This assumes

that any part of the Earth which is illuminated will have

a background component that is simply not removable.

However, more detailed calculations than possible here

may be able demonstrate that at least some fraction of

this lost capability can be recovered through background

suppression strategies, such as leveraging polarization,

wavelength information, and temporal light curve vari-

ations. These are undoubtedly technical challenges for

a realized terrascope but effort should be encouraged
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to explore overcoming them given the very large gains

potentially given by such a system.

5.4. Atmospheric stability

The refractivity of air at a specific altitude will vary as

a function of position and time in a realistic atmosphere.

It is argued here that so long as the terrascope detector

is a significant distance away from the inner focal point,

these variations will not affect the amplification factor in

a meaningful way. Consider a particular location where

there is a increase in pressure at altitude z compared

to the typical pressure at altitude z. This causes the

refractivity to increase and thus light traveling at that

location will now refract too much and miss the detector

at distance L. However, there must be an altitude z′ > z

where the pressure decreases back down to the typical

pressure, thereby refracting light back onto the detector.

In this way, the perfect circular ring image is distorted

into an irregular ring - but the thickness of the ring is

the same and thus the amplification is unchanged.

5.5. Pointing

Since an off-axis source still causes significant lens-

ing at 1.4◦ for a Hill sphere terrascope, this denotes the

approximate angular band on the sky suitable for ob-

servation. This represents just under one percent of the

sky. The orbital plane of the detector is a free param-

eter but ecliptic observing minimizes the affect of high

altitude clouds and Solar scattering, as well as provid-

ing the densest field of targets. Pointing is naturally

limited to whatever happens to be behind the Earth at

any given time, although fleets of terrascope detectors

could increase the coverage as needed.

5.6. Radio terrascope

The calculations of extinction in this work strictly as-

sume optical/infrared light. Moving further out into the

radio offers two major advantages though. First, ex-

tinction due to clouds can be largely ignored, allowing

for detectors much closer including on the lunar sur-

face. Second, Solar scattering is far less problematic in

the radio and indeed it is typical for radio telescopes to

operate during daylight phases. The simple refraction

model of this work was extended to the radio and indeed

the amplification was estimated to be largely achromatic

beyond a micron. Nevertheless, the model did not cor-

rectly account for the radio refractivity as a function of

humidity, nor the impact of the ionosphere on lensed

rays. Accordingly, a radio terrascope may be an excel-

lent topic for further investigation. It should be noted

though that a disadvantage of a giant radio receiver in

space is that humanity already regularly builds large

receivers on Earth at much lower expense than their op-

tical counterparts. Thus, the benefit of going into space

for radio observations may not prove ultimately econom-

ical.
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Software: lowtran7 (Kneizys et al. 1988)
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