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Overview

• NASA is providing preliminary design and requirements for the Space 

Launch System Exploration Upper Stage (EUS).

• The EUS will provide upper stage capability for vehicle ascent as well as on-

orbit control capability.  

• Requirements include performance of on-orbit burn to provide Orion vehicle 

with escape velocity.

• On-orbit attitude control is accommodated by a on-off Reaction Control 

System (RCS).

• Paper provides overview of approaches for design and stability of an attitude 

control system using a RCS.

 Draws heavily from research and development in support of Space Shuttle and Space Station 

programs.  Includes pitfalls and lesson’s learned from flight experience. 2



Paper Summary

• Vehicle Attitude Dynamics and Phase Plane Control

• Phase Plane Stability and Filter Design

• Jet Selection

• Maneuver/Steering Algorithms

• Thruster Hardware Specifications
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Vehicle Attitude Dynamics and Phase Plane Control

• Attitude Dynamics are summarized:

• Phase Plane Design Examples are Provided:
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Phase Plane Stability and Filter Design

• Phase Plane control designs are nonlinear, hence 

traditional linear design approaches are generally not 

available.

• Paper presents RCS filter design and phase plane stability 

approaches based on research performed on the Space 

Shuttle and Space Station programs

5

• Stability margin design 

goals are provided:



Phase Plane Stability (continued)

• Paper describes approaches to derive a linear representation of the 

nonlinear system, concentrating on describing functions.

• Phase plane is converted into an equivalent PD controller with a 

relay:
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• Relay is modeled by a describing 

function.



Phase Plane Stability and Filter Design (continued)

• Describing function relay representation is still a nonlinear system as describing 

function gain is dependent on input amplitude (A):

• Linearize system by deriving value of A which maximizes the describing function 

(A*):

• Maximizing the describing function gain represents peak RCS control response to 

state error, which maximizes flex response to RCS firings (conservative 

approach).
7



Phase Plane Stability (continued)

• Given a System:

• Substitute the relay with a peak gain representation derived from the describing 

function:

• The resulting derivation is a linear representation of phase control system.
8



Phase Plane Stability (continued)

• Example.  Model rigid body control and ideal latency:

• The phase plane controller is a PD representation with the gains proportional to 

the phase plane deadzone (attitude and rate) limits.

• The closed loop transfer function is derived:

• And the necessary Condition for stability derived:
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Phase Plane Stability (continued)

• Given the stability condition:

• Stability thresholds can be derived:
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Phase Plane Stability (continued)

• Paper provides an example of how the stability condition maps to the RCS time 

domain simulation.

• Stable RCS Control:

• Unstable RCS Control:
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Key RCS Filter Design Principles

• Paper provides key filter Design Principles for RCS:

 Key Filter Design 1:  Rigid body Stability

 Key Filter Design 2:  Flex Gain Margins

 Key Filter Design Principal 3:  Minimizing Filter Induced Lag

 Key Filter Design Principal 4:  Feed Forward during Thruster Firings
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Key Filter Design 2:  Flex Gain Margins

• Flex body dynamics can 

drive an RCS unstable.
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Key Filter Design Principal 3:  Minimizing Filter Induced Lag

• Filter induced lag can result in a RCS limit cycle instability.
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RCS Jet Selection

• Paper Addresses multiple RCS jet selection approaches:

 Table look-up.

 Algorithms that accommodate mass property changes.

 Fuel Optimal Jet Select.

 Command preshaping to avoid structural excitation.
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Two Space Shuttle Jet Select Algorithms

Dot Product:  Would select jets 1 and 2

Minimum Angle:  Would select jets 2 and 4



RCS Maneuvering/Steering Algorithms

• Paper Addresses multiple RCS maneuvering/steering approaches:

 Eigen Axis Maneuvers.

 Torque-Free Maneuvers (Russian MIR).

 Steering Formulation.

 Fuel Optimal (Space Station “Zero Prop Maneuver”).
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Thruster Hardware Specifications

• Discusses Shuttle RCS hardware design/control criteria:

 Control authority must exceed all known disturbances by a factor of two.
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