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Abstract 

This paper revisits the algorithm for long duration constant thrust circle to circle transfer 

first proposed in Edelbaum 1961 [1], as restated by Alfano and Wiesel, 1985 [2]. The method 

varies from Alfano and Wiesel in that it directly computes the control parameter, generating a 

table of controls as a function of orbit ratio over the range of Hamiltonian costates.   

Alfano’s derivation and result is included as an example of a low thrust control law in the 

textbook, Fundamentals of Astrodynamics and Applications by David A. Vallado [3] (pp. 382-

388) and is important due to its influence on astrodynamics students. The treatment in the 

original paper is abbreviated neither provides an intuitive basis nor describes important features 

in the derivation; for instance, the control law is limited to combined inclination change less than 

45 degrees, Alfano and Wiesel simply tack on additional inclination change for those maneuvers 

in excess of the angular thrust developed by the control parameters.   

The development returns to the original Edelbaum paper to garner additional insights 

necessary for computation of the control parameter and justification of the algorithm.  An 

ephemeris model is developed to compare results with to the Alfano and Wiesel Nomogram 

(Figure 1 of Alfano & Wiesel).  

Keywords:  Low-thrust, Geosynchronous, Orbit Transfer, Electric Propulsion, Inclination  
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Low Thrust Combined Maneuvers via the Alfano Method 

Edelbaum and his team at United Aircraft derived the first closed form solution for 

continuous thrust circle-to-circle transfers [1].  Alfano and Wiesel extended the method, 

optimizing the Edelbaum yaw control law for many revolutions [2], other subsequent authors 

sought to improve the control law [4].  This paper seeks to implement the Alfano solutions in a 

software tool.  

First, we revisit the original derivation with the objective of developing a direct 

computation of the Edelbaum/Alfano thrust controls. 

Initial Development of the Closed Form Solution 

The Edelbaum team at United Aircraft started their development from the spherical form 

of the Lagrange planetary equations.  Their 1961 paper surveyed a wide-ranging set of cases for 

satellite control, both impulsive and continuous thrust.   It is worth noting that the Edelbaum 

development was very general in that the paper developed formulations for combined maneuvers 

changing any two orbital elements. Optimal combined maneuvers for circle-to-circle transfer 

using low-thrust propulsion were discussed in an appendix, for cases of change in eccentricity, 

altitude, and inclination. In this paper we are interested in combined maneuvers changing altitude 

and inclination.   

The Edelbaum development proceeds by combining expressions for thrust vector 

components pitch (𝛼𝛼) and yaw (𝛽𝛽) with the Lagrangian equations of motion. With assumptions 

that time of the maneuver depends only upon the apogee radius (i.e. a circular orbit) and that the 

inclination change is small, Edelbaum proceeds to derive the steering law for producing the 

maximum change in inclination and semi-major axis (SMA) over the period of one orbit.  The 
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treatment yields the yaw steering angle to achieve the maximal combined altitude increase and 

inclination change. 

The Edelbaum equations of motion are repeated in Equation 1 and Equation 2.  These 

correspond to equations 18 in the original paper, where we have replaced thrust with specific 

acceleration. 

Equation 1 

 

da
dt

= 𝑎𝑎0
𝐴𝐴0
𝑉𝑉0

(2 cos𝛼𝛼 cos𝛽𝛽) 

Equation 2 

di
dt

=
𝐴𝐴0
𝑉𝑉0

[cos(𝜃𝜃′) sin𝛽𝛽] 

Where: 

• 𝑎𝑎0, starting semi-major axis 
• 𝐴𝐴0, is specific acceleration, thrust divided by mass 
• 𝑉𝑉0, is the initial circular velocity at start of the maneuver 
• α, alpha, an in-plane thrust angle, known as pitch 
• β, the out-of-plane thrust angle, known as yaw 
• θ’, the angle along track, the sum of the argument of periapsis and the true anomaly 
 

The thrust components are formulated in the Velocity-Normal-Binormal reference frame 

where unit vector 𝑥𝑥1� is in the direction of the velocity vector, 𝑥𝑥2� is in the direction of the angular 

momentum vector, and the binormal, 𝑥𝑥3�  is the cross-product 𝑥𝑥1�  ×  𝑥𝑥2� .  

Circular orbits with plane change should measure the along-track angle from the line of 

nodes, this is known as the Argument of Latitude, shown as 𝜃𝜃′ = 𝜔𝜔 + 𝜃𝜃 in Edelbaum. 

. 
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The thrust angle is the angle measured relative to the Normal axis and can have both in-

plane (pitch) and out-of-plane (yaw) components.  In-plane components are used for change of 

eccentricity or semi-major axis, and out-of-plane components affect inclination. The term 

cos𝛼𝛼 cos𝛽𝛽, provides the tangential component of thrust and the term sin𝛽𝛽 provides the out-of-

plane component of thrust.  The expression cos(𝜃𝜃′) sin𝛽𝛽 ensures that the resultant out-of-plane 

thrust is maximum at the line of nodes, and changes sign at the line of apsides.   

Equation 3 shows the optimization can proceed by simply maximizing the change in 

orbital elements with change in pitch and yaw thrust angles and using an adjoint constraint (𝜆𝜆) 

for the amount if inclination change. 

Equation 3 

𝜕𝜕
𝜕𝜕𝛼𝛼

𝜕𝜕
𝜕𝜕𝛽𝛽

�
𝑑𝑑𝑎𝑎
𝑑𝑑𝑑𝑑

+  𝜆𝜆
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
� = 0 

substituting a simple steering law, 

tan𝛽𝛽 = 𝑘𝑘′ cos(𝜃𝜃′) 

And the following standard trigonometric substitutions, 

tan𝛽𝛽 = 𝑥𝑥 

 cos𝛽𝛽 =  
1

√1 + 𝑥𝑥2
  

sin𝛽𝛽 =
𝑥𝑥

√1 + 𝑥𝑥2
 

The Edelbaum equations of motion then become, 

Equation 4 

𝑑𝑑𝑎𝑎 = 𝑎𝑎02
𝐴𝐴0
𝑉𝑉02

�
2√1 − 𝑘𝑘2

√1 + 𝑘𝑘2 cos2 𝜃𝜃′
� 𝑑𝑑𝜃𝜃′ 
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𝑑𝑑𝑑𝑑 = 𝑎𝑎0
𝐴𝐴0
𝑉𝑉02

�
𝑘𝑘 − 𝑘𝑘 𝑠𝑠𝑑𝑑𝑠𝑠2 𝜃𝜃′
√1 + 𝑘𝑘2 cos2 𝜃𝜃′

� 𝑑𝑑𝜃𝜃′ 

Where the term under the radical can be recognized as the denominator of the elliptic 

integral.  The control law becomes, 

Equation 5 

tan𝛽𝛽 = 𝑘𝑘 cos(𝜃𝜃′) 

𝑘𝑘 =
𝑘𝑘′

√1 + 𝑘𝑘′2
 

Note that if 𝑘𝑘 is the trigonometric substitution with 𝑘𝑘′ = 𝑠𝑠𝑑𝑑𝑠𝑠𝛽𝛽𝑚𝑚𝑎𝑎𝑎𝑎, where 𝛽𝛽𝑚𝑚𝑎𝑎𝑎𝑎 is the 

maximum yaw angle for the revolution. When Equations 4 are integrated over one complete 

orbital period, Equation 6 and Equation 7 result. 

Equation 6 

∆𝑎𝑎 = 8
𝑎𝑎03

𝜇𝜇
𝐴𝐴0�√1 − 𝑘𝑘𝐾𝐾(𝑘𝑘)� 

Equation 7 

∆𝑑𝑑 = 4
𝑎𝑎02

𝜇𝜇
𝐴𝐴0 �

1
𝑘𝑘
𝐸𝐸(𝑘𝑘) + �𝑘𝑘 −

1
𝑘𝑘
�𝐾𝐾(𝑘𝑘)� 

Where: 

• The complete elliptic integral of the first kind is, K(k). 
• The complete elliptic integral of the second kind is, E(k). 
• The argument k is the elliptic modulus. 
• The square of the circular characteristic velocity 𝑉𝑉02= 𝜇𝜇/𝑎𝑎0,  
• 𝑎𝑎0 the semi-major axis at start of each revolution. 

 

Using Equation 6 and Equation 7, solutions for k provide the optimum control angle.  As 

the out-of-plane angle varies, inclination change is induced while the given change in semi-major 

axis is accomplished.  Each value of lambda in Equation 3 provides a specific combination of 

altitude and inclination change for the circle-to-circle transfer in Edelbaum. 
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Alfano & Wiesel Formulation 

Alfano & Wiesel reformulated the Edelbaum equations for large changes in semimajor 

axis and inclination over many revolutions [2].  Their result selects a different optimum value for 

substitution into the control law, one which varies for change in semi-major axis per revolution. 

Alfano and Wiesel factor the period out of Equation 6 and Equation 7 using, 

𝑑𝑑𝑑𝑑 = 2𝜋𝜋�
𝑎𝑎3

𝜇𝜇
 

Equation 8 

𝑑𝑑𝑎𝑎
𝑑𝑑𝑑𝑑

=
4
𝜋𝜋
�
𝑎𝑎3

𝜇𝜇
 𝐴𝐴(𝑑𝑑)√1− 𝑢𝑢 Κ(𝑢𝑢) 

Equation 9 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
2
𝜋𝜋�

𝑎𝑎
𝜇𝜇

 𝐴𝐴(𝑑𝑑) �
1
√𝑢𝑢

Ε(𝑢𝑢) +  �√𝑢𝑢 −  
1
√𝑢𝑢

�Κ(𝑢𝑢)�  

Alfano and Wiesel have substituted √𝑢𝑢 = k in the Edelbaum equations, where k is the 

elliptic modulus and corresponds to the elliptic parameter [5].  This substitution alters the 

physical interpretation of the argument.  Thus, Alfano and Wiesel restate the steering law 

Equation 5 as, 

Equation 10 

tan𝛽𝛽 =
cos 𝜃𝜃′

�1 𝑢𝑢� − 1
 

The denominator of Equation 10 is the form of an arctangent of an angle defined by 𝑢𝑢 =

𝑠𝑠𝑑𝑑𝑠𝑠(𝑎𝑎). 

Equation 8 and Equation 9 are intended for use over many revolution trajectories and the 

depletion of fuel affects the acceleration term.   
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𝐴𝐴(𝑑𝑑) =
𝐴𝐴(𝑑𝑑0)

1 −𝑚𝑚𝑑𝑑̇
 

Where the mass rate is, �̇�𝑚. 

Alfano makes a differential substitution in order to remove the time dependence of the 

acceleration. 

𝑑𝑑𝐴𝐴
𝑑𝑑𝑑𝑑

=
𝐴𝐴(𝑑𝑑0)
�̇�𝑚

ln(1 − �̇�𝑚𝑑𝑑) 

𝑑𝑑𝑑𝑑 = 𝐴𝐴(𝑑𝑑)𝑑𝑑𝑑𝑑 

Where 𝑑𝑑𝑑𝑑 is the incremental change in velocity.   

By direct substitution Equation 11 and Equation 12 result: 

Equation 11 

𝑑𝑑𝑎𝑎
𝑑𝑑𝑑𝑑

=
4
𝜋𝜋
�
𝑎𝑎3

𝜇𝜇
 √1 − 𝑢𝑢 Κ(𝑢𝑢) 

Equation 12 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
2
𝜋𝜋�

𝑎𝑎
𝜇𝜇
�

1
√𝑢𝑢

Ε(𝑢𝑢) +  �√𝑢𝑢 −  
1
√𝑢𝑢

�Κ(𝑢𝑢)� 

For compactness, Alfano bundles the elliptic integrals. 

Equation 13 

𝑃𝑃(𝑢𝑢) = √1 − 𝑢𝑢𝐾𝐾(𝑢𝑢) 

Equation 14 

𝑅𝑅(𝑢𝑢) =
1
√𝑢𝑢

𝐸𝐸(𝑢𝑢) + �√𝑢𝑢 −
1
√𝑢𝑢

�𝐾𝐾(𝑢𝑢) 

For direct calculation, the derivatives of these functions are needed, 

Equation 15 

𝑑𝑑𝑃𝑃(𝑢𝑢)
𝑑𝑑𝑢𝑢

= −
1
2
𝐾𝐾(𝑢𝑢)
√1 − 𝑢𝑢

+  (1 − 𝑢𝑢)
1
2𝐾𝐾′(𝑢𝑢) 
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Equation 16 

𝑑𝑑𝑅𝑅(𝑢𝑢)
𝑑𝑑𝑢𝑢

=
𝐾𝐾(𝑢𝑢)
√𝑢𝑢

+
𝐾𝐾(𝑢𝑢) − 𝐸𝐸(𝑢𝑢)

2𝑢𝑢3/2 −
𝐸𝐸′(𝑢𝑢) − 𝐾𝐾′(𝑢𝑢)

√𝑢𝑢
+ √𝑢𝑢𝐾𝐾′(𝑢𝑢) 

The Hamiltonian is formed, 

Equation 17 

𝐻𝐻 = 1 +  𝜆𝜆𝑎𝑎
4
𝜋𝜋
�
𝑎𝑎3

𝜇𝜇
 𝑃𝑃(𝑢𝑢) +  𝜆𝜆𝑖𝑖

2
𝜋𝜋�

𝑎𝑎
𝜇𝜇
𝑅𝑅(𝑢𝑢) 

With the optimality condition: 

𝜕𝜕𝐻𝐻
𝜕𝜕𝑢𝑢

= 0 

Equation 18 

𝑑𝑑𝑎𝑎
𝑑𝑑𝑑𝑑

=
𝜕𝜕𝐻𝐻
𝜕𝜕𝜆𝜆𝑎𝑎

=
4
𝜋𝜋
�
𝑎𝑎3

𝜇𝜇
 𝑃𝑃(𝑢𝑢) 

Equation 19 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
𝜕𝜕𝐻𝐻
𝜕𝜕𝜆𝜆𝑖𝑖

=
2
𝜋𝜋�

𝑎𝑎
𝜇𝜇
𝑅𝑅(𝑢𝑢) 

These equations show that R(u) controls the amount of inclination change per orbit and 

P(u) controls the amount of change in orbit ratio.  The quantity under the radical in Equation 18 

is the Keplerian period and the like quantity in Equation 19 is the inverse of the characteristic 

velocity.  This implies that P(u) has units of 1/sec and R(u) has units of km/sec. 

We can solve the value of lambda for a boundary condition of final inclination and final 

orbit ratio using the transversality conditions, 

Equation 20 

𝑑𝑑𝜆𝜆𝑎𝑎
𝑑𝑑𝑑𝑑

= −
𝜕𝜕𝐻𝐻
𝜕𝜕𝑎𝑎
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=  𝜆𝜆𝑎𝑎
6
𝜋𝜋
�
𝜇𝜇
𝑎𝑎3
𝑃𝑃(𝑢𝑢) +  𝜆𝜆𝑖𝑖

2
𝜋𝜋
�
𝜇𝜇
𝑎𝑎
𝑅𝑅(𝑢𝑢) 

Equation 21 

𝑑𝑑𝜆𝜆𝑖𝑖
𝑑𝑑𝑑𝑑

= −
𝜕𝜕𝐻𝐻
𝜕𝜕𝑑𝑑

= 0 

Equation 21 results since there is no dependency on inclination in the Hamiltonian, 

showing that 𝜆𝜆𝑖𝑖 is a constant.  In addition, the Hamiltonian has no explicit dependency on τ.  

𝜕𝜕𝐻𝐻
𝜕𝜕𝑑𝑑

= 0 

Therefore, the Hamiltonian itself is a constant, and when the spacecraft reaches its final 

orbit, we may set Η�𝑑𝑑𝑓𝑓� = 0. 

Now using simple substitution, 𝜆𝜆𝑖𝑖 can be solved in terms of 𝜆𝜆𝑎𝑎. 

𝜆𝜆𝑎𝑎 = −
𝜆𝜆𝑖𝑖
2𝑎𝑎

𝑅𝑅′(𝑢𝑢)
𝑃𝑃′(𝑢𝑢)

 

𝐻𝐻 = 1 +  𝜆𝜆𝑖𝑖
2
𝜋𝜋�

𝑎𝑎
𝜇𝜇
�𝑅𝑅(𝑢𝑢) −  

𝑅𝑅′(𝑢𝑢)𝑃𝑃(𝑢𝑢)
𝑃𝑃′(𝑢𝑢)

� = 0 

Equation 22 

𝜆𝜆𝑖𝑖 =
𝜋𝜋
2
�
𝜇𝜇
𝑎𝑎

−1

�𝑅𝑅(𝑢𝑢) −  𝑅𝑅
′(𝑢𝑢)𝑃𝑃(𝑢𝑢)
𝑃𝑃′(𝑢𝑢) �

 

Equation 22 is used to find the constant value of 𝜆𝜆𝑖𝑖 for the transfer, where the values √𝑢𝑢 

= k, the elliptic modulus in Equation 4. 

Alfano simplifies Equation 22 by defining yet another function of u (note the sign 

change), 

Equation 23 

𝜙𝜙(𝑢𝑢) = �
𝑅𝑅′(𝑢𝑢)𝑃𝑃(𝑢𝑢)
𝑃𝑃′(𝑢𝑢) − 𝑅𝑅(𝑢𝑢)� 
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𝜆𝜆𝑖𝑖 =
𝜋𝜋
2
�
𝜇𝜇
𝑎𝑎

1
𝜙𝜙(𝑢𝑢) 

Alfano states that the 𝜙𝜙(𝑢𝑢) function is monotonic, and its inverse function can be found, 

which given that 𝜆𝜆𝑖𝑖 is constant, will solve for the values of u proportional to the square root of 

orbit ratio, 𝑎𝑎.  One solution, given in the Appendix to [2] is to approximate the inverse 𝜙𝜙(𝑢𝑢) 

using a Chebyshev polynomial.  We choose a different approach. 

The Steering Law 

By substituting the relationship of u to the elliptic modulus, √𝑢𝑢 = 𝑘𝑘 and using the 

fundamental trigonometric identity,  

k = sin 𝑏𝑏 

tan 𝑏𝑏 =
𝑘𝑘

√1 − 𝑘𝑘2
;  

The steering law in Equation 10 can be re-arranged. 

Equation 24 

tan𝛽𝛽 =
√𝑢𝑢

√1 − 𝑢𝑢
cos 𝜃𝜃′ =

𝑘𝑘
√1 − 𝑘𝑘2

cos 𝜃𝜃′ = tan(𝑘𝑘) cos 𝜃𝜃′ 

We see that 𝑘𝑘 = √𝑢𝑢 is the sine of the maximum yaw angle in each orbit.  The difference 

between the Edelbaum steering law, Equation 4, and the Alfano steering law is a Tangent of the 

argument versus a Sine in Edelbaum.  Physically this means that the Alfano control law provides 

a maximum thrust angle of 57 degrees, whereas the Edelbaum control law may develop a 

maximum thrust angle of 88 degrees. 

In the Edelbaum formulation, the transfer takes place between an initial circular orbit and 

a final circular orbit.  Thus, there is a single pseudo-optimum steering angle over the entire 

transfer.  In Alfano there is the assumption of many circle-to-circle transfers, and though the 

adjoint constrain for inclination, 𝜆𝜆𝑖𝑖 is also found to be constant, each circle-to-circle transfer has 
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a different steering angle.  The Alfano approach increases sophistication by optimizing a 

Hamiltonian formulation with adjoint constraints in both SMA and inclination.  This means that 

the elliptic modulus, 𝑘𝑘2 = 𝑢𝑢, in Equation 8 and Equation 9 has different solutions between 

Edelbaum and Alfano, yet still it is clear that 𝑘𝑘 = √𝑢𝑢 identifies an angle which defines the 

optimum thrust vector.  In Alfano and Wiesel, the 𝜙𝜙(𝑢𝑢) must change in proportion to 𝑎𝑎−1/2, and 

𝜆𝜆𝑖𝑖
−1is the proportionality constant. 

𝜙𝜙(𝑢𝑢) =
𝜋𝜋
2�

𝜇𝜇 �
1

𝜆𝜆𝑖𝑖√𝑎𝑎
� 

Finding the Trajectory Directly 

  The quantity needed to control the thrust vector is u, the argument of 𝜙𝜙(𝑢𝑢).  This 

suggests simply calculating 𝜙𝜙 for a series of linearly spaced u values.  It is only necessary to 

compute the array of 𝜙𝜙(𝑢𝑢) once; these values correspond to the values of 𝜆𝜆𝑖𝑖 for orbit ratio =1 

and are referred to as canonical. The complete range of values of 𝜆𝜆𝑖𝑖 may be computed by 

multiplying with the inverse of the orbit ratio.  Given the vector of computed 𝜆𝜆𝑖𝑖 these may be 

stored in a table and arrays of u created by sorting on the canonical values of 𝜆𝜆𝑖𝑖.  The sorted table 

effectively represents the inverse phi function. 

Computing 𝜙𝜙(𝑢𝑢) involves computing the complete elliptic integrals of the first and 

second kind, which may be done with the python SciPy special library1. 

from scipy import special 
special.ellipk(u) 
special.ellipe(u) 

 

 
 

1 Wolfram Mathematica also provides these functions and is used as a check on results. 
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Figure 1 shows the result of this computation for u = 0.1 to 1.  The starting value of 0.1 is 

used to avoid another singularity in the elliptic integrals, which skews the plot magnitude. 

 

 
Figure 1, Plot of Complete Elliptic Integrals for u from 0 to 1 

The Φ function defined by Alfano also requires that the derivatives of the first and second 

complete elliptic integral be taken. 

Formulas for elliptic integral derivatives are found in the NIST Downloadable Library of 

Math Functions (DLMF) [6].  The form of the derivatives for K and E in the DLMF use the 

elliptic modulus as an argument, thus these formulas must be multiplied by ½, which results 

from taking the derivative of √𝑢𝑢.  The formulas used are as follows. 

Equation 25 

𝑑𝑑𝐾𝐾(𝑢𝑢)
𝑑𝑑𝑢𝑢

=
1
2
𝐸𝐸(𝑢𝑢) − (1 − 𝑢𝑢)𝐾𝐾(𝑢𝑢)

𝑢𝑢(1 − 𝑢𝑢)
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Equation 26 

𝑑𝑑𝐸𝐸(𝑢𝑢)
𝑑𝑑𝑢𝑢

=
1
2
𝐸𝐸(𝑢𝑢) − 𝐾𝐾(𝑢𝑢)

𝑢𝑢
 

Equation 25 and Equation 26 can be used to compute 𝑃𝑃′(𝑢𝑢) and 𝑅𝑅′(𝑢𝑢).   

Equation 27 

𝑃𝑃(𝑢𝑢) = √1 − 𝑢𝑢𝐾𝐾(𝑢𝑢) 

𝑑𝑑𝑃𝑃(𝑢𝑢)
𝑑𝑑𝑢𝑢

= −
1
2
𝐾𝐾(𝑢𝑢)
√1 − 𝑢𝑢

+  (1 − 𝑢𝑢)
1
2𝐾𝐾′(𝑢𝑢) 

=
𝐸𝐸(𝑢𝑢) − 𝐾𝐾(𝑢𝑢)

2𝑢𝑢√1 − 𝑢𝑢
 

Equation 28 

𝑅𝑅(𝑢𝑢) =
1
√𝑢𝑢

𝐸𝐸(𝑢𝑢) + �√𝑢𝑢 −
1
√𝑢𝑢

�𝐾𝐾(𝑢𝑢) 

𝑑𝑑𝑅𝑅(𝑢𝑢)
𝑑𝑑𝑢𝑢

=
𝐾𝐾(𝑢𝑢)
√𝑢𝑢

+
𝐾𝐾(𝑢𝑢) − 𝐸𝐸(𝑢𝑢)

2𝑢𝑢3 2�
−
𝐸𝐸′(𝑢𝑢) − 𝐾𝐾′(𝑢𝑢)

√𝑢𝑢
+ √𝑢𝑢𝐾𝐾′(𝑢𝑢) 

= −
𝐸𝐸(𝑢𝑢) − 𝐾𝐾(𝑢𝑢)

2𝑢𝑢3 2�
 

Plots of these functions are shown in Figure 2 and Figure 3.  

Equation 27 and Equation 28 can be used to compute 𝜙𝜙(𝑢𝑢) for a series of 𝑢𝑢 from 0 to 1 

per Equation 23.  A linear array of u is generated to four decimal place precision using the 

numpy linspace library function. 

u = np.round(0.1 * np.linspace(1, 10, ncols, endpoint=False), 4) 

We exclude the endpoint in this array because the singularity in the recurring expression 

(1 - u) causes scaling difficulties.  The resulting plot of Φ(u) is shown in Figure 4. 
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Figure 2, Plots of R(u) and dR/du 

 

Figure 3, Plots of P(u) and dP/du 
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Figure 4, Inverse Φ(u) over the Domain of u 

The values of the 𝜆𝜆𝑖𝑖 costates are formed as combinations of the reciprocal of Φ(u) and the 

reciprocal square root of the orbit ratio and is shown in Figure 5.   

The trajectory for any given value of 𝜆𝜆𝑖𝑖 can be visualized as a plane parallel to the u, R 

axes cutting through the Φ surface at a vertical offset equal to 𝜆𝜆𝑖𝑖.  Starting at a 𝜆𝜆𝑖𝑖value of -0.496 

Figure 5 shows the trajectory is cutoff at the right edge, where the u value approaches 1.    This 

agrees with Alfano and Wiesel’s original figure as reprinted in Vallado Figure 6-24 [3], which 

shows that trajectories for 𝜆𝜆𝑖𝑖 <  −0.5 are predominately inclination change. 

Another observation is that for values of 𝜆𝜆𝑖𝑖 more positive than -0.3245 the trajectory is 

cutoff at the left edge where the u values are less than 0.2.  This indicates that the optimal 
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trajectory does not start until an orbit ratio > 1 has been achieved.  This agrees with Vallado 

Figure 6-24 which shows trajectories less than this 𝜆𝜆𝑖𝑖 are predominately altitude change. 

 

Figure 5, Alfano Costates by Orbit Ratio 

In our method, the end of the trajectory is easily identified because the number of u 

values associated with any canonical value of 𝜆𝜆𝑖𝑖 that are more negative than -0.496 will simply 

run out at some value of orbit ratio less than 10.  We mime the behavior of the Alfano and Wiesel 

in our code by initializing to 1 the rows of the table in which we store the values of u. The table 

is then overwritten with calculated values of u, leaving the 1 value as residue where no u value is 

associated with the costate.  With this artifice, the control program simply returns a yaw angle of  

𝜋𝜋
2� ∗ cos 𝜃𝜃′ when it encounters values of 𝑢𝑢 = 1 in the control table. 

The control program using this approach provides yaw angles over the range of orbit ratio 

1.1 to 6.6 for various values of costate as shown in Figure 6. 
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Figure 6, Steering Angles from Costates 

The approach for validation of the direct computation is to execute multiple trajectory 

simulations using the Goddard Mission Analysis Toolkit (GMAT) [7] which provides an 

Ephemeris model based upon JPL Navigation and Ancillary Information Facility (NAIF) 

astrodynamics kernels.  The GMAT mission model is simple, shown in Figure 6.  With the 

objective of obtaining computed values as similar to Alfano and Wiesel as possible, the eclipse 

model is turned off and there is no drag or Solar Radiation Pressure model used.  The spacecraft 

model is a 4.5mT, 128kW SEP vehicle using an aggregate of Hall Effect Thrusters providing 6N 

thrust.  Multiple models are executed in batch for orbit ratio 1.5 to 10 in increments of 0.5 and 

costates from -0.1 to -1.56 in increments of 0.01.  The mission is executed starting at 0 degrees 

inclination, and the resulting final inclination is the maximum achievable orbit ratio and 

inclination for the given costate.  The initial fuel mass is 1855kg which is precalculated to be 

sufficient for the theoretically maximum delta-v at orbit ratio 10. 
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BeginMissionSequence; 
 

Propagate 'Propagate to periapsis' TrimPropagator(EOTV) 
{EOTV.Earth.Periapsis}; 

 
BeginFiniteBurn 'GEOTransfer' ContinuousThrust(EOTV); 

GMAT SMA_INIT = EOTV.SMA; 
GMAT REV_LAST = EOTV.Earth.OrbitPeriod; 
GMAT T0_AT_REV = EOTV.ElapsedSecs; 
GMAT REV = REV + 1; 
 
While EOTV.SMA <= SMA_END 
    
   GMAT AOL = EOTV.TA + EOTV.AOP; 
   If AOL > 360.0 
      GMAT AOL = AOL - 360.0; 
   EndIf; 
    
   GMAT T_REV = EOTV.ElapsedSecs - T0_AT_REV; 
    
   If T_REV >= REV_LAST 
 
      GMAT REV_ERR = T_REV - REV_LAST; 
      GMAT REV_LAST = EOTV.Earth.OrbitPeriod; 
      GMAT T0_AT_REV = EOTV.ElapsedSecs - REV_ERR; 
      GMAT REV = REV + 1; 
       
      GMAT [CONTROL] = Python.YawAngles.get_control_onrev\ 
      (COSTATE, AOL, EOTV.Earth.SMA, SMA_INIT, MORE); 
 
   EndIf; 
      
   GMAT EOTV.HET1.ThrustDirection1 = CONTROL(1,1);  
   GMAT EOTV.HET1.ThrustDirection2 = CONTROL(1,2); 
   GMAT EOTV.HET1.ThrustDirection3 = CONTROL(1,3); 
       
   Propagate 'Propagate Steps' DefaultProp(EOTV); 
 
EndWhile; 
 

EndFiniteBurn 'GEOTransfer' ContinuousThrust(EOTV); 

Figure 7, Mission Model 

A JSON control table containing rows of u values in order of orbit ratio and organized by 

keys of canonical 𝜆𝜆𝑖𝑖 is populated by a Python script which computes the elliptic integrals and 

their derivatives.  A slice of the control table is shown as Table 1.  Note that where the left edge 

of the plot occurs in Figure 5, the default value of 1 is shown. 

Table 1, Summary of Control Table Output 

Orbit R Costate Values 
-0.3245 -0.3255 … -0.4952 -0.496 … -1.5592 -1.5616 -1.5637 -1.5659 

1 0.1 0.1006 … 0.2181 0.2187 … 0.9969 0.9976 0.9982 0.9988 
1.01 0.101 0.1015 … 0.22 0.2206 … 0.9991 1 1 1 
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1.02 0.1019 0.1025 … 0.2219 0.2225 … 1 1 1 1 
1.03 0.1028 0.1034 … 0.2239 0.2245 … 1 1 1 1 
… … … … … … … … … … … 
9.97 0.6729 0.6755 … 0.9982 0.9989 … 1 1 1 1 
9.98 0.6733 0.6759 … 0.9984 0.9991 … 1 1 1 1 
9.99 0.6739 0.6763 … 0.9986 0.9992 … 1 1 1 1 
10 0.6742 0.6768 … 0.9988 1 … 1 1 1 1 

 

In the mission sequence, Figure 6, at line 25, a call to Python is made at the beginning of 

each orbit period. This call reads the u value from the JSON control table represented by Table 1, 

and computes both the yaw and pitch thrust vector per Equation 10.  The GMAT variable 

CONTROL(1,1) is the returned pitch component of the thrust vector, and the returned yaw 

component is CONTROL(1,2).  The CONTROL(1,3) element would be used for a roll 

component should it be necessary to compensate for solar beta, but is clamped to zero: the 

default solar power model in GMAT is simple and does not take solar beta angle into account. 

Comparison to the Edelbaum Control Law 

Given the unexplained difference in control laws between Edelbaum and Alfano, the 

same mission simulation is performed with the Edelbaum control law, 

Equation 29 

tan𝛽𝛽 =
𝑘𝑘

√1 + 𝑘𝑘2
cos 𝜃𝜃′ 

where, 𝑘𝑘 = √𝑢𝑢. 

For this case, the mission script in Figure 7 is unchanged, however Python code adjusts 

the u values from the control table as the square root of the stored values and the return control 

angles are modified to use Equation 29. 

(coding in progress – to be completed)
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