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NASA is providing preliminary design and requirements for the Space
Launch System Exploration Upper Stage (EUS).

The EUS will provide upper stage capability for vehicle ascent as well as on-
orbit control capability.

Requirements include performance of on-orbit burn to provide Orion vehicle
with escape velocity.

On-orbit attitude control is accommodated by a on-off Reaction Control
System (RCS).

Paper provides overview of approaches for design and stability of an attitude
control system using a RCS.

= Draws heavily from research and development in support of Space Shuttle and Space Station
programs. Includes pitfalls and lesson’s learned from flight experience. >



- Vehicle Attitude Dynamics and Phase Plane Control

Phase Plane Stability and Filter Design

Jet Selection

Maneuver/Steering Algorithms

Thruster Hardware Specifications
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- Phase Plane control designs are nonlinear, hence
traditional linear design approaches are generally not
available.

- Paper presents RCS filter design and phase plane stability
approaches based on research performed on the Space
Shuttle and Space Station programs

tion, flex mode and siosh mode

- Stability margin design Q
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- Paper describes approaches to derive a linear representation of the
nonlinear system, concentrating on describing functions.
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- Phase plane is converted into an equivalent PD controller with a
relay:
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* Relay is modeled by a describing
function.
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- Describing function relay representation is still a nonlinear system as describing
function gain is dependent on input amplitude (A):
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* Linearize system by deriving value of A which maximizes the describing function
(A%):
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- Maximizing the describing function gain represents peak RCS control response to
state error, which maximizes flex response to RCS firings (conservative
approach).
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- Given a System:
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- Substitute the relay with a peak gain representation derived from the describing
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- The resulting derivation is a linear representation of phase control system.
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- Example. Model rigid body control and ideal latency:
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- The phase plane controller is a PD representation with the gains proportional to
the phase plane deadzone (attitude and rate) limits.

« The closed loop transfer function is derived:
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 Given the stability condition:
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- Stability thresholds can be derived:
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- Paper provides an example of how the stability condition maps to the RCS time

domain simulation. SN ,
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- Unstable RCS Control:
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- Paper provides key filter Design Principles for RCS:

= Key Filter Design 1: Rigid body Stability

= Key Filter Design 2: Flex Gain Margins

= Key Filter Design Principal 3: Minimizing Filter Induced Lag

= Key Filter Design Principal 4: Feed Forward during Thruster Firings
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Phase Plane 0.6 att db, 0.14 rl, Flex dynamics

- Flex body dynamics can e

drive an RCS unstable. ;&
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Filter induced lag can result in a RCS limit cycle instability.

Phase Plane with Drit Channels
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Paper Addresses multiple RCS jet selection approaches:

Table look-up.

Algorithms that accommodate mass property changes.

Fuel Optimal Jet Select.

Command preshaping to avoid structural excitation.

Jet 3

CMD

F 3

Jet 2

Jetl

Jet 4

Two Space Shuttle Jet Select Algorithms
Dot Product: Would select jets 1 and 2

Minimum Angle: Would select jets 2 and 4
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Paper Addresses multiple RCS maneuvering/steering approaches:

= Eigen Axis Maneuvers.

= Torque-Free Maneuvers (Russian MIR).

= Steering Formulation.

= Fuel Optimal (Space Station “Zero Prop Maneuver”).
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- Discusses Shuttle RCS hardware design/control criteria:

= Control authority must exceed all known disturbances by a factor of two.
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