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ABSTRACT

Bell, Julia Lea. Ph.D., Purdue University, December 1995. Primer Vector Theory in
the Design of Optimal Transfers Involving Libration Point Orbits. Major Professor: Dr.
Kathleen C. Howell.

Optimal impulsive transfers between libration point orbits associated with the same
libration point are considered in the circular and elliptic restricted three-body problems.
Existing primer vector theory is applied in conjunction with numerical integration and dif-
ferential corrections techniques to construct optimal trajectories. The necessary conditions
for optimality are stated in terms of the primer vector. Coast arcs and interior impulses
are employed simultaneously to improve non-optimal paths. Both superior and inferior op-
timal transfers in the Sun-Earth problem are achieved for L, halo orbits with out-of-plane
amplitudes in the range of 110,000 km to 800,000 km.

Unconstrained numerical optimization techniques are used to compute the optimal coast
arcs and the optimal timing and location for interior impulses. A gradient-based algorithm
is employed where the gradients are evaluated from analytic expressions that are functions of
the primer vector and its time derivative. Differential corrections techniques are developed
to solve point-to-point targeting problems that occur within the optimization process.

Families of optimal transfers are presented that include various target orbits that are
characterized by the out-of-plane amplitude. Two classes of optimal solutions are presented.
Optimal solutions requiring two impulses are computed for transfers between L; northern
halo orbits where the transfer path exists above the plane of primary motion. Optimal solu-
tions requiring three impulses are presented for transfers between L; northern orbits where
the transfer occurs below the plane of primary motion. The optimal costs are plotted versus
the amplitudes of the target orbits. A linear function that approximates the relationship

between the transfer cost and the target amplitude is identified for transfers in each class.



I. INTRODUCTION

The regions of space that arc explored by lib: ation point orbits offer new perspectives for
scientific investigations and satellite communications. Many issues that must be addressed
for the consideration of libration point orbits as practical alternatives to traditional body-
centered trajectories have been examined in previous studies of solutions in a restricted
three-body problem. Lacking an exact analytical solution to the restricted problem, much
of the work has focused on the development of numerical solutions. As part of a continuing
effort, this work is a numerical analysis of transfer paths between libration point orbits

associated with the same libration point.

A. Problem Definiticr

The optimal impulsive transfer problem is considered under assumptions consistent with
the restricted three-body problem, in the context of transfers between libration point orbits
in the Sun-Earth system. A gradient-based numerical optimization algorithm is employed
with analytic gradients to identify the optimal solution. The trajectory is computed as
the solution of a multi-state targeting problem using a differential corrections scheme that
targets selected points along the specified paths. All impulses along the optimal trajectory

simultaneously satisfy the necessary conditions for optimality.

1. Elliptic Restricted Three-Body Problem

In orbital mechanics, a complete solution for the motion of two gravitationally attracting
point masses is available from a dynamic analysis of the two-body system. If, however, an
arbitrary third mass is added to the system to form a “three-body problem,” the number
of independent physical constants that are available is not sufficient to define a complete
set of integrals of the motion(l]. For some applications, however, a compromise between
the complete three-body structure and a two-body problem is acceptable. A simplified
system based on the assumption that one of the particles has infinitesimal mass provides a
reasonable approximation for the motion of a spacecraft in a region of space where neither of

the two gravitational fields can be neglected. With the assumption of infinitesimal mass for



the third body, the motion of the remaining two primary bodies is governed by the solution
to the two-body problem. The motion of the third body can then be investigated using a
system that consists of only the third body under the influence of two completely modeled
external gravitational fields. This analysis is a study of motion in the “elliptic restricted
three-body problem” (ER3BP). A special case of the problem is the circular restricted three-
body problem (CR3BP) in which the two primary bodies of finite mass are assumed to move
on circular paths. The uniform primary motion that exists in the circular problem simplifies
many aspects of the analysis. For this reason, the circular problem is used as a preliminary
model for the development of solution techniques that are then extended to the elliptic
system. A complete solution is not available for either the elliptic or circular problems, but
both models possess equilibrium solutions and approximate solutions associated with the

equilibrium conditions that are useful in obtaining solutions in the general problem.

a. Libration Points

The equilibrium solutions that exist in the restricted problem are most casily described
in the context of the circular problem, where they are stationary solutions relative to a
coordinate system that rotates with the primaries. In this system, five distinct equilibrium
locations, called “libration points,” exist in the plane defined by the primary motion. Three
of the points, called the “collinear points,” are located on the line that joins the primaries.
Each of the remaining two points is the vertex of an equilateral triangle formed with the
primaries. In the elliptic problem, the primaries oscillate along the line that joins the parti-
cles in the rotating frame. To compensate for this motion, the collinear points in the elliptic
problem also oscillate along that line. Similarly, the triangular points shift in position to
maintain the equilateral triangle structure. Thus, while instantaneous equilibrium solutions
in the elliptic problem can still be identified relative to the rotating coordinate frame, the

solutions are not stationary in this frame.

b. Halo Orbits

Although analytic expressions for the locations of the equilibrium points are available,
no closed form solution exists for general motion in the restricted problem. For motion
near the libration points, however, both numeric and approximate analytic solutions have
been developed. The trajectories represented by such solutions are called “libration point
orbits.” One type of libration point orbit is a three-dimensional, quasi-periodic solution
associated with a collinear libration point, called a “Lissajous trajectory.” A periodic class of
solutions can be defined if a constraint is imposed on the relative amplitudes of the Lissajous

trajectories. Solutions of this type are called “halo orbits.” The regions of space in which
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halo orbits exist in the Sun-Earth system are useful for studies of solar induced phenomena.
The “International Sun-Earth Explorer-3" (ISEE-3) spacecraft, launched in 1978, used the

advantages of such an orbit to study the Sun-Earth interplanetary environment[2, 3].

2. Optimal Transfers

The computation of individual libration point orbits is aided by the existence of approx-
imate analytic solutions[4, 5]. Recent studies have used these solutions in the development
of transfer paths between libration point orbits; however, nuinerical approaches that are
considered in those works have also been successful[6, 7]. The costs associated with the
transfer paths that have been developed are sensitive to the characteristics of the trajec-
tories. Thus, a study of optimal trajectories, in which the characteristics of the transfer
are selected according to the optimality criteria, reduces the influence of the procedure and
allows a more objective analysis of the feasibility of missions that employ multiple libration
point orbits.

The solutions to many optimization problems involve two-point boundary value prob-
lems that are expressed in terms of the state variables describing the system and auxiliary
variables, called “Lagrange multipliers,” that are used to incorporate constraints imposed
on the optimization. For the problem considered here, the necessary conditions for optimal-
ity are stated in terms of these multipliers. Furthermore, the multipliers provide an analytic
expression for the gradient of the cost function that is useful in a numerical optimization

procedure.

a. Primer Vector Theory

As developed by Lawden, the optimality conditions for the optimal rocket trajectory
problem in a general gravitational field may be expressed in terms of a switching func-
tion that governs the thrust magnitude and auxiliary variables that identify the thrust
direction[8]. If only impulsive maneuvers are permitted, the necessary conditions for opti-
mality can be expressed in terms of auxiliary variables that are the elements of the “primer
vector.” Hiday and Howell extended Lawden’s solution for use in a statement of the re-
stricted three-body problem that is not consistent with Lawden’s assumptions. They also
demonstrated techniques by which a non-optimal solution may be improved with the in-
clusion of coast arcs and interior impulses[6, 7]. The present work follows directly from
their development and continues the search for optimal solutions using numerical optimiza-
tion methods with contributions from an analytic analysis of the necessary conditions for

optimality.



b. Numerical Optimization

Many of the numerical optimization techniques that have been developed since the
invention of high-speed computers use optimization methods that are based on differential
caleulus such as those introduced by Newton. Such techniques often require the computation
of numerous intermediate solutions, particularly if analytic expressions for the required
gradients are not available. The sensitivity of orbital calculations in the restricted problem
to relatively small perturbations discourages the computation of significant numbers of
solutions; thercfore, analytic expressions for the gradients are used to limit the impact of
the sensitivities.

In this work, a variable metric numerical optimization routine is used to determine a
sct of variables that characterize the optimal transfer path. An analytic expression for the
gradient associated with the cost function is evaluated as a function of the primer vector.
The individual solutions that are required by the method are computed using a differential
corrections scheme that satisfies specified endpoint constraints. The optimal number of
impulses is determined by sequentially adding impulses to a non-optimal path in a manner
consistent with the characteristics of the primer vector; however, the location and timing
of all impulsive maneuvers are optimized simultancously. Thus, the optimal solution is not
necessarily a collection of segments that are individually optimal but do not form a compleate
optimal path; rather, all segments of the solution are considered simultaneously to produce

a trajectory that is optimal in its entirety.
B. History of the Problem

The present work incorporates the areas of optimization and trajectory design in an
environment that is defined by the restricted three-body problem. Thus, the results of
previous studies in cach of these areas have identified many of the advantages and difficulties
that are associated with work in these fields. The recent investigations of Hiday and Howell,
that introduced the classical approach for the optimal rocket trajectory problem to the
restricted problem and continued with a numerical study of the optimal paths[6. 7], provides
the basis for this study. The targeting approach to trajectory design, employed by Pernicka
for the computation of Lissajous trajectories[9), also represents a significant contribution

since it inspired many of the trajectory construction techniques that are used here.

1. Restricted Three-Body Problem

Early work on the three-body problem and the restricted three-body problem is primarily

attributed to Newton, Euler, Jacobi, and Lagrange in the late 1600’s and 1700's. Following



-t

Newton’s investigation of the motion of the Sun, Earth, and Moon in 1687[10}, work on
the restricted problem originated with Euler’s investigation of a sinplified version of the
problem in 1760[11], although the term “restricted” was not specifically applied until 1892
in Poincaré’s discussion of the problem as a special case of the three-body problem|[11].
The value of Euler’s suggestion to seck solutions relative to a rotating coordinate frame
is supported by the use of convenient rotating working frames in current studies of the
restricted problem. Discussion of equilibrium solutions in the restricted problem by La-
grange in 1772[1, 10] was followed in 1836 by Jacobi’s development of an integral of the
motion that identifies bounded regions of motion for the particle of interest[11]. During
the late 1800’s to mid-1900’s, work on the restricted problem focused on periodic solu-
tions following Poincaré’s conclusion that periodic solutions exist{12]. Periodic solutions
were developed by Moulton[11, 13] and Plummer[13] with emphasis on solutions near the
collinear libration points; however, the exploration of higher order analytic solutions, in-
cluding three-dimensional solutions, was limited due to the nature of the computations such

work requires,

2. Three-Dimensional Libration Point Orbits

With the introduction of high-speed computers, investigations of numerical solutions
and three-dimensional solutions were pursued. In 1967, Szebehely presented numerically
integrated solutions to the planar circular problem and extensions of the early work to
the elliptic problem(11). Studies of three-dimensional motion in the late 1960’s by Farquhar
lead to the identification of periodic three-dimensional orbits, called halo orbits, that repeat
exactly with each revolution[14, 15]. Although they are known to exist, the computation
of such orbits is difficult without accurate knowledge of their characteristics. Thus, the
development of approximate analytic solutions for halo orbits and for a more general class
of bounded three-dimensional libration point orbits, called Lissajous trajectories, was an
important requirement for further analysis of motion in the restricted problem.

In 1973, Farquhar and Kamel published an analytic approximation for the quasi-periodic
orbits that are associated with the libration point on the far side of the Moon in the Earth-
Moon system[16]. Additional approximations for both Lissajous and halo orbits have been
developed by Richardson and Cary[4, 17] and have been used in subsequent studies to
provide the initial approximations that are required by many numerical investigations[6, 9,
18]. More recently, in 1990, Marchal published an approximation for halo orbits, based on
a Fourier series expansion, that is used in the present numerical study(5).

In the late 1970’s and 1980’s, researchers used numerical investigations to seek families of

libration point orbits associated with the collinear points. Following Farquhar and Kamel’s



investigation of the libration point region on the far side of the Moon, the discovery of a
family of orbits in this region by Breakwell and Brown[19] lead to the discovery by Howell of
families of orbits associated with each of the collinear points[20, 21]. A significant step for
numerical studies of Lissajous and halo orbits was achieved with the publication by Howell
and Pernicka of an algorithm to determine Lissajous trajectories for arbitrary primary
motion[9, 22]. Their methodology has also been used to compute orbits that retain the
general characteristics of halo orbits in cases where precisely periodic halo orbits are not
available[6, 18]. The techniques successfully employed in the multi-state targeting scheme

discussed in [9] provides the incentive for the use of similar targeting problems in this work.

3. Optimal Transfers

Given the families of libration point orbits that have been discovered thus far, economi-
cal transfers between orbits may be useful. The transfer problem can be stated in terms of
several different criteria for optimality. For this work, the standard is defined as the mini-
mum change in velocity due to an external force (which corresponds to the minimum fuel
consumption for an impulsive maneuver). Hohmann’s development of the optimal impulsive
solution for transfers between coplanar circular orbits in the two-body problem (1925) is
one of the earliest examples of work in the optimal rocket trajectory problem(23]. While
Hohmann’s original work was presented with a geometrical perspective, a calculus of varia-
tions approach provides additional insight into the problem and is more casily generalized

to different gravitational environments.

a. Primer Vector Theory

Lawden applied the calculus of variations to the transfer problem in a general gravi-
tational field where the governing differential equations may be expressed as functions of
position and time. In his development, the necessary conditions for optimality for impulsive
transfers are stated in terms of the adjoint variables associated with the velocity[8]. These
variables are denoted as elements of the “primer vector.” In 1968, Lion and Handelsman
broadened the role of the primer vector as a test for optimality to its use in the improve-
ment of a non-optimal path with the addition of interior impulses and coast arcs on the
trajectory[24]. Presented in 1969 and 1970, Prussing applied primer vector theory to the
problems of time-fixed, multiple-impulse transfers between close elliptic orbits and close
coplanar circular orbits[25, 26].

In Lawden’s original development, a general gravitational field is assumed, but the
governing differential equations of motion are expressed in a specific form. For applications

in the context of the restricted problem, however, the most convenient form in which to
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express the equations of motion is not consistent with the particular form considered in
Lawden’s development of the problem. Investigations of libration point orbits frequently
employ a coordinate frame that rotates with the primaries since the libration points are
easily identificd relative to that frame. When variables that are defined relative to the
rotating frame are used to express the equations of motion, terms that are functions of
velocity exist that represent the relative motion of the rotating frame. Lawden's derivation
does not include terms of this form; however, Hiday and Howell extended the analysis to
include the additional terms[6, 7]. Although their derivation differs from that of Lawden,
the same necessary conditions for optimality result, although the computation of the primer
vector itself differs from the approach in earlier works. Hiday and Howell also developed
tools for improving non-optimal solutions in the restricted problem that are similar to those
developed by Lion and Handelsman for the two-body case[6]. Optimal impulsive transfers
between libration point orbits in the elliptic restricted three-body problem are computed by
Hiday and Howell by applying primer vector theory to the transfer problem, in conjunction
with a numerical optimization procedure. Although the transfers satisfy the necessary
conditions for optimality, the computational algorithm developed in their work vields some
deviation from the specified initial and final libration point orbits. Furthermore, coast arcs
and interior impulses are not simultaneously optimized. The present work addresses these

specific issues.

b.  Numerical Optimization

As presented by Hiday, the gradient of the cost function that results from the statement
of the optimal transfer problem can be expressed analytically as a function of the primer
vector; however, the conditions under which the gradient vanishes (particularly the charac-
teristics of the state variables) are not available from an analytic analysis of the gradient
expression. Thus, a gradient-based numerical optimization scheme is suggested. Many opti-
mization algorithms of this type require the calculation of a search direction and an optimal
step length in that direction. The descent methods for optimization, traditionally involving
the use of first-order derivatives of the objective function, have evolved from Newton's first-
order method to quasi-Newton methods that require both first and seccond-order derivatives
to define the desirable search directions. The steepest descent algorithm, first developed by
Cauchy, uses the negative of the gradient vector to define the search direction[27]. Variable
metric algorithms employ functions of the gradients and optimal step lengths from previous
steps to update the scarch direction. In this way, such methods incorporate the advan-
tages of a quasi-Newton algorithm without requiring the explicit calculation of second-order
derivatives. In this study, the Broyden-Fletcher-Goldfarb-Shanno (BFGS) variable metric
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method, as incorporated in the Automated Design Synthesis (ADS) optimization package
developed by Vanderplatts[28], is used to define appropriate search directions; polynomial

interpolation is used to identify optimal step lengths within the procedure.

C. Present Work

Optimal transfer paths between libration point orbits associated with the same libration
point are considered in the circular and elliptic restricted three-body problems. A computa-
tional algorithm is presented that maintains the specified departure and arrival trajectories
during the optimization process. The simultaneous optimnization of both coast arcs and
interior impulses is achieved using the analytic expressions developed by Hiday for the gra-
dients required in the optimal implementation of coast arcs and interior impulses; however,
the number of impulses is optimized sequentially. To constrain the endpoints of the transfer
path to the fixed trajectories, the transfers are computed as point-to-point solutions that
connect fixed endpoints. Because this technique is employed, the solutions do not depend
on any special characteristics of the fixed paths in most cases; therefore, the algorithm may
be applied to transfers between any type of libration point orbit, although transfers between
halo and near-halo orbits are used as the primary examples. This approach also permits
the computation of relatively short duration paths eliminating the need for long numerical
integration times that hinder many numerical studies in the restricted problem.

The first step in the algorithm is the optimization of a two-impulse solution over the
choice of departure and arrival locations (constrained to the respective libration point or-
bits). Next, additional impulses are added, as required, to further reduce the transfer cost.
As each successive impulse is included, the endpoints of the transfer and all other interior
impulses are optimized simultaneously with the new impulse. The magnitude of the primer
vector is plotted as a visual representation of the optimality of the solution.

Relationships among optimal transfers between halo orbits of various sizes are examined.
Useful characteristics of the optimal solutions are noted, particularly the optimal locations
of impulses relative to easily identified locations on the halo orbits. Also. families of optimal
transfers are identified that allow the prediction of optimal costs between halo orbits of sizes

other than those that are presented in this discussion.
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D. Organization

The discussion is arranged as follows:

CHAPTER II: ELLIPTIC RESTRICTED THREE-BODY PROBLEM
The model used to represent the Sun-Earth-Moon dynamic environment is defined.

Solutions to the problem are identified.

CHAPTER III: TRAJECTORY OPTIMIZATION
Differential corrections procedures are developed that incorporate the constraints re-
quired by the two-point boundary value problems that define the transfer paths. The
necessary conditions for optimality and the gradient expressions used in the optimiza-

tion are presented. The computational algorithm is demonstrated.

CHAPTER IV: OPTIMAL TRANSFER PATHS: CIRCULAR PROBLEM
The original and final orbits are selected to be periodic halo orbits. The optimal
transfer paths for these representative departure and arrival orbits in the circular
restricted three-body problem are presented. Relationships among the solutions are

identified. Useful characteristics of families of optimal solutions are discussed.

CHAPTER V: OPTIMAL TRANSFER PATHS: ELLIPTIC PROBLEM
The timing conditions associated with transfer path computations in the elliptic prob-
lem are addressed. Optimal solutions between near-halo orbits in the elliptic restricted

three-body problem are presented.

CHAPTER VI: CONCLUSIONS

The conclusions of the study are summarized.
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I. ELLIPTIC RESTRICTED THREE-BODY PROBLEM

Spacecraft trajectories in the Sun-Earth system are developed as solutions to a restricted
three-body problem. Appropriate kinematic relationships and force models that define the
environment provide the mathematical description of the problem. The scalar equations
of motion are then derived as the dynamic model. The solution to a matrix differential
equation that governs the sensitivity matrix associated with the equations of motion is used
to produce numerical solutions that possess specified characteristics. An exact solution
to the equations, the set of locations corresponding to the libration points, represents an
equilibrium condition about which other solutions, particularly libration point orbits, are
defined.

A. Elliptic Restricted Three-Body Problem

Investigations of the three-body problem generally consider solutions for the motion of
three particles, each of finite mass, moving under their mutual gravitational attraction;
however, the three-body structure does not define a fully integrable problem [1, 11}. If one
of the particles is assumed to have infinitesimal mass and, therefore, does not affect the
motion of the remaining two massive particles, the resulting problem provides a reasonable
approximation for the predicted motion of a spacecraft in the presence of two dominant
gravitational fields while providing a partial solution to the general problem. This assump-
tion constrains the remaining two massive particles to elliptical paths as prescribed by the
solution to the two-body problem. The motion of the particle of infinitesimal mass is then
the solution to the elliptic restricted three-body problem (ER3BP).

1. Geometry

The elliptic restricted model includes descriptions of the motion of three distinct particles
including two massive primaries and one particle of infinitesimal mass. The primaries,
denoted Py and P,, are defined to have finite masses Af; and M,. The spacecraft, represented
by the particle of infinitesimal mass, is denoted P (Figure II.1). Two reference frames

complete the definition of the system. The X =Y —Z axes represent a right-handed inertial
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Figure II.1 Geometry and Definitions for the Elliptic Restricted Three-Body Problem.

coordinate system, denoted I, with origin at the barycenter of the primaries, B. (Note that
a bar over a letter represents a vector quantity.) The X -axis is parallel to a vector defined
from P, toward P, at the time of periapsis passage in the primary orbit and is inertially
fixed. The X =Y plane is defined as the plane of primary motion. The Z direction completes
the right-handed system; that is, Z = X x Y. Frame N denotes a right-handed rotating
coordinate system with origin at the barycenter. Represented by the ¥ — ¥ — T axes, frame
N is defined by the motion of the primaries. The Z-axis designates an axis that is parallel
to a line passing through both primary bodies at all times, directed from the larger toward
the smaller primary. The g-axis is then defined so that the T —7Y plane remains in the plane
of primary motion. Thus, by definition, T and Z are always parallel. With these definitions,
the rate of change of the angle between the T and X-axes, 0, is the orbital angular rate of
the primaries relative to the inertial system; therefore, the rotation rate of the non-inertial
frame is equal to the orbital angular rate of the primary system. Finally, the two systems

are assumed to be coincident at the time of periapsis passage.

2. Characteristic Quantities

To simplify the calculations, characteristic quantities are used to nondimensionalize the
equations. First, characteristic values of mass, length, and time are selected. Characteristic

mass, M*", is defined to be the sum of the primary masses; A~ = My + M. The average
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distance between the primaries is sclected as the characteristic length, L*. Characteristic

L3
=y [1.1]

where G is the gravitational constant. Next, nondimensional variables are defined to rep-

time, T*, is defined by

resent the dimensional quantities in the problem. The nondimensional primary masses, m,
and my, are defined as my = M, /M* and m, = Ma/M~. Thus, my +my = 1 in nondimen-
sional units. The average distance between the primaries in the elliptic problem is equal to
the semi-major axis of the primary orbit, a; therefore, the nondimensional semi-major axis,
a, is defined as @ = @/L* and has a value of one. By definition of characteristic time, the
nondimensional gravitational constant, G, is also found to be one since G = G‘M‘T'z/L‘a.
The mean motion of the rotating frame, #, is identified by Kepler's modified third law as

G(M, + My)

as

: [11.2]

n=
By definition of characteristic time, the nondimensional mean motion is defined n = nT”

n= ,/9(—"’%"3) ; [11.3]

therefore, the nondimensional mean motion is also equal to one.

and can be written as

3. Gravitational Force Model

The equations of motion for the body of interest will be derived using Newton's Second
Law of Motion; therefore, mode!ls for the gravitational forces due to the two primaries are
necessary. The models for the gravitational forces that act on the particle of interest are

written in the form . _
GA",‘A!&
R R’

where M is the mass of the body of interest, and R, represents the location of the primary,

Fp = [11.4]

P, (i=1,2), relative to the body of interest. The variable R, is the magnitude corresponding
to the vector R,. In terms of the nondimensional quantities, the force is written as
- Gm;mTF,;
fp=——=

, [11.5]

r r

where 7 = R;/L*, m; = M;/M* (i = 1,2), and m = A /M".
4. Equations of Motion

The position vector locating the particle of interest with respect to the barycenter is the

vector R, (see Figure IL1). The nondimensional representation of this vector, ¥ = R,/L",
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is used in the expression of the vector equation of motion as

2 , - . -
=1 - Gmym Gmam7,
mr. = - — g 1.6
37y, = Gann G e

from the application of Newton's Second Law to a free body diagram of the particle of inter-
est. (Dots represent differentiation with respect to nondimensional time.) This expression
is simplified with the introduction of a nondimensional mass-ratio parameter, i, defined as

the ratio
po= —22 [11.7]

m; + my
Using this parameter, the masses of the primaries are expressed nondimensionally as

m = 1 — i, [”8]
and
my=p . [1.9)
Given these additional definitions, the nondimensional force summation is rewritten as
. 1 - r Ie
S U1 L R [11.10]
T‘l ™ rara

The angular velocity of the rotating system with respect to the inertial system, &, is

. . R . . . . !
introduced in the expansion of the kinematic expression for acceleration, ¥ , as follows,

e b i SV xF e x @ xF) . [I1.11]

In terms of the angle, 8, that relates frames I and N, the angular velocity vector is expressed
in the form
oV = 6z, [11.12)

where ¢ is the eccentricity of the primary orbit, and the nondimensional angular rate is

. - pl
- ___._VIR?" , [11.13]

The symbol 2 represents a unit vector in the direction of =. In the expression for the angular

evaluated as

rate, 0, the nondimensional separation distance between the primaries is defined as
R = 1-e¢coskE , (11.14]

where E is the eccentric anomaly which is evaluated from Kepler's equation as a function of
time. Next, to evaluate T for equation II.11, the angular rate is differentiated to produce
an expression for the magnitude of the angular acceleration as

-2 e sinE 1 —¢?

0 = T

[11.15]
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To represent the position of the particle of interest relative to the primary barvcenter,
nondimensional components of distance, represented as r, y, z. are used to define the
position as

¥ o= xz + yy Iz (11.16)
Thus, the acceleration of the particle P relative to the rotating frame is written

A S TS 17

Relative to the inertial system, the acceleration of P can now be expressed in terms of the

vector variable of interest, ¥, with components r, y, = as
oz (F-20° - 200 — yb) i 4 (- yB?+ 280+ 20) 5 + 55, [11.18]

To reduce the kinetic terms on the right hand side of equation I1.10 to their three scalar
components, ry and r; are expressed in terms of the components of ¥ and any additional
known quantities that are appropriate. The position of each primary body relative to the
center of mass is defined in terms of the overall separation distance, R, and the individual

Inasses as
d, = —Ru# , [I1.19]

and )
dy = R(1—p)z , [11.20]

where d; = Dy/L* and d, = D,/ L*; therefore, ¥, and T2 can be expressed as

Fi=d - F, [1.21]
and

Fa=dy — F. [11.22)

The combination of equations 11.10, I1.16-11.18, 11.21, and 11.22 vields the three scalar
equations of motion written in terms of the rotating coordinates, z, y, =. with origin at the

primary barvcenter as

o262 — 290 - yb = ;“(—Ry—x) + %[R(l—p)-—.r], [11.23]

1 2

. . . . 1 -
i— y9 + 2i0 + 20 = — (—r—’ﬁ + -,-I_-f;)y, [11.24]
1 2
. l—pu ;1) ; -
i= ( St ) [11.25]
where
1/2

ro= {(r+ Ru) +y? +:2}7 [11.26]
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, , Y, Y172 -
rp = {[.r - R(1 - ;1)]2 + ¥y + :‘} . [11.27]

Equations [1.23 through I1.25 may be expressed in a simpler form by definition of a pseudo-
potential, {7, such that
1., . 1 — 1
Y TP W il L) B U [11.28]
2 ™ ry
Using this definition, the equations of motion are rewritten as

av

P20 = o+ yl [11.29]
. . oU "
i+ 216 = 3 - 0, [11.30]
oU
= =, 11.3
R (11.31]

This form of the equations of motion is particularly convenient in the analysis of equilibrium
solutions.

Recall that primary motion in the elliptic restricted model is assumed to be periodic.
Thus, it may be possible for the motion of the particle of interest to be periodic as well:
however, this is neither required nor possible in all cases. The gravitational force models
that are employed assume periodic motion of the primaries; however, no constraints on the
motion of the third particle are introduced in the development of the equations of motion.

In the special case of circular primary motion, a constant, first determined by Jacobi in
1836, is available that identifies bounded regions of motion in the circular problem(29]. In

terms of the pseudo-potential, U, the expression for the constant can be written in the form
C =2U - (22 4+ §*+3%). [11.32]

The quantity is not constant in the elliptic problem due to the variations introduced by the

time varying angular rate in the pseudo-potential expression.

5. State Transition Matrix

The differential corrections process that is used to perform trajectory calculations em-
ploys the 6x6 state transition matrix, ®(¢,1,), that is associated with the equations of
motion. The state transition matrix is governed by thirty-six first-order scalar differential

equations that are represented by the single matrix differential equation

d
7o t) = ADLL,) [11.33]
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where
05 I 1;
Al = f — e R g : (11.31)
Uxx + 00 | 200
0 0
Q=1]-100]. (11.35)
0
and

AUjoE BU[0z0y D )Ord:
Uxx = [ 3*U/oxdy  0U/dy?  O°U/)0yo= | . [11.36)
A joxd: BU[Oyd:  H 02
The notation ‘0, represents the n x n matrix of zeroes, and ‘I, represents the n x n identity
matrix. The initial condition associated with this differential cquation is ®(t,,t,) = I.
Differentiating equation I11.28 and using equations 11.26 and 11.27, the individual elements
associated with the symmetric matrix Uy y can be derived and expressed in the form

RU - _ o2, S [0 =m)(=2 = Rp?  pl—z+ RO - @] [(1=p) & 7
P =0 +3[ = + s —[ 3 +—:.),] J11.37]

1 2
2%2(% - _3y[(l—u)(r-?x—ml) . u[-x+§(1—u)1] _ [“r—f”)*% -
% - 1 [(l-#)(;;’x—liﬂ) . II["1'+:§(1—/1)]]_[(l;p)_’_:_;]‘ _—
g(’% = i3y [(1—15;:) N ;%J _ [“r}m*r%f] ' 1140
5% = ¥ [“T—g”l + f-f] : [1L.41)
(L [+ 4] 2

Since the matrix A in equation I1.33 is a function of time (through the states and the
angular rates), numerical integration is generally required to produce a solution for the
state transition matrix.

Given a set of initial conditions for the state vector. defined as ¥ = {ry:egy)T,
where superscript T indicates matrix transpose, numerical integration of the equations
of motion alone is sufficient to produce the numerical representation of the trajectory.
However, the simultancous integration of both the cquations of motion (equations I1.23-
I1.25) and the differential equation that governs the state transition matrix (equation 11.33)

is required to construct trajectories with specific characteristics. Thus, the production
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of the numerical solutions presented in this work requires the simultaneous integration of
forty-two differential equations.
The elements of the state transition matrix represent relationships between the linearized

states at the two instants of time for which the matrix is defined as

01([)/01([0) 01'(1)/031(10) (?I(t)/a-;(to)
IX() | 9y()/0x(t,) du()/dy(t,) --- By(t)/d3(L,)

5T = (11.43]

(L, 1) =

d:(t)/dz(1,) A:(1)/dy(t,) --- 0:(!)/83(10)

This relationship is used extensively in the development of the differential corrections algo-

rithms that are used to compute transfer trajectories.

6. Sun-Earth/Moon Barycenter Model

The assumption of two gravitational ficlds provides a reasonable model for motion in
the Sun-Earth system; however, for motion in the vicinity of the libration points that are
close to the Earth, a more realistic model can be constructed that retains the structure
of the restricted problem. Contributions of the Moon’s gravity field to the total force
cannot be included directly in the Sun-Earth model as presented for the elliptic restricted
problem because of the limitation of two primary bodies; however, an artificial system can
be defined that satisfies the constraints of the R3BP while retaining the Moon’s mass in the
model. This system yields a more accurate model for motion near the collinear points in the
Sun-Earth system(30]. The “Sun-Earth/Moon barycenter system” is formed by assuming
that the mass of the smaller primary is equal to the combined mass of the Earth/Moon
system and that the particle is located at the barycenter of the Earth and Moon. Thus,
the two primaries are defined to be the Sun and a particle with the combined Earth/Moon
mass located at tize Earth/Moon barycenter. This system is used in the remainder of this
discussion to define the environment in which the motion of the spacecraft is considered.

The parameters that are associated with the smaller primary in the Sun-Earth restricted
problem are redefined to construct the Sun-Earth/Moon barycenter system. The new defini-
tions are represented in Figure I1.2. In the Sun-Earth/Moon barycenter model, the smaller
primary, P, represents the combined Earth/Moon system with mass AM; equal to the sum
of the masses of the Earth and Moon. Thus, the system barycenter is defined to be the
barycenter of the Sun and the Earth/Moon system. The vector R, is defined to be the
position of the center of mass of the Earth and Moon relative to the spacecraft (“S/C").
Similarly, the location of the center of mass of the Earth and Moon relative to the system

barycenter is defined by the vector D;. The X — Y plane is still defined as the plane of
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Figure I1.2 Sun-Earth/Moon Barycenter Geometry.

primary motion; however, with the primaries defined as P, and P;, only the location of the
center of mass of the Earth and Moon is constrained to this plane — not the individual
locations of the Earth and Moon. With these modifications, the equations developed for
the dynamic model associated with the Sun-Earth elliptic restricted problem also govern

motion in the Sun-Earth/Moon barycenter system.

B. Libration Points

A complete analytic solution to the elliptic restricted three-body problem does not exist:
however, particular solutions that satisfy specific conditions are available. Bounded motion
in the vicinity of the particular solutions is also possible. Periodic solutions of this type are

used in this study to demonstrate the techniques that are developed.

1. Libration Point Definitions

The equilibrium solutions comprise the set of locations at which the instantaneous sum-
mation of all forces acting in the elliptic restricted problem (including the centrifugal force) is
zero. These five points are also called the Lagrange or libration points. Expressions for com-
puting the positions of these points are available from the equilibrium condition associated
with the equations of motion, equations 11.29-11.31; that is, U /8z = aU /8y = aU/dx = 0.
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Figure I1.3 shows the locations of the five libration points in the circular problem as they

appear in the rotating frame. Three of the solutions, the collinear points, lic along the

Yo
® L,

¢
®
¢
®
¢

®L;

Figure 11.3 Libration Point Locations.

z-axis. The interior point, between the primaries, is labeled L,; the point on the far side of
the smaller primary relative to the barycenter is labeled L; the point on the far side of the
larger primary is denoted L3. The remaining two points, in conjunction with the primaries,
are the vertices of equilateral triangles positioned with one edge along the #-axis. Thus,
L, and Ls are called the triangular points. In the circular problem, where the primary
bodies arc separated by a constant distance, each libration point is stationary with respect
to the rotating frame and is located at a constant distance from the barycenter. In the
more general problem of elliptic primary paths, the collincar equilibrium points still exist,
but they oscillate along the #-axis. The triangular points also exist in the elliptic restricted
problem where they shift to maintain the equilateral triangular shape.

The libration point location is frequently used as a point of reference for numerical solu-
tions; therefore, a coordinate system relative to the libration point of interest is convenient.
(In this study, only one libration point is assumed to be relevant for any solution.) Conse-
quently, a third frame of reference, denoted by axes x — ¥ — 2, is defined with origin at the

libration point and the x-axis parallel to z (frame P). Note that ¢ = y and z = 2. Thus,
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the rotation rate of frame P is equal to that of the previously defined non-inertial frame,

r —y-—: (frame N).
2. Bounded, Three-Dimensional Libration Point Orbits

The existence of the libration points suggests the possible presence of other solutions in
their vicinity. Unbounded motion that passes near the libration points is possible but is not
of interest here. Solutions that represent bounded motion in the vicinity of a libration point
are called libration point orbits. One type of libration point orbit, called a Lissajous tra-
Jectory, is a bounded, three-dimensional, quasi-periodic path in the vicinity of the libration
point. A significant step in the numerical computation of these trajectories, especially those
of relatively long duration, is the approach discussed in [9] and [22]. Howell and Pernicka
developed a strategy for the computation of three-dimensional bounded solutions, including
Lissajous trajectories, near the collinear points for an arbitrary, but predetermined, number

of revolutions.

a. Lissajous Trajectories

One example of a Lissajous trajectory is presented in Figure 11.4. For convenience, this
three-dimensional trajectory is presented in three two-dimensional (planar) projections,
each with origin at L;. The coordinates x, y, z represent components in the rotating frame
with origin at the libration point (frame P); the dot in each view identifies the libration
point location; arrows denote the general direction of motion. The upper left plot represents
the projection of the trajectory onto the  — ¥ plane; that is, the view of an observer looking
down the z-axis. The projection onto the % — z plane is represented in the lower left corner.
This is subsequently labeled the “front view.” The lower right plot is the projection onto the
v —z plane. This trajectory completes approximately fifteen revolutions and was computed
using the algorithm developed by Howell and Pernicka for the computation of long duration
Lissajous trajectories[9, 22]. Clearly, the path does not repeat with each revolution and is
not periodic within the time interval of interest. The exploration of a large region of the
space, as represented by this type of trajectory, may be useful for some missions: however,
the contraction of the Lissajous shape near the origin in the y — z projection physically
represents the vehicle crossing between the Sun and Earth in front of the solar disk. Since
this may interfere with communications and scientific experiments, Pernicka and Howell
developed a method of :z-axis control to compute Lissajous trajectories that avoid this
region[31]; however, periodic solutions that avoid the region without external control are

also possible under special conditions.
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Figure I1.4 Example of a Lissajous Trajectory in the Sun-Earth/Moon Barycenter ER3IBP.



b. Halo Orbits

With appropriate constraints, a class of closed, periodic solutions near the collinear
points may exist that repeat exactly with each revolution. A halo orbit is defined as a
Lissajous trajectory in which the rotation of the in-plane (z or y) to the out-of-plane (z)
amplitudes are equal to a specified value that is not arbitrary. The trajectory is periodic,
and the period is commensurate with the period of the primary orbit. Families of halo
orbits are associated with each of the collinear points.

An example of a numerically computed halo orbit for the Sun-Earth/Moon barycenter
system is presented in Figure 11.5. This particular orbit was computed as a solution to the
circular restricted problem and has a period of approximately 177.1 days. The magnitude
of the largest excursion in the direction of a particular coordinate axis is defined as the
amplitude of the trajectory relative to that axis. For example, in Figure IL5, the largest
z-excursion is approximately 600,000 km (in a positive z direction). Thus, this orbit is a
600,000 km A; amplitude orbit.

In the elliptic restricted problem, a truly periodic orbit may not be available with the
specific combination of amplitudes that is required to produce a halo orbit. In this case, a
path that approximates a halo orbit is used and is identified as a near-halo orbit. Although
it does have special characteristics not found in a general Lissajous trajectory, a near-halo
orbit can be computed using an algorithm developed for the computation of the more
general Lissajous solution under special constraints. The algorithm developed by Howell
and Pernicka[9, 22] has been modified to compute the near-halo orbits that are used as the

fixed departure and arrival paths in the elliptic problem in this study.

¢. Branches of Libration Point Orbits

Families of periodic, collinear libration point orbits exist in the restricted problem along
two main branches, known as northern and southern families, that are defined by the
characteristics of the orbit. For the halo orbit presented in Figure I1.5, the solution proceeds
in a clockwise direction in both the x — y and y — z projections. Furthermore, the largest
z-excursion occurs in the positive 2 direction relative to the x — § plane. Trajectories near
Ly with these characteristics are identified as being members of a “northern family.” A
second type of periodic orbit exists in which motion proceeds in the clockwise direction in
the x — y projection but in the counterclockwise direction in the y — z projection. L, orbits
with these characteristics are categorized as being part of a “southern family.” Under special
conditions, a southern trajectory can be constructed as a mirror image of the corresponding

northern trajectory as seen in the x — z and y — z projections (Figure I1.6). The two types
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of halo orbits, as mirror image trajectories, are discussed by Farquhar and Kamel[16] and in
more detail by Richardson[17] where they are denoted class I and class I1 orbits. For the I,
family, Richardson denotes northern orbits, as defined here, as class 1 and southern orbits
as class II. For the L; family, he again denotes orbits with clockwise rotation in the y — z
projection as class I and orbits with counterclockwise rotation in that projection as class
II; however, Ly orbits with clockwise rotation in the y — z projection have a maximum z-
excursion in a negative z direction. Thus, in terms of the direction of maximum z-excursion,
L northern orbits correspond to class I1 orbits, and L, southern orbits correspond to class
L. Lissajous trajectories also exist in mirror image families; however, since a maximum
excursion criterion may not be applicable in all cases, categories defined by the direction of

motion may be more appropriate for discussion of Lissajous paths.



HI. TRAJECTORY OPTIMIZATION

Solving the optimal transfer problem requires the ability to identify the desired char-
acteristics of the optimal solution and to compute a transfer with those characteristics. A
numerical optimization routine, supported by a first-order primer vector development, is
used to select the optimal characteristics. Differential corrections in conjunction with nu-
merical integration is used to compute the solutions. The details associated with these two
procedures, as applied in this work, are presented below. The algorithm is demonstrated for
a transfer between two L; halo orbits in the Sun-Earth/Moon barvcenter circular restricted

problem.

A. Differential Corrections

A path computed under the assumptions of the elliptic restricted problem is defined
by a single state, that is, initial position and velocity of the particle of interest, and the
relative orientation of the primaries at the time associated with that state; therefore, the
path can be modified to meet a set of desired characteristics by changing any or all of these
conditions. For example, initial conditions that yield unbounded motion can be modified to
produce a periodic solution in the circular problem. To construct a solution that satisfies a
set of specified characteristics, an iterative search algorithm can be developed that is based
on a mathematical description of the desired solution and the state transition matrix. Such
an algorithm is one type of differential corrections procedure. In the process, a current
set of conditions is improved with corrections that are computed as functions of the error
in the current solution relative to specified characteristics and appropriate elements of the
state transition matrix. Since the state transition matrix represents a linear relationship
between variations in states at two different times, an iterative process is generally required
to achieve convergence of the actual states to the desired values.

Although trajectories in this work are presented in libration point centered coordinates
(frame P), all computations use barycenter rotating (frame N) coordinates. Thus, the
diffcrential correctors are derived in terms of barycenter rotating coordinates. The vector

X(1) is the six-dimensional vector of nondimensional barycenter rotating coordinates and
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their derivatives defined in the form X = {r y z & § $}7. The differential corrections
algorithms are constructed by expanding X'(¢) about a nominal solution, X,.(t), in a Taylor

series as

X(t) = X)) =

0\ t - [\(t )= Xnlte)] + N(ta)t = 1,) [111.1]

where only first-order terms are retained. The coeflicients, 9X(1)/0X (1), in this expression
are identical to the elements of the state transition matrix (sec equation 11.43); therefore,

equation III.1 may be expressed in the form
T(0) = Fa() = 0(t,8) [X(to) = Tnlto)] + N(ta)(t = 1) . [111.2]

Transfer paths are computed as the solutions to targeting problems that connect two fixed
states. Depending on the specific problem under consideration, components of the vectors
X and X, identify desired position or velocity states that define the targeting problem.
Other clements of these vectors represent unknown quantities that are determined as the

result of the differential corrections procedure.

1. Single Segment Differential Corrections

One type of transfer is a continuous trajectory that connects two fixed end positions.
The construction of such a path is defined as the single position targeting problem. The path
is labeled a single segment trajectory since it is assumed to be a path that is continuous in
both position and velocity and can, therefore, be represented by a single initial state. Given
a specified initial position, 7, = {z,, ¥,, :O}T, the problem is to determine the initial velocity,
To = {&0, Yo, 3} 7, that is required to arrive at a specified final position, 7y = {xy, yy, 2/ }7,
where the notation ¥ = {z y z}7 represents a three element position vector, and v = {#93}T
represents a velocity vector. In the following discussion, the subscript ‘o’ is used to denote
an initial condition; subscript ‘f* indicates a final condition; subscript ‘k* defines a current
value; and subscript ‘k + 1’ denotes an updated value.

The algorithim requires initial guesses for the velocity, T,, , and for the time of flight, 1.,
that are appropriate for the application. A desired initial position is known, 7,; therefore,
this is specified as the initial position in all iterations, To, = To. Next, given the initial
guess for all six clements of the state vector X'—o,‘, defined as Tok = Xi(t,) = {For o )T,
the equations of motion (equations I11.23-11.25) are integrated simultaneously with the state
transition matrix differential equation (equation 11.33) from the time ¢, to the time t, .
The final state resulting from the integration is defined as X', = Xilty) = {7y, 7., )7
If the constraint on the final position is not satisfied (7y, # ¥;), some modification of the

initial velocity and possibly the time of flight is required. The appropriate changes are
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computed as the solution to a set of linear equations that are derived in terms of elements
of the state transition matrix and the difference between the specified states and the states
that are achieved in the current iteration. The goal is to select an improved initial state,
Nopor = {Foryr Tory, 17, and time of flight, tfi4,+ such that the position at the new final
time in the next iteration, ¥y, , equals the desired position, Ty

For evaluation in II1.2, the trajectory denoted by ‘k’ represents the nominal solution,
X .. The trajectory that results from the modified velocity and time of flight, denoted with
the subscript ‘k + 1°, corresponds to the solution . Thus, the states in this example are

substituted into equation I11.2 to yield
(X = X)) = 0tste) (Koyy = o) + Xaltn )by, = 52) - (1.3}

Expanding this equation in terms of separate position and velocity vectors, the first three

rows can be written in the form

Torgr — Tox

Tl =T = [ o1 12 ] + _ﬁ/k(tfkﬂ —t5), [111-4]

ty b 5 —-T
{tg, o) Uorps Uo,

where the ¢;; represent partitioned 3x3 submatrices of the state transition matrix. Recall,
a desired final position is specified, but a final velocity is not defined in this application;
therefore, the remaining rows of equation I11.3 provide no useful information when targeting
only the final position.

To represent the desired characteristics, any quantities on the updated trajectory that
can be expressed in terms of the prescribed states (not through linear approximations) are

assumed to satisfy those expressions. Thus, the new initial position is defined as
Toyyr = Top = To, (111.5]
and the new final position is assumed to satisfy
Tlegr = Tf. (I11.6]

With these definitions, equation 1.4 is rewritten as

= = _ v, -7 ~
rp=rg = [ Si2(ty , te) | 7y, ] t;k“ B I;k , [111.7]
k41 k

where the only remaining unknowns are ¥,,,, and ty,,,. This vector equation represents
three scalar equations in four unknowns. Thus, the targeting problem, as defined, is under-
constrained; an infinite number of solutions exist.

The use of a minimum norm solution may be appropriate, or a specific constraint may

be imposed on the solution to equation IIL.7 to achieve an additional desired characteristic.
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Consistent with the goal of achieving low cost transfers, the transfer costs that result from a
variety of additional requirements are used to evaluate the most useful constraints. Different
solutions to equation 1.7 represent different transfer paths that can be parameterized by
the time of flight; however, an analytic constraint representing the optimal time is not
available as a function of the terminal conditions. Also, the minimum norm solution does
not necessarily yield the optimal transfer time. Thus, to produce the best solution between
the specified endpoints, a numerical optimization routine is used to select the optimal time
of flight. The problem is posed as a one parameter optimization problem where the variable
of interest is the transfer time, t7; therefore, solutions to equation I11.7 that constrain time
are required.

A constraint on the final time is imposed in the solution of equation 1.7 as
hhy =t = 1y, [1".8]

where it is assumed that the initial guess is equal to the desired value. In this case, the

corrected value for the initial velocity is computed by inverting equation IIL.7 such that
E°k+l = U, + ¢;2l(tf’t0)(Ff —Fh) ’ [HI'Q]

assuming &2 is invertible. Then, the improved path is computed using the updated ini-
tial state vector, TOH, = {Torp1 Torqs }T. This process continues until a trajectory that

includes the desired initial and final positions is constructed with the specified time of flight.

2. Multi-Segment Differential Corrections

The single segment differential corrections scheme is designed to solve the single position
targeting problem as defined in the previous discussion. This problem may be extended to a
multi-segment (or multiple segment) trajectory where constraints are imposed at locations
other than the departure and arrival positions. The label “n-segment trajectory” implies
that the specification of state vectors at n locations along the path is required for a complete
definition of the solution. It is not possible to construct a multi-segment path, continuous
in both position and velocity, that satisfies arbitrary constraints on position and velocity;
therefore, specific constraints that can be satisfied are considered. Three definitions help
to clarify the terminology that is used in this work: all trajectories are assumed to be
continuous in position; individual segments along a trajectory are assumed to be continuous
in both position and velocity: velocity discontinuities that exist along a path are denoted as
instantaneous At's. Finally, since multi-segment paths are constructed to satisfy constraints
that are appropriate to the application under consideration, individual segments do not

necessarily share any common characteristics such as shape or duration.
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Consistent with the discussion of the single segment differential corrector, "o is used
to denote initial conditions; * f* denotes final conditions; “A* denotes a current value: and
‘k + 1" denotes updated conditions. Other notation necessary for a two-segment solution
includes the following: subscript *m’ denotes an interior point that occurs at a time between
the initial and final times; superscript ‘=" denotes conditions just prior to a AT; and *+’
denotes conditions immediately after a Av. Each two-segment problem is considered in
terms of one segment that connects points o and m and a second segment that connects
points m and f, where it is assumed that constraints are imposed at points o, m, and f. For
this development, all integrations are performed forward in time. Thus, the segments are
defined by the corresponding initial state vectors, X, = {7, T,}7 and X4 = {Fpus T+ }7,
and the two times of flight defined by the quantities ¢,, — ¢, and ty — t,, where ¢, is the
time corresponding to X ,, t,, corresponds to the interior state X, +, and t; corresponds to
the final state X ;.

As in the single segment development, first-order Taylor series expansions still form the

basis of the derivation. Equation IT1.3 is extended for a two-segment trajectory as

—?\*m; = B(tm, 1) Xoy,, -—,Tok)+fmk-(tm,‘“—-t,,.k), _ [I11.10]

M
and

X — Ng = B(ty,, e (Xoms, = Xnt) + X pltsg, = 15) - (1m.11]
These expressions are used in each of the two-segment differential correctors developed in
this section. Two different algorithms are discussed. One corrector assumes a fixed interior
position. The second corrector constrains the A% at the interior point. Both correctors are

derived with the assumption that the initial and final positions are fixed.

a. Fixed Interior Position

The differential corrector based on a fixed interior position is designed to construct a
two-segment trajectory that includes both specified initial and final positions, ¥, and Ty,
and one specified interior position, ¥r,. Since it may not be possible to construct such a
path to be continuous in both position and velocity, an unspecified velocity discontinuity
may exist at the specified interior position, denoted as AT,,. The unknowns are the initial
velocities on each segment, T, and ¥,,+, and the times t,, and ty, assuming a given initial
time, (..

As a first step, initial guesses for the state vectors are selected and denoted X, =
{Fo, o, }7 and .—\Tmt = {Fm: Tt }T. Initial guesses corresponding to the times of interest
are denoted by tr,, and t;, . Initial values of the velocities and times are selected from

other information that is available in a particular application. Constraints on the positions
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.+ = Ty, The equations of motion and
k

are incorporated in the corrector as 7, =7, and F,
the differential equation governing the state transition matrix are simultaneously integrated
from time ¢, to t,,, with initial conditions :_\TU,k and &(¢,,t,) = Is. The final state along the
first segment is denoted :‘{:,": = {Fm; Fm;}T, where ‘k” denotes a current value and *='
indicates that the state occurs before any AT, Next, the equations of motion and the matrix
differential equation for ® are integrated from ¢,,, to t;, with initial conditions Tm: and
Q(tm,,tm,) = Is. (Note that the initial guess, ?m:, is not necessarily equal to Fm; since
it is assumed that a velocity discontinuity may occur at the interior position.) The final
state along the second segment is denoted X'y, = {7y, Ejk}T‘ If the two final positions
that are achieved, ‘r“m: and 7y, do not equal the desired states, F,, and 7y, respectively,
the velocities, T,, and Fm:, and possibly the integration times are modified. A set of linear
equations is developed to compute the appropriate changes.

To begin the development, any known or desired quantities on the updated trajectory are
identified. The derivation assumes that the improved trajectory will satisfy the constraints;
therefore, since initial, interior, and final positions are constrained, the new positions are
specified as

F0g+1 = Fo,, - ro;

T'm— M
k41 (I11.12]

T 4 =7
mi m

Thp = Tp.

Using these constraints and neglecting equations that provide no useful information in this

LTS
I

application, equations I11.10 and II1.11 reduce to the following

Voiyy = Vo,

¥ — ?m;‘ - él?(tmks to) 03 't7m; 031 Fm:“ - Fmt ‘ ["113]
Tf =T 03 Or2tsistme) Q31 ¥y tmyyy = tmy
Ly = Ui

where 03,3 = {0 0 0}7. In this expression, the remaining unknowns are v, ,,, Tt
tnyy,» and TR Thus, equation III.13 represents six scalar equations in eight unknowns;
the system is underconstrained. A minimum norm solution does not necessarily yield the
lowest cost transfer containing the selected positions; therefore, two additional constraints
are imposed that are useful for particular applications. Since different solutions can be
parameterized by the times of flight for each segment, a numerical optimization routine is
used to identify the optimal values for the times. To compute a solution that satisfies time

requirements selected by the numerical method, constraints are applied as

tmk“ = t"lk = tm ' [111.14]



and
Ueor =t = Uy, (I11.15]

resulting in a unique solution for equation I11.13. Thus, for the applications here, the use of
constraints other than time in the corrector that fixes the interior position are not employed.

Given the constraints on time, equation II1.13 is written as

Fm= T | _ [ Sualtmite) 04 f()k-n - _T , (111.16]
Fr—Ty, 03 ¢l2(tf‘t'm) v'":-#l - l’m:

The form of this expression indicates that this type of targeting problem is separable; the

two segments may be computed independently. Thus, the updated velocities are evaluated

from

Fok“ = .ﬁok + é;zl(tmvta)(Fm _Frnr)’ ["117]
and

Tt = Tt + 62 (s tw)(Fs = 7p,) (111.18]

where each solution is expressed completely in terms of conditions associated with a single
scgment. These updated velocities are used to define the initial states to again integrate the
equations of motion and the state transition matrices, and the process is repeated until the
conditions Fz = Fm and Ty, = ¥y are satisfied to within an acceptable tolerance. These
requirements, and the assumption that Fm: = ¥m at each iteration, guarantee position
continuity for the trajectory at point m. Since the constraint i?mI“ = F’"fn was not
imposed, a velocity discontinuity may exist at the patch point of the two segments. This
discontinuity can be represented as A%, = 'ﬁmt“ - Emk_“. To impose a velocity constraint
creates an overconstrained problem (even if the two time constraints are abandoned) since it
represents three additional scalar equations, although only two additional constraints may
be imposed on the solution of equation I11.13 to define a unique solution.

This derivation was presented for a two-segment trajectory; however it can be expanded
to any number of segments with the result that each segment can be computed separately.
In this way, a trajectory that includes several specified positions can be constructed with
unspecified velocity discontinuities at those fixed points. Thus, the shape of a trajectory

can be specified; however, impulses may be required to produce it.

b. Fixed Interior AV

A second multi-segment differential corrector is one that matches initial and final posi-
tions and constrains the interior velocity discontinuity, Av,,. The specified quantities are

7o, Ty, and the quantity T+ — 7,,- = Av,,. although neither of the individual velocities
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are constrained. The unknown quantities are the velocities ¥, and T,,+, the position 7,,,
and the times ¢,, and ty. As in the case of the fixed interior position, initial guesses for
the unknown quantitics are selected and denoted with subscript *k*. Then, given states
,_\Tak, Tmz, and times t,,,, ty,, the first segment is integrated forward in time from ,T(,‘
to tm,; the second segment is integrated forward from Xm: to time ty, . If the resulting
velocity discontinuity does not equal the prescribed value (Um: - Emk_ # AT, ), position
continuity at the patch point is not satisfied (Fm: # F"‘f ), or the desired final position is
not achieved (¥y, # ¥y), the initial velocity, To,» and both the position and velocity of the
interior point, Fm: and Fm:, may be adjusted. (Changing the integration times is also an
option, but the times are assumed to be fixed for this example, consistent with its use in
the numerical optimization process. Thus, the times are constrained by gy = by =ty
and ty, ., =t5 =t;.)

To develop an expression to represent the corrector, any known values for the updated
quantities are identified. To satisfy the endpoint constraints, the updated initial and final

positions are defined by

Towps = Tou = To; [111.19)
Tfegr = 11
A velocity discontinuity equal to the prescribed value, AT,,, is represented in terms of the
new initial velocity of the second segment as

T+ =T, +AT,. [111.20]

Myt Mes1

Finally, to guarantee position continuity at the patch point, the interior position is required

to satisfy the equality
F =7 4+ [111.21]

M .'"k+1
although this position is not required to equal either of the current interior positions, Fm: or
Fm:, since no interior position is specified. Using these constraints in equations I11.10 and
ITL.11, and neglecting equations that offer no useful information, a set of linear expressions

is formed as

m+ —Fm' y 2 tm,to

T e R
(Tt ~ATp) -7, - $22(tm . t,) *

k41 k
and
. Fm+ —Fm+
(Fr =7r) = [Bultyitm) 12ty tm)] s [111.23]
. -
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The coupling of the unknown quantities 7+ andT,_+ between the equations complicates
k+1 A4l

the solution; however, rearranging the equations does yield an expression in the form

-— — -l —_— —_

"oku Uy r éIQma [ I ] lmt - ’mr

—_ — . - (; — — —
1"1:_“ = ’m: + ‘. o22mn ( ,mt - “m;) - AU"‘
Fm:“ Um: [0'3] [é”!m 012,,,,] ry—Ty

[111.24]
This form is convenient since the difference Fm: —Fm: represents any position discontinuity
at the patch point in the current iteration. Similarly, other differences in equation I11.24
also represent the current deviation from the prescribed characteristics. Using equation
IT1.24, the initial velocity and the complete interior state (both position, sz, and velocity,
Fm:) are updated, and the corrections process is continued until the solution converges to
the desired end positions with position continuity at the patch point and the prescribed
interior impulse. In the Sun-Earth/Moon barycenter problem, a tolerance of approximately
0.15 millimeters is designated for all targeted positions including positions at patch points.
This value is approximately equal to 1 x 10715 times the characteristic length used in the
computations.
As mentioned for the solution with a fixed interior position, equation III.>24 may be ex-
tended to include additional segments. For a three-segment trajectory with fixed endpoints

and two fixed interior Av’s, the solution takes the form

( T’ok.“ ( Vo, ]
7‘"‘:«” Fm:
< im't"l ¢ = J Fmt r
F"+ Fn-p
k41 k
[ Unt,, J l Unt )
(I11.25]
([ o 17 ( & 7 )
mt = N
' 12mo [—IG] [06] _ k-— m, _
©22pm0 (pmZ - Um:) - A,
+ 0 F4+—-7 - ,
[ 3] [d’nm] [—I(;] rnz 1"}; f
(03] (T3 = v,-) - AT,
(5] [05 03] [é11,n ¢, | | Fr—Fp J

where ‘n’ denotes a second interior point that is located between points ‘m’ and ‘f7 (in
time); ‘mo’ indicates the state transition matrix ®(tm,t,); ‘nm’ denotes the state transition
matrix ¢(t,,1,,); and ‘fn’ represents the state transition matrix $(ty,t,). This form is

easily expanded to include additional segments. In this way, a trajectory can be constructed
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that is continuous in position with specified endpoints and specified velocity discontinuities
along the path. The Av's may be defined to be zero in order to construct a path that is
continuous in both position and velocity; however, the interior positions cannot be specified
in the process as developed. Thus, the shape of the path cannot be defined; only the
endpoints can be specified.

In the development of both correctors for use in a two-segment trajectory, only two ad-
ditional assumptions are possible. Thus, even if the fixed time assumptions are eliminated,
neither corrector can constrain both the interior position and the interior AF since either
additional requirernent represents three scalar constraints. It is not possible to match ar-
bitrary initial, final, and interior positions, and an interior A% simultaneously since these

requirements define an overconstrained problem.

3. Differential Corrections in Initial Condition Selection

In addition to providing corrections to an initial guess, the state transition matrix can
also be used to determine an initial guess for the calculation of a new trajectory based on the
difference between the new desired characteristics and an existing solution. Although the
equations required for this use of the state transition matrix are similar to those employed
for modifying an existing guess as discussed above, the use of the matrixin the selection of an
appropriate initial guess represents an alternative use of differential corrections. Improving
the initial guess through algebraic relationships before using it to integrate equations of
motion may reduce the number of iterations required to converge to a solution. It can
also result in convergence of subsequent differential corrections procedures that update the
initial guess when convergence was previously not achieved due to a poor initial guess.

In the optimization algorithm, candidate trajectories are identified relative to a nominal
solution by differences in the times of flight along individual segments and differences in the
positions at both endpoints of each segment of a trajectory. The state transition matrix
is used in conjunction with these relative differences to suggest appropriate changes to
the nominal initial conditions; that is, to compute a guess for the initial velocity along
each segment of the perturbed transfer. Thus. the problem is similar to the fixed position
targeting problems discussed earlier, but, in this case, the mcaning associated with the states
is modified. For example, as opposed to representing an error relative to some desired state,
the final position from the first iteration represents the final position along the nominal path:;
the desired final position along the improved solution represents the final position along the
perturbed path. Also, unlike the targeting examples discussed in previous sections, a change

in the initial position is considered in this application.
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Endpoints associated with a nominal transfer path are identified as points o and f with
associated state vectors X, = {F, 7,}7 and Xy = {7 ©}". Points op and f, define
the endpoints of a perturbed transfer path with associated state vectors T(,p = {7, FOP}T
and T,}, = {7y, FJP}T. The state transition matrix associated with the nominal solution is
identified as ®(t;.t,) using the nominal final time, ty. The time dt defines the change in the
transfer time that is required. Thus, in terms of the notation used in the previous discussion,
the nominal solution represents the current iteration, denoted k, and the updated solution,
connecting op and f,, is denoted k+1. Using equation I11.4, with the appropriate definitions
for the subscripts k and & + 1, the nominal and perturbed positions at the new final time,

given by ty =1, +dl, are related, to first order, by
To, —
T, =77 = [én élzl(,,,,o) _OP O+ Bt [111.26]
T

The desired quantity is the value of the velocity on the new transfer, that is T,,,, since the
position ¥, is known as the desired initial position for the new transfer. Solving equation

I11.26 for the unknown velocity vields
To, = To + 6772 (Lf,t0) [Ff,, =Ty —éully, to)(F, = 7o) — Ty(dty ~ dto)] | ) g

Given the improved initial guess, the equations of motion are integrated over a time interval
equal to ty, — ¢, with the initial condition ._\7% = {7, UOP}T. The differential correctors
discussed previously are then used to modify this improved guess to produce the desired
characteristics.

Although this development is only presented for a single segment, it is used to update
the initial conditions separately for each segment of a multi-segment transfer. In this way.
an organized approach is employed to determine the initial conditions for the computation

of a perturbed transfer. This perturbed transfer serves to initiate a new corrections cycle.

B. Primer Vector

Differential correctors of the type discussed in the previous sections are used to produce
trajectories that possess sets of specified characteristics, but a conventional numerical opti-
mization routine is employed to identify the characteristics that correspond to an optimal
solution. Since a numerical procedure may require many iterations that involve expensive
calculations, any operation that reduces the number of required computations is beneficial.
An analytic solution for a step in the process is one option. Given the dependence of many

optimization methods on the gradient of the cost function, an analytic expression for this
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quantity represents a partial solution that can substantially reduce the number of computa-
tions. In addition, an examination of the conditions that must exist in an optimal solution
provides insight into the problem.

In the optimal transfer problem, the primer vector, defined by Lawden as the adjoint
vector to the velocity, is an important element in a discussion of the necessary conditions
for optimality and in the development of an analytic expression for the gradient of the
cost function. This principle was extended to the restricted problem by Hiday and Howell
and was demonstrated for transfers between libration point orbits in the elliptic restricted
problem[6, 7). ‘The conditions for optimality applied to impulsive transfers can be defined
in terms of the characteristics of the primer vector. Also, this vector can be used to modify
the endpoints of a transfer and to add interior impulses in an effort to reduce the cost.
The following discussion follows from Hiday's derivation of the necessary conditions for
optimality for impulsive transfers in the ER3BP and her development of tools for improving

non-optimal paths[6].

1. Euler-Lagrange Equations

Following Hiday{6), the second-order scalar equations of motion in the restricted three-
body problem are written in a first-order form in terms of the vectors ¥ = {z,y,z}Tand v =
{z,9,:}T representing position and velocity components in barycenter rotating coordinates.
The thrust is introduced in terms of the thrust magnitude, T, a unit vector in the thrust
direction, 7, and the effective exhaust velocity, c. With these definitions, the governing
differential equations are expressed in terms of the state variables 7, 7, and m (vehicle mass)

and control variables ur and T as

F =1, [111.28]

T = ZaT + 7, (111.29]
m

= - (111.30]

where 7 includes all acceleration terms, except the external thrust term, as
206 + yb + al/dx
7= -2:0-16+0U/dy . [111.31]
ar/o:
Constraints on the control variables are stated as

lur] = 1. [111.32)

and
0<T<LKT, [1T1.33]



where T is a maximum allowable thrust magnitude.
The scalar cost function is defined in terms of the initial and final masses as

J=cln [ﬂ-J . [111.34)

my
This is equivalent to the definition of the cost as the sum of the maneuver magnitudes
(3=, |AT;]) assuming only impulsive maneuvers are permitted. Since this function contains
no path dependent term, the Hamilton is expressed as a linear combination of the state

equations in the form
— — T T
H = /\;FF + /\Z (—r;;ilT + _17) - /\m;, [H1.35)

with Lagrange multipliers A,, X,, and ). The adjoint differential equations are then

derived from the Euler-Lagrange equations as

=T OH —707
A, = -5 = A, 3 [I11.36]
=T oH T —rdq -
—— = — — 3
1 66 ’\r /\U BF ' [III l]
C oH _ T~r.
/\m = '—% = 'nzAv ur , [111.38]
where 5
6_;' = Uxx + 69, [I11.39]
and o
99 _ 94
35 = 202 , [111.40]

with © and Ux x defined in equations I1.35 and 11.36, respectively. Lawden developed the
solution to the problem in terms of coordinates that are defined relative to an inertial ref-
erence frame; therefore, the vector g in his derivation is a function of position and time
only. Thus, the term 85/97 is zero in his derivation. This term exists when the equations
associated with the restricted problem are written relative to the rotating coordinate frame
(0 is the angular rate of the rotating frame) and is included in Hiday's derivation. The ad-
ditional requirements that result from the Euler-Lagrange necessary conditions are written

in terms of a Lagrange expression, F, formed from the Hamiltonian and the constraints as
F = o[I(T=-T)-q¢* + aaflur?-1] - I, [111.41)

where o and o3 are additional Lagrange multipliers, and a control variable, q.is employed to
incorporate the inequality constraint on the thrust magnitude. In terms of this expression,
the remaining Euler-Lagrange equations require that

JF

. T~ .
5—;_;; =0 = 20’21[7‘ - ;AU, ["1‘12]
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aoF . -7 1

=0 = - 2T) = =Xy + 2, A

a7 = 0= ol - 2) - =Xy + 2y, (111.43]
aFr ,
Z 0= -9 :
90 0 = ~20y¢. (111.44]

Consistent with Pontryagin’s Maximum Principle, the Hamiltonian is maximized over
the choice of control variables that satisfy the constraints to minimize the cost. With terms

evaluated on the optimal trajectory indicated by **°, this requires

[%X;’ - ’\T'"] ™ > [#K;Tw - 5(-.] T, - [111.45]
since other terms in the Hamiltonian expression are not affected by changes in the controls.
This inequality is recognized as the Weierstrass condition. Across an impulse, that repre-
sents a discontinuity in the velocity states (2 corner), the Hamiltonian and the multipliers

are required to satisfy the Weierstrass-Erdmann corner conditions. Thus, it is required that

X, =2 [111.46]

o=, [111.47]

AL o= A [111.48]
and . .

H = HY, [111.49)

where ‘—" indicates a condition immediately prior to an impulse, and '+’ denotes a condi-
tion immediately after an impulse. Finally, assuming specified initial and final positions,

velocities, times, and initial mass, the transversality condition requires that

. _aJ .

An(ty) By [111.50]
or . c -

Anlty) = my [111.51]

An analysis of equations I11.36-111.38, 111.42-111.49, and 111.51 vields a partial solution to

the optimal impulsive transfer problem.

2. Necessary Conditions for Optimality

An examination of the Euler-Lagrange equations and the corner conditions vields several
conditions that must be satisfied by the multiplier X, along an optimal trajectory. Con-
sistent with other studies, this vector is relabeled 7 (X, = P) and is denoted as the primer
vector. One result of the Euler-Lagrange equations, particularly equation I11.42, is that the

primer vector must be parallel to the thrust direction when the thrust is not zero. The
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corner conditions also provide two immediate conclusions. First, as explicitly required by
cquation ITL47, the primer vector must be continuous across an impulse. Then, with the
matrix dy/0t completely defined by the motion of the primaries (see equation I11.40) and
the continuity of X, and p as required by the corner conditions, equation 111.37 requires
that the derivative of the primer vector must also be continuous across an impulse since it
can be expressed as a function of variables that are themselves continuous. Using equation
137 to express A, and assuming the priwmer vector is parallel to »:7 on the optimal path,

as found in previous results, the Hamiltonian can be rewritten in the form

-_--T—- p- ’\:n _ =T -uf?_g:)-—; <G
H =p" 3+ (m " )T‘ (p +7 57 [I11.52]

The Hamiltonian can only be continuous across an impulse, where the thrust is discon-

tinuous, if the coefficient of the thrust magnitude is zero in this expression. With this

simplification, equation I11.49 can be expressed as H+* — H=" = 0 and reduced to the form
HY —H" =5 (7" -7) =—j" Av = 0, [111.53]
using continuity of the primary motion, the position of the vehicle, and the primer vector
at the corner. Then, since the primer vector and the thrust direction are parallel on the
optimal path, this corner condition requires that i)‘Ti}" = 0 at the time of the impulse.
The Weierstrass condition imposes additional requirements on the primer vector along
the optimal path. By considering limiting conditions in which strict equality is satisfied
and employing parallel primer and thrust vectors, Hiday develops the following conditions
for the two extreme cases. In the case of zero thrust, inequality 111.45 is reduced to the

expression

-

cp
m

- X <. [I11.54]

In the case of maximum thrust, the inequality requires that

cp” - rrx
- - AL, > 0. [I1L.55

An impulsive thrust, as the instantancous intersection of an interval of maximum thrust

preceded and followed by finite intervals of zero thrust, requires that
v _ o= 0. [I11.56]

Further analysis of this condition is considered in terms of the thrust magnitude switching

function, S, defined as the function

s=L . [111.57
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Over a coast arc, where T = 0, equation IT1.38 requires A, to be constant; therefore, the

expression for S over a coast arc can be written as

i cp”
s = & _ constant | (TI1.58]
m

where the constant is undetermined to this point. If the coast arc Joins two umpulsive
thrusts with S = 0 at each of those two instants as required by equation I11.56, the value of
the constant at a time immediately after the first impulse is evaluated from equation 111.56

as cp;/m,. At the final time, the switching function is evaluated from the equation

cp% -
Sp=0= 2L _ P, [111.59)
my m,

therefore, the initial and final values of the primer magnitude must be equal since the final
mass on a coast arc equals the initial mass on that arc. Using the transversality condition,
equation II1.51, the switching function at the beginning of a coast arc that follows the final
impulse can be expressed as .
S =0 = ::—Jf - Tng,' . [111.60]
Thus, the final value of p (and, therefore, the initial value) must be one.  Finally, the
magnitude of T must be less than its initial value over the coast arc for inequality 111.54 to
be satisfied. Thus, the initial and final values of p must be one, and p must be less than one
over the entire coast arc. Return now to the consequence of continuity of the Hamiltonian
((ﬁTT))' = 0), and use the expression pp = ﬁTT). Since p is non-zero at a corner, p must be
zero for (5 B)* = 0 to be valid at an interior impulse.
The results of the above discussion, as a summary of Hiday's derivation of the necessary

conditions for optimality, can be stated as:

a. The magnitude of the primer vector must be one at the instant of impulse and less than

one elsewhere.
b. The thrust vector must be aligned with the direction of the primer vector.
c. The primer vector and its first derivative must be continuous.

d. The derivative p must be zero at all interior impulses; also, the primer vector and its

first derivative must be orthogonal at those times.

These conditions are used to identify non-optimal solutions and to identify initial conditions

for the computation of the primer vector.



42

3. Primer Vector Computation

Although equations I11.36 and I1.37 are first-order vector differential equations that
could be numerically integrated for the values of the adjoint vectors, A, and p, given ap-
propriate initial conditions, numerical results that represent the solution for p are available
from other information in the problem. Numerical integration of equations 111.36 and I11.37
is not required. A derivation of the expression for the primer vector, developed by Hiday,
begins with the differentiation of equation I111.37 in the form

. dg d [d7 -7 J§
=T |22 (_g)] - L, (111.61)
oF  dt \ 97 Jv
where equation I11.36 is used to represent A,. Incorporating the derivative of equation
I11.40, and writing d3/07 in the form of equation II1.39, the difference in equation I1.61
can be expressed as
g dt \ov
The symmetry of Ux x and the skew-symmetry of Q are employed to write the transpose

95 _d (‘7§> = Uy - 69 . [111.62)

of equation H1.61 in the form

)_6__6__*__(_9__?;‘_._.; [IL.63)
p = a7 P - p. .

A solution for this second-order differential equation is available from an analysis of the
variational equations for the barycenter rotating coordinates.

The variational expression for the position and velocity is

&%) | 67(t)
{ 5it) } = A(t){ 530 } : [IT1.64]

where A(t) is defined in equation 11.34. This equation can be written in a second-order

form as ; 2
F o= & = 99 o 99 T 5
7 = 6 = 6F6r + 6?76' . [111.65]
The solution to this differential equation is known to be of the form
6F(t 6¥(t,
MO g,y T L [11.66)
6T(1) - 69(t,)

using the state transition matrix, ¢. The differential equation for the primer vector is equiv-
alent in form to the variational equation for the barycenter rotating coordinates; therefore,
the solution for the primer vector takes a form equivalent to that of the solution to the

variational equation. Specifically, the solution is expressed in terms of the state transition

?(t) _ énlt,t,) ér2(t,ty) ?(to) , (111.67]
p(t) dal(t ;) o2(tt,) plts)

matrix. ®({,1,), as
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where @ is partitioned into four 3x3 submatrices denoted by the ¢,,. Equation 11.67 can
be used to compute the primer vector at any time for which the state transition matrix is
available, given initial conditions for the primer vector and its derivative.

For the case of impulsive maneuvers, the necessary conditions require the thrust vector
to be aligned with the primer vector. Also, the magnitude of the primer on the optimal
transfer at the impulse times must be one. These requirements define the initial and final

conditions of the primer vector as

_ Av,

p(tO) - IAFOI ) [111.68]
and Ap
vy

plty) = ——, 11.69

) = 155 [111.69)

where the velocity discontinuities represented by AT, and AT, are defined by the velocities
at departure (t,) and arrival (#7) on the initial and final trajectories and the associated ve-
locities on the transfer. Given B(¢,) and ({y), the value of (t,) is determined by evaluating
equation II1.67 at the time of the final impulse. Assuming &2 is invertible, the resulting

expression for p(t,) is
Plto) = 612 (t.te) [P(ty) = énilts,ta)plto) ] - [111.70]

Thus, all required initial conditions are available for computation of the primer vector and
its derivative at any point along the transfer path using equations II1.67 through II1.70.
The characteristics of the primer vector and its derivative can then be compared with the

necessary conditions to determine if the associated trajectory is optimal.

4. Adjoint Equation

Hiday developed an additional expression involving the primer vector that is used to
derive other results that are employed in this work; that is, the adjoint equation. By
subtracting the product of 677 and equation I11.63 from the product of 7 and equation

I11.65, Hiday constructs an exact differential equation of the form

pL6T + 1 67 — ! 67 — P! 6F —pngér— T:t 3{)5 ])Tg—y—ér =0. [H1.71]
Integrating this expression yields the equation
Pl 6t — [p +7p -(?)—] 67 = constant , (11.72]

called the adjoint equation. This relationship is used by Hiday in the development of the
gradient expressions that are required in the numerical optimization problems considered

in this work.
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C. Improving Non-Optimal Paths

In addition to its role in the evaluation of the optimality of a transfer (through the
necessary conditions), the primer vector can also be useful in the improvement of a non-
optimal solution. The gradient of the cost function with respect to each of a variety of
different variables that characterize the solution can be expressed analytically in terms
of the primer vector and its derivative. One set of representative variables is the set of
departure and arrival positions on the fixed orbits. A second set of variables describes the

timing and location of interior impulses.

1. Time-Free Solutions

The time-free problem is the simultaneous search for the optimal departure location
(constrained to the departure trajectory) and the optimal arrival location (constrained to
the arrival trajectory) for transfer between two specified trajectories. The initial trajectory,
or departure trajectory, is denoted as orbit ‘O’. The final trajectory, or arrival trajectory, is
denoted as orbit ‘F”. (The departure and arrival paths are not required to be closed orbits:
however, the terminology of transferring between “orbits” is convenient.) A nominal transfer
path is identified by endpoints denoted as ‘o’ and ‘f’ on trajectories O and F, respectively.
Endpoints identified as ‘c,’ and ‘f,’ that are also on trajectories O and F denote the
terminal points of a perturbed solution. Each of the fixed paths (the departure and arrival
orbits) can be parameterized by time; that is, given an initial state, a specified time interval
defines a position on the path. Since an exact analytical representation of the path is not
available, the parameterization cannot be expressed analytically. If, however, the nominal
and perturbed states are sufficiently close, a first-order approximation, that is, a lincar
expression, in terms of the time between the points may be assumed. The six-dimensional
state vector on the departure trajectory associated with point 0is X,- = {F, 7,-}7. The
state vector on the arrival orbit associated with point f is Tﬁ = {7y, F!+}T. If the time
to travel from point o to point o, along orbit O is dl,, the position of op (To,) can be
approximated as F:,p =T, + T,-dt,. Similarly, the position of f, (71,) can be approximated
as Ty = Ty + padly, where dty is the time to travel from f to f, along orbit F. With
these assumptions. the problem of finding the optimal end positions, defined by six scalar
quantities (the elements of ?Lp and F’Ip)' is replaced with the problem of finding the optimal
times (dt, and dtj), that is. two scalars. In addition, although the position coordinates that
are selected as optimal must satisfy the constraints that define the trajectory, the times are
not constrained. Thus, the time-free problem is developed as an unconstrained minimization

problem in two variables. Although first-order assumptions are used to develop the problem,
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the actual positions that result from integrating through the time intervals dt, and dty (7,
and 7y, ) are used in this work. In this way, the endpoints remain on the “true” fixed paths
although the positions 7, and FII;. do not. Thus, the first-order approximations are not
maintained in the implementation of the result.

The improvement in the cost achieved by transferring between the perturbed endpoints
op and f, versus the nominal transfer cost for endpoints o and f was developed by Hiday
as a dual coast problem that simultaneously optimizes over some initial and final coast
times. The term “coast™ applies to the use of a coast arc between a nominal endpoint
along a specified orbit and a position along the same orbit that is the terminal position
for a perturbed transfer. The objective is to express the change in cost, to first-order, that
results from modifying the endpoints as a function of information available from the nominal
solution. The departure state on orbit O is defined by the state vector X - = {F, v,- 17
the departure state vector on the transfer is given by X + = {F, 7,+}7; the arrival state
vector on the transfer is Tf- ={F; 74 }7; the arrival state vector on orbit F is identified
by the state vector ,_\'-]+ = {F; Ty }T. In terms of the appropriate velocity vectors, the

nominal transfer cost is defined by the expression
J = [Tt = Tpu| + |4 ~7p-| . (11.73]
The transfer cost on the perturbed path is defined as
Jp = Bo,e ~Tg,-| + [T+ -7, [IT1.74]

where the subscript ‘p’ is used to identify a condition on the perturbed path. The variation

in cost is, therefore, defined to be
6 = J, - J. [II1.75]

For the perturbed solution to represent an improvement in cost, 6J must be negative.

An initial coast is considered first where the departure position is altered, but the ar-
rival position is fixed. The velocity vectors on the perturbed path are written in terms
of the vectors along the nominal solution and terms that represent the differences in the
corresponding velocities. A contemporaneous variation in velocity, denoted as 87, repre-
sents the change in velocity at one endpoint of a transfer due to a change in the position at
the opposite end. A noncontemporaneous variation, indicated by d%, represents the change
in a velocity vector at one end of a transfer that results from a coast arc applied at that
same end. For example, if an initial coast is applied to change the departure position, the

velocity at departure on the fixed halo path is expressed as Ty = Tp- +d®,-; the departure
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velocity on the perturbed transfer is written as U = Tr dt,+. The arrival velocity
on the perturbed transfer is defined by T'j,,' = vy~ + 87 -, and the arrival velocity on the
fixed destination path is unchanged. Using these velocity variations and approximating a
difference of the form |F + 6F| ~ || (from a binomial expansion) as +67TF/|Z|. the variation

in cost resulting from an initial coast can be expressed as
=T =T -
éJ; =p, (dt,+ — dv,-) — pyov, - . [111.76)

In this expression, the primer vectors on the nominal path, Po and Py, are introduced
to represent velocity ratios such as those in equations I11.68 and 111.69 that result from
approximating differences of the form [T+ = To,-| — [T+ — T,-| using the binomial
expansion as (dv,+ — dv,- )T (7,4 — 7,-)/|(T,+ — T,-)|. Next, since the nominal transfer is
a coast arc, the adjoint equation is applied at times ¢,+ and ;- to produce an expression for
the product ﬁ}réﬁj- in terms of information at the initial time. Finally, the contemporaneous
variations are expressed in terms of noncontemporaneous variations in velocity and the coast

time dt, to yield an expression for the change in cost in the form
8Ji = Prdfo—prv,edl, , (1177

called the initial coast transversality condition. Given a linear approximation for the change

in the initial position (d¥, = ¥,-d!,), equation I11.77 is simplified to the form
=T, - -
8J; = =D, (T4 —T,-)dt, . [111.78]

A similar analysis in the case of a final coast produces the final coast transversality condition,

expressed as
8]y = —pydvs+P5,-di . [111.79)

This can also be written in the form
8J; = ~Py (v —Ty-)dty [111.80]

using the linear approximation df; = Uyp+dty. Then, if initial and final coasts are applied

simultaneously, the variation in cost represented by equation II1.75 is equivalent to the sum
6J = 6J; + 5Jj , [IH.SI]
which can also be written in the form

6J = ~p,Avydt, — privgdty . (111.82]
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In this expression, scalar derivatives of the primer are evaluated as
. TP
Y = P = I11.83
U [(111.83]
Equation I11.82 describes the change in the cost (to first-order) that results from changes
in the variables of interest (dt,, and dt;). Expressed in a vector form, in which the gradient
expression that is required for a numerical optimization technique is identified, equation

I11.82 is rewritten as

6J = VJ -dt, [111.84]
where
- ‘oA o
vy o= | TPl [111.85)
_._ijvj
and

- dt,
dt = . [T11.86]
dt]

If the slopes of the primer magnitudes (p, and Py) are not zero at the initial and final
impulse locations, the gradient in equation I11.85 is used in a gradient-based optimization
scheme to search for a trajectory that satisfies the zero slope conditions. Thus, on the
optimal time-free path, the slopes of the primer must be zero at both endpoints.

If a transfer is not optimal, the sense (4 of =) of the primer derivative at each endpoint
indicates the appropriate direction to shift the respective endpoint to reduce the cost (within
the limitations of the first-order assumptions used to develop the gradient expression). For
example, consider a nominal primer history in which p, > 0. To reduce the cost, §J must
be negative; therefore, the transfer can be improved by choosing df, > 0 so that §J < 0
(see equation II1.82). A positive value for dl, represents an initial coast on the departure
trajectory (a delayed departure). Thus, if p, > 0, an initial coast is suggested. Similarly, if
Po is negative, dt, should also be selected to be negative, consistent with an early departure,
to achieve a reduction in the cost. Next, if p; > 0, dty should be positive indicating a final
coast along the final trajectory (a late arrival) to make 6J negative. Also, if Py <0, an early
arrival, indicated by negative dt s, should be applied to reduce the cost. These conditions are
incorporated into the optimization algorithm to predict appropriate search directions that
are represented by the coast times on the fixed orbits. Then, numerical integration (forward
or backward in time) through the intervals dt, and dt; along the fixed trajectories is used to

accurately identify the improved cndpoints suggested by the numerical optimization routine.
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2. Additional Impulse Solutions

In addition to modifying the endpoints, a trajectory can be improved in some cases by
including additional impulses that redistribute the total cost more effectively. If the magni-
tude of the primer vector associated with a transfer exceeds one anywhere along the path,
Hiday demonstrates through a first-order analysis that an additional impulse will reduce the
cost. Thus, the location and time at which to apply an additional mancuver represents a
second set of variables that characterize an optimal path. Given a nominal transfer to which
an additional impulse is to be added, the primer vector associated with the nominal solution
is used to predict the appropriate additional impulse; however, the resulting transfer may
not satisfy all of the conditions for optimality for an interior maneuver. Thus, the location
and time at which the impulse is applied is optimized using a gradient-based numerical
optimization routine. The result is a transfer in which the derivative of the primer vector
Is continuous across the interior impulse and equal to zero at the impulse time, as required

by the necessary conditions for optimality of an interior impulse.

a. Nominal Three-Impulse Transfer Construction

Obtaining an optimal three-impulse transfer begins with the construction of a nominal
three-impulse solution. A two-impulse transfer is assumed to exist that connects points
o and f along trajectories O and F, respectively. Within this discussion, the two-impulse
path is denoted as the reference solution to distinguish it from the three-impulse path that is
labeled the nominal solution, consistent with its use in subsequent optimization procedures.
The magnitude of the primer vector is assumed to be greater than one at some time along
the two-impulse transfer path. The additional impulse is added when the primer reaches
its maximum (and, therefore, the derivative is zero), defined by the time t,,.

Since the reference solution (the two-impulse path) is continuous in position and velocity,
it can be computed as a single segment with the initial condition X 4 = {F» 7,}7; however,
intermediate conditions are required for further computations. Therefore, it is useful to
define the trajectory in terms of two distinct segments: one segment contains points o and
m, denoted by position vectors 7, and Fp,; the second segment contains points m and f,
denoted by position vectors 7y, and ¥, where the assumption of position continuity at the
patch point is implicit. The state on the reference transfer at the point where the primer
reaches its maximum value is denoted as X, = {F,, Fm}T. The primer vector on the
reference path at t,, is p,,.

To reduce the cost, an additional impulse 1s included at time ¢,, in the direction of the

primer vector associated with the reference two-impulse path (consistent with the necessary
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condition that the thrust vector is aligned with the primer vector); however, since the
two-impulse transfer that includes positions 7,, 7,,, and ¥y does not require an interior
impulse, the interior position for a three-impulse transfer, that includes positions 7, and
7y and an interior impulse, must differ from ¥,,. The perturbed interior position is given
by Fm = Ty + 6Fm, where 67,, represents the change in the position. Thus, the objective
is to determine the best position for the application of the impulse and the magnitude of
the maneuver. The direction of the impulse is defined to be parallel to B,,. To determine
the best magnitude and the location (relative to the nominal point) at which to apply
the maneuver, Hiday considers the difference between the costs associated with the two-
impulse path and a perturbed path that includes three-impulses. Since the interior position
along the perturbed path () differs from the nominal position (7,,), the velocities at
the endpoints of the reference solution must change to produce a path that includes the
modified interior position. In the following discussion, the tilde is used to indicate a state on
the three-impulse transfer that differs from a corresponding state on the two-impulse path.
For example, 7, denotes the position at {,, along the two-impulse path; ¥,, indicates the
position at t,, along the three-impulse transfer. Similarly, ¥,,-, the velocity immediately
before the interior impulse on the three-impulse path, is defined as 7, = Tp,- + 67,,-,
where 6T, represents a perturbation relative to the reference velocity at ¢,,.

The reference two-impulse cost is given by
J = |Av,| + |AT], [I11.87]

where AV, = U+ —7,- and ATy = T4+ — T;- are expressed using the previous definitions
for the departure and arrival velocity vectors. The cost associated with a perturbed path

that includes an impulse at ¢,, is expressed as
Jp = |AT, + 60, + [+ —Tm -] + |AT; + 67| . [111.88]
The variation in cost, defined as 6J = J, — J, can be written as
8J = pLé%, + |64 = 6T-| — PléT, (111.89]

using binomial expansions similar to those employed in the development of the time-free
problem and noting that T+ — 7,,- = 67,,+ — 8T,,~ since the reference path contains no
impulse at m. Next, Hiday employs continuity of B, and p,, on the reference path, contin-
uous primary motion, and position continuity at the interior impulse time, in conjunction
with the adjoint equation, applied first at times ¢, and ¢,,- and next at times {,,+ and ty,

to produce the expression

Pr6T, —P16T; = Pr(bTp- — 6Tp4) . [111.90)
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Consistent with the requirement that the impulse is ahgned with the primer, the interior

munpulse is defined as N
6Fm+ - AFm' = Af'ml”“’ll' , [”lgl]

m

where Ay, is the magnitude of the interior impulse (A#,, > 0). The variation in cost is

then written as ~
§J = Abp, (l-—ﬁ:’,;!'—"i) . (111.92]

Pm
This equation supports the requirement that p,, must be greater than one for the three-
impulse path to have a lower cost than the reference trajectory (6J < 0).

An alternate expression for 8J is obtained by considering the variations at m as functions
of the changes at o and f through the state transition matrix relationships as represented
in equation ITL.66. Changes in the initial velocity on the reference transfer (67,), due to
variations in the interior position and velocity states on the reference path (immediately
before {y), are related to 6%, and 67,,- through the state transition matrix &(t,,,¢,)
computed for the first segment. On the second segment, variations in the reference position
(67m) and velocity (67,,+) after t,,, are related to 67y through the state transition matrix

®(tm,ts). In this way, the interior impulse is expressed as
80,4+ — 8T,,- = D6F,, , [111.93]

where
D= é22(tm0tf)¢;—21(tMv tf) - ¢22(tmv to)él_;)l(tmv to) . [11194]

Equating the expression for the impulse in equation HI1.93 with equation I11.91 yields an
expression for the change in the interior position as
6Fm = Ay D! P . (111.95]
Pm
Then, replacing the variable éF,, in the relationships for §v, and 67, developed in terms of
the appropriate state transition matrices and writing the magnitudes as the square root of

the sum of the squares, equation II1.88 is written in the form

J, = VATIAT, + 2Ai,aTAT, + AZala
[111.96]
+ \JATTAT; + 2A8,8 AT, + ARZF B + Adn
where B
T = 6 (tmito) DR [111.97]

Pm

7= csu,-l(tm,z,)D-’;’)—'" . [111.98)

m
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The terms ¢;;(tm,t,) represent 3x3 submatrices of ®(,,,t,), and the terms Oij(tnity)
represent 3x3 submatrices of ¢(t,,, 7). both computed for the reference two-impulse path.
(The matrix ®(t,,,1y) is computed as the inverse of ®(ty,¢,,); and, &(ty, £y,) results from
integrating forward in time from ¢, to t; on the reference path with initial condition
®(tn,tm) = Is.) Note that all quantities in equations H1.96 through 111.98 are evaluated on
the reference trajectory with the exception of Av,,. This variable is computed by iteratively

solving for the value of A#y, that minimizes J,,. Then, the interior impulse is defined to be

At = Abp 22 [111.99]

Pm

One additional issue must be addressed with respect to the construction of the nom-
inal three-impulse path given the goal of maintaining the fixed original and destination
trajectories. The first-order analysis suggests that the three-impulse solution should con-
tain positions ¥y, Fr, + 6Fm, and T with an impulse specified as AT, applied at time f,,.
However, as discussed in the development of the multi-segment differential correctors, this
represents an overconstrained problem. The departure and arrival positions, ¥, and ¥y, must
be included to constrain the endpoints to the selected orbits. Of the remaining options,
only the interior position or the interior impulse may be specified. For transfers between
halo orbits, a sclution that constraints the interior impulse to the computed value, Av,,,
generally yields a lower cost solution than a trajectory that contains the perturbed interior
position, ¥y, + 6F,. Thus, the corrector that fixes the interior AV is used to construct a
path that contains positions ¥, and 7y at times ¢, and t; with an interior impulse equal to
A%, at time t,,, where the position #,, = 7, + 67 is used only as the initial guess for
the determination of the interior position. The solution that results from the differential
corrections process is the nominal three-impulse transfer. It is used as the first guess in a
numerical optimization routine that identifies the optimal location and the time at which

to apply an interior maneuver.

b. Three-Impulse Transfer Optimization

On the nominal three-impulse path, continuity of the primer vector is guaranteed by the
definitions of the primer vectors at the interior point (,,- and p,,+) in terms of the interior
impulse; however, the derivative of the primer vector is not guaranteed to be continuous
(f‘»m_ # §m+). Also, the Hamiltonian may not be continuous across the impulse. Thus,
although the nominal three-impulse transfer generally has a lower cost than the reference
two-impulse solution, it may not be an optimal solution. To achieve continuity in the
desired quantities, the location and time of the interior impulse are perturbed to search for

a trajectory that satisfies these requireinents.



As developed by Hiday, the improvement achieved by shifting the interior point from
Fm at time t,, to position T, at time ¢, is examined by defining the perturbed path to
be the result of initial and final coasts applied to the beginning of the second segment
and to the end of the first segment, respectively. (Note that the interior position on the
nominal path may be changed from ¥,, in the differential corrections process; however, the
vector T, is still used here to refer to the location at t,, on the nominal path.) If the final
coast transversality condition (equation II1.79) is evaluated at t,- and the initial coast
transversality condition (equation UI1.77) is evaluated at t,,+, the variation in cost due to

the change in the interior position and tim> can be expressed in the form
=T T T T .
8] = (pm + = Pm _) dv, + (ﬁm_ﬁm_ —ﬁ,,,+vm+) dty, . [111.100]

The first term in this expression is a function of the discontinuity in the derivative of the
primer vector. Similarly, the second term in this equation can be expressed in terms of
the discontinuity in the Hamiltonian that exists on a non-optimal trajectory. On a coast
arc, T=0 in equation I1.52; therefore, using continuity in the motion of the primaries
and evaluating the Hamiltonian immediately before and immediately after the impulse, the

discontinuity in H is written

. . T . T .
Hpt = Hpe = DoV = Dpa Ut - [111.101]
Then, the change in the cost can be expressed as
:T =T - -
6J = (pm+ —;‘)m_) dm + (Hops = Hyp-) dty, [111.102]

where the derivatives of the primer vector and the Hamiltonian are evaluated on the nominal
three-impulse path. The quantity d7,, represents the change in the position of the interior

position as
Py = Ty + diy, . (111.103]

Similarly, dt,, represents the change in time as

b = tm + dt, . [111.104]

Given the form of §J, the gradient of the cost function with respect to the location and

time of the additional impulse is written as

V) o= { PmtTPmm U [111.105]
Hos = 11,-

Thus, the requirements that both the derivative of the primer vector and the Hamiltonian

must be continuous across an impulse are consistent with the zero gradient condition that
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indicates an optimal solution. The Hamiltonian can be continuous only if the derivative
of the magnitude of the primer is zero; therefore, in addition to being continuous, the
derivative of the primer must have a value of zero at the impulse time,

This gradient is used in a numerical optimization procedure to determine the optimal
time and location at which to apply an interior impulse. At each iteration in the optimiza-
tion procedure, a candidate position and time for the optimal impulse is selected. Then, a
transfer is constructed that contains the fixed endpoints and the selected interior position
with integration times that are determined from the selected interior time. This problem
satisfies the assumptions employed in the derivation of the differential corrector that fixes
the interior position with a specified interior time; therefore, additional constraints required
to impose a specified AV cannot be incorporated under the current structure. The inte-
rior AV, approximated in equation I11.99, is only used in the computation of the nominal
solution and is abandoned in the optimization of the transfer. Thus, using the gradient
defined in equation I11.105, a numerical optimization routine is employed to identify the
optimal interior position and time. The differential corrector that fixes the interior position
is used to evaluate the cost function at each iteration. Given the optimal position and time
at which to apply an interior impulse, the optimal interior impulse is determined as the

change in velocity required at the interior point to patch the two segments together.

D. Optimization Algorithm

The gradients derived for incorporating coast arcs and interior impulses are used in a
numerical optimization routine to compute optimal transfers between fixed orbits. To il-
lustrate the optimization algorithm developed in this study, the computation of an optiumnal
impulsive transfer between two northern L, halo orbits is discussed below. Although pe-
riodic orbits are used in this example, the algorithm does not require periodicity nor any
other characteristic that is unique to 2 halo orbit. The goal of this example is a transfer
path that connects any point along the departure orbit to any point along the arrival orbit
and satisfies all of the requirements for optimality. In terms of the primer vector associated
with the optimal transfer, the magnitude of the primer vector must be equal to one at all
impulse times and less than one elsewhere, and the slope of the primer must be zero at all
impulse times.

In the circular restricted problem, any path is completely defined by initial position
and velocity vectors. In the elliptic problem, however, the location of the primaries at
the initial time must also be defined. The time of periapsis passage in the primary orbit

is one convenient representation of this information. Thus, while departure and arrival
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paths in the circular problem can be defined without regard to time of periapsis, their
definition in an ellipiic system is time dependent. This introduces an additional constraint
on transfers computed in the elliptic problem: the solution must connect two selected points
with departure and arrival times that coincide with the appropriate periapsis times of the
primaries. This additional requirement yields a unique solution to the problem of connecting
two fixed points. For this reason, optimal transfers in the circular problem are used to select
times of periapsis passage for departure and arrival orbits in the elliptic problem in the
absence of mission requirements that define these times. This example considers transfers

in the circular problem; extension to the elliptic problem is discussed in a later chapter.

1. Nominal Two-Impulse Path

The procedure begins with the construction of a nominal two-impulse path that connects
selected endpoints along the two halo orbits. Given the nominal solution, the optimal
endpoints corresponding to a two-impulse transfer are computed as the solution to the time-
free problem, where optimality is indicated by a primer history that includes zero slopes
at the endpoints. Next, a nominal three-impulse transfer is constructed that connects the
endpoints determined for the optimal two-impulse solution. Then, the endpoints for the
three-impulse solution and the timing and location of the interior impulse are optimized
simultaneously to yield the optimal three-impulse transfer. Finally, any additional impulses
that may be required are added one at a time. As each maneuver is added, the timing
and location of the additional impulse are optimized simultaneously with the timing and
location of all other interior impulses and the endpoint locations. The terminology “optimal
two-impulse transfer” denotes the best solution that can be achieved with two-impulses,
although a transfer with a lower cost may be possible if additional impulses are included.
In general, the phrase “optimal n-impulse transfer” denotes the best solution that can be
achieved with n impulses. A solution that cannot be improved with additional impulses or
coast arcs is identified as an “optimal impulsive transfer.” (The necessary conditions that
are employed to test the optimality of each solution only indicate a local optimum. Thus.,
although a transfer may be denoted as an optimal impulsive solution, the possible existence
of other solutions with lower costs is not excluded.)

The target orbits used in this example are halo orbits computed in the Sun-Earth/Moon
circular restricted three-body problem. The orbits are plotted in three, two-dimensional
projections, each with origin at L; as shown in Figure III.1. The departure orbit, denoted
as orbit 0. has a z-amplitude of 110,000 km and a period of 177.9 days. The arrival orbit,
denoted as orbit F', has a z-amplitude of 600,000 km and a period of 177.1 days. The

transfer from orbit O to orbit F is identified as a superior transfer since it transfers from
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the halo of smaller amplitude to the orbit of larger amplitude. Transfers from the orbit of
larger amplitude to one with a smaller amplitude are designated as inferior transfers. For
this example, the nominal departure and arrival points are selected at locations where = is
zero on the two orbits. (Recall, y=y, and :=z.) The selected departure point is denoted “o°.
The selected arrival point is denoted *f°. Thus. given two fixed points, o and f, a path that
connects these points, and is continuous in both position and velocity, is computed using
the time-fixed differential corrector developed for the single segment targeting problem.

The velocity on orbit O at the departure point is used as the initial guess for the
velocity on the transfer at departure; therefore, the transfer path is initially assumed to be
the departure halo orbit (the “initial guess”). Although the departure and arrival points
are separated by approximately one-half revolution in the v — z projection, assuming the
time of flight on the transfer to be one-half the period of either orbit O or orbit F generally
does not yield convergence with these endpoints, given the initial guess for the velocity that
is suggested above. A shorter time, approximately cighty-five percent of the half-period,
is usually required to achieve a solution that includes the selected endpoints with a fixed
transfer time. Given these starting values for the departure velocity and the transfer time,
the differential corrector is then used to compute the actual departure velocity along a path
that is continuous in position and velocity and includes points o and f, that is, the nominal
two-impulse transfer. The nominal transfer cost is then computed as the sum of the two
impulses required at the endpoints to match the velocities on the fixed paths.

The resulting nominal transfer path and selected segments of the departure and arrival
halo orbits are presented in Figure I11.2, where stars indicate the endpoints of the transfer.
Note that, although approximately one-half revolution along each halo is included in the
figure to indicate the orientation of the transfer relative to the fixed paths, only one point
of each trajectory is used to compute the transfer. By integrating the transfer apart from
the halo orbits, the duration of the numerical integration process is limited to the length of
the transfer. Thus, relatively short integration times are an advantage of the point-to-point
solution approach. The transfer time from point o to point f is the selected (fixed) time of
75.6 days. The required initial AV is 208.8 m/s; the final AV is 96.4 m/s; therefore, the
total cost for the transfer is 305.2 m/s.

Before coast arcs are employed to reduce the cost, modifying the transfer time of flight
is considered. The transfer time of flight is sclected arbitrarily as any time for which
convergence can be achieved; however, since the halo orbits are defined without regard to
the time of periapsis passage in the primary orbit, any transfer time that vields a solution
may be acceptable. Furthermore, different times of flight may yield lower cost transfers

between the same nominal endpoints. Since an analytic expression for the optimal transfer
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time for fixed endpoints is not available, an intermediate optimization step is used in the
circular problem to compute the optimal transfer times. This defines a new optimization
problem. The search for the optimal path between the current endpoints with the current
number of impulses is called the “variable-time optimization problem.” Although several
variables may be used to define the new problem, the transfer time is one of the most
convenient parameters with which to consider this intermediate one parameter optimization
problem. The objective of the problem is to compute the transfer time that yields the lowest
AV solution between the current set of endpoints. The time-fixed differential corrector is
used in conjunction with a polynomial interpolation optimization routine to evaluate the
desired time of flight. The y — z projection of the “improved™ nominal transfer is presented
in Figure I11.3 where points o and f denote the same nominal endpoints as those shown in
Figure I11.2 (only the transfer time is changed). In this case, the improved transfer time,
denoted ty, is equal to 74.8 days. The cost associated with the improved nominal transfer
is 256.1 m/s with a 132.1 m/s impulse at departure and a 124.0 m/s impulse at arrival.
Thus, changing only the transfer time reduces the cost by 49.1 m/s. For the remainder of
the discussion, in the circular problem, the label “nominal solution” actually refers to the
improved nominal solution unless otherwise stated.

The free variable represented by the variable-time optimization problem is evident in
the development of the necessary conditions for optimality in the definition of the transver-
sality condition. If the final time is not fixed, an additional transversality condition exists
that requires the Hamiltonian at the final time to be zero on the optimal path. Solving
the variable-time optimization problem at each iteration of the time-free problem yields
this requirement without explicitly considering the nonlinear constraint represented by the

Hamiltonian expression.

2. Optimal Two-Impulse Path

Given the nominal solution, the departure and arrival positions are modified to search
for the optimal locations (the time-free optimization problem). Since improvements in the
transfer cost due to coast arcs are functions of the slope of the primer vector magnitude at
the endpoints, a plot of the magnitude of the primer is uscful for evaluating the solution.
The magnitude of the primer vector that is associated with the (improved) nominal transfer
is included in Figure I11.3. The slopes at the endpoints are not zero; therefore, this is not
an optimal time-free solution. Using the primer vector to evaluate the gradient expression
in equation II1.85, candidate times, represented as dt, and diy, are selected. New endpoints
are identified by integrating the nonlinear equations of motion using the state vectors on

the fixed paths that correspond to the endpoints of the transfer path as initial conditions
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for the integrations. By integrating the nonlinear equations to identify the new points, as
opposed to using a first-order approximation for the positions, the endpoints remain on
the fixed paths. The time of flight associated with the new solution is, however, sclected

according to the linear relationship
t), =ty —dt, + dty . (HT1.106]

In the elliptic problem, this relationship guarantees that the periapsis times that correspond
to the new departure and arrival points are consistent with the definition of the fixed paths.
In the circular problem, however, since the time of periapsis passage is not a constraint, the
time t'jp defined by this relationship is uscd only as the first guess for the optimal transfer
time for the perturbed endpoints. Then, the variable-time optimization problem is solved
for the optimal time corresponding to the perturbed path.

Using a numerical optimization routine to compute the optimal values of dt, and diy,
a transfer satisfying the necessary conditions for an optimal time-free problem is computed
with df, = 6.2 days and dty = ~7.7 days. The y — z projection of the new solution and the
associated primer history are shown in Figure 11.4. The primer slopes corresponding to
the beginning and end of the transfer are zero (to within acceptable tolerances) indicating
optimal endpoints. (Note that the time ¢=0 is defined to be the departure time on the
transfer and does not represent the nominal departure time.) The initial AV is equal to
116.3 m/s; the final impulse magnitude is 106.6 m/s; therefore, the optimal two-impulse cost
is 222.9 m/s. The optimal transfer time for the two-impulse case is 60.2 days. This time is
not equal to the sum t; — dt, + dt; because the solutions to the variable-time optimization
problems have been incorporated.

An optimization problem can be defined that climinates the intermediate variable-time
optimization procedure, where the problem is defined in terms of three variables, that is.
dt,, dty, and the transfer time of flight. This may reduce the total number of candidate
solutions that are required by eliminating the need to solve the intermediate optimization
problem at each iteration; however, as it was developed in this study, the use of a nu-
merically computed gradient for the time of flight was not compatible with the use of an
analytical gradient expression for the other two variables. Although the analytical gradient
is derived using a first-order analysis and is, therefore, an approximation of the true gradi-
ent, the error in the numerically computed gradient is substantially larger. The elements of
the gradient vector that are computed numerically generally suggest that large changes are
required in the corresponding variables relative to the magnitude of the changes that are
indicated for the variables associated with gradients that are computed analytically. This

approach generally failed to converge to an optimal set of variables. Thus, the algorithm
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that solves the variable-time problem at each iteration is employed although it does incur
a significant number of computations. A second alternative approach that eliminates the
intermediate problem would definc a constrained optimization problem in which the con-
straint on the Hamiltonian at the final time that results from the additional transversality
condition is explicitly required. This method was not pursued in this work since analytical
expressions for the gradient of the constraint with respect to the coast times are not avail-
able. The implementation of such a constrained problem would, therefore, again require
the simultaneous incorporation of analytical and numerical gradients, which was shown to

be unsuccessful in previous applications.

3. Additional Impulse Solutions

Although the primer history for the optimal two-impulse transfer indicates that the so-
lution achieves the requirement for optimal endpoints (as derived for an impulsive transfer),
the magnitude of the primer is greater than one during the transfer. Therefore, the cost can
be further reduced by including an additional impulse at the time when the primer reaches
its maximum (p=0). In this example, the primer attains a maximum value of approximately
1.12 at a time of 30.3 days past the departure time (f = 0). Thus, to define the nominal
three-impulse path, the magnitude of the additional impulse is determined by minimizing
Jy as defined in equation II1.96. Then, as discussed previously, a three-impulse path is
constructed that connects the endpoints of the optimal two-impulse path with a fixed in-
terior AV applied at the time when the primer reaches its maximum on the two-impulse
path. The nominal three-impulse path for this example is presented in Figure IIL.5. Stars
indicate locations of the endpoints and interior impulses. The primer history computed for
the nominal solution is also presented in the figure. The initial AV on the transfer is 112.5
m/s; the final AV is 103.6 m/s; and the intetior AV equals the specified magnitude of 6.5
m/s. The 222.6 m/s cost of the nominal three-impulse transfer is less than the optimal
two-impulse cost of 222.9 m/s; however, in the three-impulse nominal transfer, the slopes
of the primer at the endpoints are not zero. Also, the slope of the primer is not zero at the
interior impulse. Thus, the solution can be improved.

Given the nominal transfer path, the gradient expressions in equations I11.85 and 111.105
are used simultaneously to determine the optimal endpoints and the optimal location and
time for an interior impulse. The optimal three-impulse solution that results from the
procedure is shown in Figure II1.6; the associated primer history is also presented. In the
plot of the transfer path, arrows near the trajectory indicate the general magnitude and
direction of the impulsive maneuvers at the impulse locations identified as points ‘o', *‘m",

and ‘f". The AV's, expressed in terms of barycenter rotating coordinates, are: AT, =
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{23.7,-9.5, 1143} m/s; AT, = {-0.1,-43.3,6.5)}7 m/s; AT, = {~19.4,0.4,54.4)7
m/s. Thus, the cost is distributed as AV, = 117.1 m/s, AV, = 43.8 m/s, and AV, = 578
m/s, with a total cost of 218.7 m/s. In cach case, the direction of the impulse is generally
aligned with a vector that is tangent to the path at the position where the manecuver is
applied. The optimal transfer time is 80.9 days with an interior impulse at 42.1 days past
departure. The primer history associated with the transfer is plotted in the lower frame of
the figure. The slopes of the primer at the endpoints are zero, and the derivative of the
primer is continuous and equal to zero at the interior impulse time (within the tolerances
deemed acceptable for all gradient conditions). In addition to the zero slope conditions,
the primer associated with this path does not exceed one anywhere along the trajectory;
therefore, this transfer satisfies all of the necessary conditions for an optimal impulsive
solution and cannot be improved with the use of coast arcs or additional impulses. This
is then denoted an optimal impulsive transfer. A similar algorithm is employed in all
optimization problems in the circular case.

The necessary conditions require primer slopes that are equal to zero, primer magni-
tudes that are less than or equal to one, and continuity of the derivative of the primer
across any interior impulses; however, non-zero, finite tolerances are employed in the asser-
tion that each of the necessary conditions are met for all of the numerical solutions that are
computed in this work. Although solutions that satisfy all of the necessary conditions for
optimality to within defined numerical tolerances have been achieved using the algorithm
that has been presented, the form of the expressions for the elements of the gradient vectors
in equations I11.85 and I11.105 introduces a numerical issue that influences the specific tol-
erances that can be achieved. Recall, the component of the gradient of the cost with respect
to the duration of a coast arc is a product of the derivative of the primer and the impulse
magnitude. Since all computations are performed in terms of nondimensional variables,
the nondimensional magnitude of the impulse is equal to the magnitude in meters/second
divided by the characteristic length (in meters) and the mean motion (in inverse seconds).
In the Sun-Earth/Moon barycenter system, the nondimensional AV’ is generally five orders
of magnitude less than the dimensional value. Thus, in the time-frec problem, the magni-
tude of an individual element of the the gradient vector is several orders of magnitude less
than the slope of the primer. In the interior impulse problem, however, a component of
the gradient vector is computed as the difference in the primer derivatives computed at the
beginning and end of adjacent segments. Since the derivative should be zero at the optimal
solution, the difference in the derivative should be small near the optimal solution; however,

given a specified tolerance that defines an acceptably small derivative, the tolerance for the
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difference in the derivatives is, at most, equal to the tolerance for the magnitude. This de-
fines the smallest tolerance that can be established for the assertion that the gradient in the
interior impulse problem is sufficiently small. Assuming that the value of the derivative can
be computed to the same level of accuracy in the time-free and interior impulse problems,
the value of p at the endpoints of a time-free solution can be assumed to be of the same or-
der of magnitude as the components of j; however, the gradient in the time-free problem is
several orders of magnitude less than the size of 5. Thus, the gradient that can be achicved
in a time-free problem is several orders of magnitude smaller than the value to be expected
in the interior impulse problem. In this work, the magnitudes of the components of the
time-free gradient vector are less than 1x107% in optimal time-free two-impulse transfers.
The elements of the interior impulse gradient vector are, however, only required to achieve
a magnitude that is less than 1x107°. Since the two optimization problems are solved si-
multaneously in the three-impulse solutions, all of the elements (six quantities) are required
to satisfy the larger tolerance. Although endpoints that satisfy lower tolerances may be
available, the optimal location and time of the interior impulse cannot be determined to

within the accuracy required to achieve the lower value.
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IV. OPTIMAL TRANSFER PATHS: CIRCULAR PROBLEM

Families of transfers between halo orbits in the circular restricted problem are formed
from solutions that possess similar characteristics. Plots of the trajectories and of the
transfer costs are employed to examine relationships that exist among members of a single
family and to identify similarities among families. Both superior and inferior solutions are
investigated. Also, transfers between southern halo orbits are compared with solutions that

involve northern halos.

A.  Superior Transfers: Positive : Families

Two types of superior transfers between northern halo orbits are initially considered.
Solutions in one class exist such that the transfer path is primarily above the plane of
primary motion (in the positive : direction). Motion below the plane (in the negative #
direction) is representative of transfers in the second branch. In each class of solutions,
impulsive transfers exist that satisfy the necessary conditions for a local minimum AV

transfer between specified halo orbits to within acceptable numerical tolerances.

1. Positive » Family: 110,000 km A. Departure Halo Orbit

Superior transfers that depart from a northern halo orbit with out-of-plane amplitude
equal to 110,000 km and share similar characteristics are members of a 110,000 km A,
family. The family is represented by transfers to northern halo orbits with amplitudes
equal to the following values: 160,000; 200,000; 240,000; 300,000; 400,000; 500.000: 600.000;
700,000; and 800,000 km. (All halo amplitudes refer to the out-of-plane, A.. amplitude.)
The departure orbit for each solution is the departure orbit displayed in Figure HI.1. The
arrival trajectory included in the figure represents the target orbit for one member of this
family (the 600,000 km member). (

To begin the search for optimal sclutions, nominal trajectories are defined for each
departure/arrival pair of halo orbits. The nominal departure position for each solution is
the location along the 110,000 km A halo orbit where the x component of acceleration

(X) is zero and the y component of position is negative. (The variables x,y,z represent



65

position coordinates relative to the libration point. L;. In the circular problem, the r and
x acceleration components are equivalent: however, this distinction is relevant for solutions
computed in the elliptic problem.) The nominal arrival position is defined where ¥ is zero
and y is positive on each of the arrival halo orbits. Thus, the departure and arrival locations
are separated by approximately one-half revolution of a halo orbit in the ¥y — z projection.
Consistent with the algorithm discussed previously, a transfer that connects the selected
positions is computed for an arbitrary transfer time for each pair of halo orbits. Next, in
each case, the best transfer between the nominal endpoints is computed as the solution to
the variable-time optimization problem. The y —2 projections of the nominal paths are
presented in Figure IV.1. Arcs of the 110,000 km and 800,000 km orbits are included in
the figure to illustrate the orientation of the transfer relative to the halo orbits. The point
designated as point o is the departure position along the 110,000 km orbit; each transfer
includes this position. Point f denotes the arrival position for transfer to the 800,000 km
halo orbit. In Figure IV.1, the transfer with the maximum excursion in the position 2
direction is the transfer to the 800,000 km halo orbit. As the maximum z excursions of the
transfers decrease, the amplitudes of the target halo orbits also decrease.

Table 1V.1 lists the total AV for each member of this family ranging from a cost of
20.97 m/s for transfer to the 160,000 km orbit to 352.60 m/s for transfer to the 800,000 km
orbit. The heading ‘TOF’ indicates the time required to travel between the endpoints of

Final A, Nominal Optimal
2-Impulse 2-Impulse

AV TOF AV  TOF

km m/s days m/s days

160000 20,97 7238 20.74 77.73
200000 38.23 7254 38.02 76.25
240000 56.00 72.71 55.88 74.94
300000 83.65 7297 83.65 73.24
400000 132.52 73.26 132.18 71.00
500000 184.59 73.34 182.90 (9.32
600000 239.17 73.25 235.16 68.08
700000 295.42 73.06 288.38 67.18
800000  352.60 72.83 342.12 66.57

Table IV.1 110,000 km Positive : Family: Transfer Costs.

the transfer. Table A.1 in the appendix includes the magnitudes of the departure impulse
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(AV}), the arrival impulse (AV3), and the total cost (AV7). Similar tables are used to report
transfer costs for all solutions discussed in this document. The total AV and the transfer
times are presented in tables in the body of the text while the distribution of the cost is
included in tables in the appendix. In all table entries, data is rounded to two decimal
places.

The magnitudes of the primer vectors for this family are plotted in the lower frame of
Figure IV.1. Although the primer histories for all members of the family are plotted in the
same figure, the correlation of a particular primer with the associated transfer is denoted
by a list of amplitudes of the destination halos in the primer plot. In all plots of primer
histories, a list of amplitudes (in kilometers) is included that defines the correlation between
a particular primer history and the transfer to which it is associated. For example, the
primer associated with the transfer to the 800,000 ki halo achieves the largest magnitude.
(The correspondence between the primer history and a particular transfer can often be
determined by comparing the transfer times listed in the table with the final time in the plot:
however, a list of the amplitudes is included in the primer plots to assist in the identification
if the individual times cannot be distinguished in the figure.) The slopes of the primer at
the terminal times are non-zero for each of the solutions in this family; therefore, the costs
can be reduced by employing coast arcs at both ends of each transfer. For transfers to
large halo orbits (A greater than 300,000 km), the magnitude of the primer exceeds one,
indicating that a transfer that employs the nominal endpoints used in the current solution,
but includes an interior maneuver computed according to equation H1.99 and applied at a
position computed from equation I11.95, will reduce the cost; however, in this study, coast
arcs are employed to achieve the optimal time-free solution before additional maneuvers are
considered.

The solutions to the time-free problem for this family are presented in Figure IV.2. Arcs
of the 110,000 km halo and the 800,000 km halo are included in the figure. Point o indicates
the optimal departure location for the 160,000 km solution (along the 110,000 km halo);
point f corresponds to the optimal arrival point along the 800,000 km halo orbit. (Although
each nominal solution employs the same departure position, each optimal transfer departs
from a different location along the 110,000 km halo.) Similar notation is used for all superior
transfers, where o refers to the departure point corresponding to the transfer to the halo
of lowest A., and f refers to the arrival position for the largest target orbit. Transfers of
increasing amplitude correspond to target halo orbits of increasing amplitude. The value
of the out-of-plane component of position, z, along the optimal transfers arc all generally
positive; therefore, the solutions are members of a “positive 2 family.” (Note that motion

occurs in the positive 2 direction, but it is not confined to a constant plane: therefore, the



0.8

0.4 - P /
¥4 [
(106 km) 00
-0.4 -
08 T T T T T T T T
-1.6 -1.2 -0.8 -0.4 0.0 0.4 0.8 1.2 1.6
y (105 km)

1]

600000

0.99 | 700000

500000

primer 0-98 800000

magnitude 400000

0.97 - 300000

240000

0.96 — 200000

160000

0.95 I I 1 1 T

0 20 40 60 g0

t (days)
Figure V.2 110.000 km Positive z Family: Optimal Two-Impulse Solutions.



phrase “positive I plane™ is not apprepriate.) The primer histories that are associated with
the optimal transfers are plotted in the lower frame of the figure. (The time t = 0 in the
primer plot is defined as the time of depariure on the transfer and has no relationship to the
nominal departure time.) The slopes of the primers in Figure IV.2 are zero at the endpoints
to within an acceptable numerical tolerance; therefore, the solutions satisfy the necessary
conditions for optimal time-free two-impulse solutions. In addition, the magnitude of each
primer vector is less than one at all interior times. Thus, the solutions cannot be improved
with additional impulses.

The transfer costs and the times of flight for the optimal solutions are included in Table
IV.1. In the table, the time of flight refers to the transfer time between the endpoints and
does not include the coast times on the halo orbits that are introduced in the time-free solu-
tions. The optimal transfer costs computed for this family range from 20.74 m/s for transfer
to the 160,000 km orbit to 342.12 m/s for transfer to the 800,000 km orbit. In each case,
the optimal AV is within three percent of the nominal cost. Also, the optimal endpoints
of the transfer are located less than five days from corresponding nominal positions. For
example, the nominal and optimal departure locations are separated by only 2.7 days along
the departure halo for transfer to the 160,000 km orbit. Thus, transfers with endpoints
at locations where the x component of acceleration is zero, such as the nominal solutions
used in this family (Figure IV.1), possess two useful properties. First, the endpoints can
be identified on a halo orbit of any size. Second, the cost for a solution that employs such
endpoints is close to the optimal cost for a neighboring time-free solution. The amplitudes
of the target orbits are plotted in Figure IV.3 versus the optimal costs that are achieved.
Triangles in the figure represent data points for the nominal solutions; dots indicate opti-
mal solutions. Although the relationship among the optimal transfer costs is not linear, a
lincar approximation provides a reasonable prediction of the total AV that is required for
transfers to halo orbits other than those considered here. For small differences between the
departure and arrival halo orbit amplitudes, a AV of approximately 45 m/s per 100,000 km
increase in the amplitude provides a predicted cost that is in the neighborhood of the actual
optimal cost. A cost of 50 m/s per 100,000 km increase in A: yields a better approximation
for large amplitude differences.

Although the shape and the cost associated with each optimal solution are similar to
those corresponding to the nominal path, nominal transfers that are substantially different
from the optimal paths also vield optimal transfers that include only small variations from
the optimal solutions identified in Figure IV.2. Minor differences in the solutions are possible
due to numerical errors that result from the significant number of computations that are

required to achieve an optimal solution from a distant nominal trajectory and the existence
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of several solutions that satisfy optimality given a finite numerical tolerance. One example
of a transfer that is relatively far from the optimal solution for this family, but still yields
essentially the same optimai solution in Figure IV.2 for the 600,000 ki case, is presented in
Figure IV.4. In this transfer, the departure and arrival positions are located at the positions
of minimum and maximum = excursion, respectively. The cost for this solution is 692 m/s
with a transfer time of 75 days. Although both the transfer in Figure IV.4 and the 600,000
km halo solution in Figure IV.1 are one-half revolution transfers between the same two
halo orbits, the costs in each (non-optimal) case are significantly different. The cost for the
optimal solution obtained using the distant nominal transfer as the initial guess is 235.16
m/s (consistent with Table IV.1). Thus, although the optimization algorithm converges to
nearby optimal solutions using the nominal transfers presented in Figure IV.1, the algorithm
can successfully reduce the cost by over sixty percent and move the endpoints more than

one-quarter revolution in the search for an optimal solution.

2. Positive z Family: 200,000 km A. Departure Halo Orbit

A family of optimal transfers that depart from a northern halo orbit with out-of-plane
amplitude equal to 200,000 km is represented by arrival halo orbits with amplitudes equal
to: 240,000; 300.000; 400,000; 500,000; 600,000; 700,000; and 800,000 k. Table IV.2
includes the nominal costs for this family computed using endpoints similar to those used
in the sample transfers representing the 110,000 km positive = family (that is, locations

where X is zero). Optimal transfer paths that are achieved by solving the time-free problem

Final A, Nominal Optimal
2-Impulse 2-Impulse
AV TOF AV  TOF
km m/s days m/s days

240000 17.87 7291 17.86 72.28
300000 45.76 73.17 45.65 70.89
400000 95.16 73.52 9421 69.02
500000 147.86 73.69 144.98 67.63
600000 203.12 73.69 197.29 66.62
700000  260.07 73.56 250.57 65.91
800000 317.91 73.38 304.37 65.44

Table IV.2 200,000 km Positive = Family: Transfer Costs.

for cach member are presented in Figure IV.5 with the associated primer histories. The
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transfer portion along each solution remains primarily in the positive 2 direction; therefore,
the transfers are members of a positive x family. The characteristics of the family are similar
to those of the 110,000 km A., positive = family of superior transfers: optimal solutions
require only two impulses; optimal endpoints are close to the nominal locations; optimal
costs represent modest reductions relative to the nominal AV ’s. Representative costs for
the family are plotted relative to the amplitude of the arrival halo orbits in Figure IV.6.
In agreement with the slope predicted in Figure IV.3, a change in the target amplitude of

100,000 km requires an increase in the AV of approximately 45 to 50 m/s.
B. Superior Transfers: Negative = Families

The existence of optimal impulsive transfers is verified by the solutions presented as
members of positive = families; however, the necessary conditions for optimality only provide
a test for a local minimum. Thus, additional solutions that satisfy the conditions are possible
for any set of halo orbits. Given the presence of optimal transfers above the x — v plane
(in the positive # direction), transfers that exist primarily below the x — y plane (in the

negative * direction) are also considered.

1. Negative z Family: 110,000 km A. Departure Halo Orbit

A family of optimal superior transfers that depart from a northern halo orbit with out-
of-plane amplitude equal to 110,000 km is available where the out-of-plane component of
position for the transfer path is negative along most of the trajectory path. Transfers to
target halo orbits with amplitudes equal to: 160,000; 200,000; 240,000; 300,000; 400,000;
500,000; 600,000; and 700,000 km are representative members of the family. (The transfer
to the 600,000 km halo discussed in Chapter III is a member of this family.) Nominal
departure and arrival positions are selected at locations where z is zero: the departure
position is located where z is zero and y is positive on the 110,000 km A. northern halo
orbit; the arrival points are the positions where z is zero and y is negative on each of
the selected target orbits. The nominal two-impulse transfers and the associated primer
histories are plotted in Figure IV.7. In each case, the slopes of the primer at the terminal
times are non-zero; therefore, the costs can be reduced with the use of coast arcs. The
nominal two-impulse costs are listed in Table IV.3. In most cases, the nominal costs for
this family are larger than the nominal AV s in the 110,000 km A, positive = family (Table
IV.1); however, this does not indicate that the optimal costs for this family are also larger

than the those for the positive z solutions.
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Final A; Nominal Optimal Nominal Optimal
2-Impulse 2-Impulse 3-Impulse 3-Impulse
AV TOF AV TOF| AV TOF AV  TOF
km m/s days mfs days| m/s days m/s days
160000 20.70 76.68 20.02 69.26 | 20.02 69.26 20.02 7T1.98
200000 38,51 T76.57 36.61 67.93| 36.61 67.93 36.57 72.64
240000  57.10 7645 53.68 66.74| 53.6T 66.74 53.57 73.31
300000 86.99 76.24 80.09 65.18| B80.06 65.18 79.78 74.32
400000 140.81 75.81 126.01 63.06 | 125.92 63.06 125.00 76.07
200000 197.86 75.32 173.78 61.44 | 173.57 61.44 171.54 78.10
600000 256.12 74.80 222.87 60.18 [ 222.50 60.18 218.72 80.94
700000 313.67 74.20 272.86 59.21 | 272.28 59.21 265.89 87.80
Table IV.3 110,000 km Negative z Family: Transfer Costs.
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Employing coast arcs in a time-free, two-impulse optimization problem for each case.
optimal two-impulse solutions are achieved that remain generally below the x — v plane,
in the negative Z direction. The trajectories are represented in Figure IV.8 with the cor-
responding primer histories. A relatively long coast arc at arrival is required to achieve
optimality, particularly in transfers to large halo orbits. Thus, the selected nominal end-
points are not representative of the optimal locations. Also, for large amplitude differences,
the optimization process reduces the cost to less than ninety percent of the nominal AV’
value. Alternative endpoints for negative = transfers, ones that yield nominal costs that are
closer to the optimal (two-impulse) costs, and possess some distinguishing characteristics,
are not available.

The costs in Table IV.3 corresponding to the optimal two-impulse trajectories are less
than the optimal costs achieved in the corresponding positive z solutions (Table 1V.1);
however, further reductions are possible with the use of interior impulses. In each case,
the slopes of the primer are zero at the terminal times on the trajectory, indicating an
optimal time-free transfer, but the magnitude exceeds one along the path. Thus, an interior
impulse is included in each solution at the time when the primer reaches its maximum. The
nominal three-impulse solutions are plotted in Figure IV.9. Nominal costs for the three-
impulse solutions are included in Table IV.3. Magnitudes of the individual impulses are
provided in Table A.4 of the appendix, where AV, indicates the departure maneuver, AV,
denotes the interior impulse magnitude, and the arrival cost is labeled AV,. Note that the
times of flight in Table IV.3 associated with the nominal three-impulse solutions are equal
to the transfer times for the corresponding optimal two-impulse transfer. Each nominal
three-impulse transfer employs the same terminal positions and total transfer time as the
optimal two-impulse transfer, as discussed in the previous chapter. The nominal three-
impulse primer histories are also included in Figure IV.9. The amplitudes listed in that
frame identify the curves by indicating the relative positions of the minimum value of the
primer at a point after the interior impulses. (The list of amplitudes is always included
near the part of the primer plot to which it refers.) In each case, the primer violates the
time-free requirement of zero slopes at the ends; therefore, coast arcs will reduce the costs.
The optimal endpoints for the two-impulse solutions are not optimal for the three-impulse
paths. Furthermore, at the time of the interior impulse on each solution, the derivative of
the primer fails both the continuity requirement for an optimal interior mancuver and the
zero slope condition. (The derivatives appear to be continuous on the scale of the plot;
however, they do not satisfy the numerical tolerances that are required. The value of the

slope at the endpoints, however, clearly is non-zero in cach case.)
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To obtain an optimal three-impulse transfer, the location and time of the third (interior)
impulse is optimized simultaneously with the coast arcs on each solution in an optimization
problem that is defined by the six variables that represent these quantities. The goal in this
step is a solution in which the slope of the primer is zero at each of the three impulses and
is continuous across the interior impulse. The optimal solutions achieved for this family
are presented in Figure IV.10. In the figure, the position identified as ‘Mygoooo’ indicates
the location of the interior maneuver along the transfer to the 160,000 km halo orbit. The
notation ‘mzogo0o” indicates the position of the interior maneuver for transfer to the 700,000
km halo orbit. The optimality requirements are satisfied at each maneuver to within the
numerical tolerances employed. Also, the magnitude of the primer is less than one at all
non-impulse times. Thus, the solutions are optimal impulsive transfers; additional impulses
will not reduce the cost. The time-frec aspect of the optimization problem (that introduces
coast arcs in the solutions) produces significant changes in the arrival locations relative
to both the optimal two-impulse terminal positions and the nominal positions that were
originally selected; however, the arcs represent delayed arrivals relative to the nominal
positions as opposed to the early arrivals required in the two-impulse transfers. Thus,
the optimization of the interior impulse simultaneously with the endpoints requires large
changes in the transfer trajectories; however, the reduction in the cost that is achieved
through the optimization process is small. The optimal three-impulse cost is within three
percent of the value of the nominal three-impulse AV in each case; however, optimizing the
interior impulse does cause a substantial redistribution of the cost (see Table A.4). As the
arrival amplitude increases, the interior impulse increases from less than three percent of
the total cost in the 160,000 km case to over twenty percent of the total AV for the 700,000
km solution. Thus, the interior impulse has a significant influence on the characteristics of
the solution although it yields only a minor reduction in the total AV,

The transfer costs associated with this family are plotted in Figure IV.11. Triangles rep-
resent nominal two-impulse costs; stars indicate the optimal two-impulse solutions; optimal
three-impulse costs are identified by dots. The costs associated with optimal solutions in
this family are lower than the corresponding costs in the 110,000 km A., positive z family
for the same pair of departure/arrival halo orbits. Furthermore, as the final amplitude in-
creases, the difference in the costs between the two families increases. Reflective of the lower
costs in this family compared with the positive : family, an approximate slope in the range
of 43 to 48 m/s per 100,000 km change in the arrival amplitude yields a better prediction
of the total AV than the 45 to 50 m/s range suggested by the positive > family. The stated
ranges for each family are, however, only intended to indicate a reasonable prediction of

the actual costs. Thus, the 2 m/s difference in the range of values for the slopes is not
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necessarily notable. It is noted, however, that both 110,000 km families possess generally

linear relationships between the optimal costs and the target halo amplitudes.

2. Negative : Family: 200,000 km A, Departure Halo Orbit

A comparison of the two positive = families presented eatlier in this chapter indicates
that families with similar characteristics may exist with different departure halo amplitudes.
A similar conclusion for families that exist primarily below the x — y plane (in a negative =
direction) is demonstrated by a family of superior transfers that depart from a 200,000 km
A: halo. Transfers to target orbits with z-amplitudes: 240,000; 300,000; 400,000; 500,000;
600,000; and 700,000 km are used to represent the family. The costs for nominal, two-
impulse transfers are listed in Table IV .4 for solutions computed with a departure position
where z is zero and y is positive and arrival at the location where z is zero and y is negative.

The transfers resulting from the time-free problems for this family are similar to those

Final A, Nominal Optimal Nominal Optimal
2-Impulse 2-Impulse 3-Impulse 3-Impulse
AV TOF AV TOF | AV TOF AV  TOF
km m/s days m/s days { m/s days m/s days

240000 18.84 76.26 17.08 64.41 | 17.08 64.41 17.00 74.71
300000 48.99 76.04 43.55 63.13 | 43.51 63.13 43.22 75.68
400000 103.31 75.61 89.57 61.38 | 89.46 61.38 88.45 77.34
500000 160.81 75.11 137.47 60.02 | 137.23 60.02 135.01 79.23
600000 219.37 74.56 186.70 58.99 | 186.28 58.99 182.22 81.73
700000 277.29 73.97 236.85 58.19 | 236.18 58.19 229.51 86.34

Table IV.4 200,000 km Negative = Family: Transfer Costs.

achieved in the 110,000 km, negative = family; the primers associated with the optimal two-
impulse solutions have magnitudes greater than one, and early arrivals are required. Thus,
in each case, a third impulse is included and optimized simultaneously with the endpoints
in search of a three-impulse path that satisfies all optimality requirements.

The y — z projections of the optimal three-impulse solutions are plotted in Figure IV.12.
As found in the 110,000 km negative : family, the addition of a third impulse to each
solution shifts the arrival location to a position that indicates a late arrival (compared with
the early arrival required for the two-impulse optimal transfers), but it reduces the cost
less than three percent relative to the optimal two-impulse cost. Although the additional

impulse has a small impact on the total cost, it substantially alters the distribution of the
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total AV (see Tables A.5 and A.6). As the arrival amplitude increases, the influence of the
interior impulse increases from cleven percent of the total Al in the 240,000 km solution
to over twenty-four percent in the 700,000 km case. Representative costs for this family
are plotted in Figure IV.13. The optimal costs for members of this family are less than
the corresponding costs in the positive = family. At one end, the cost of the transfer to a
240,000 km halo is 4.8% less than the positive = transfer cost; for transfer to the largest
halo, that is, A, equal to 700,000 km, the optimal AV for a transfer below the x — y plane
(negative z) is 8.4% less than the corresponding positive = solution; the differences in other
cases are within the range defined by these bounds. The slope of the curve is consistent

with that found in Figure IV.11.

3. Negative = Family: 240,000 km A, Departure Halo Orbit

A third family of superior transfers associated with motion in a negative = direction is
represented by transfers from an initial halo with out-of-plane amplitude equal to 240,000
km to final halos with amplitudes: 300,000; 400,000; 500,000; 600,000; and 700,000 km.
Costs for nominal solutions with endpoints at locations where z is zero on the halo orbits are

included in Table IV.5. Consistent with conclusions established for other superior transfers

Final A. Nominal Optimal Nominal Optimal
2-Impulse 2-Impulse 3-Impulse 3-Impulse
AV TOF AV TOF| AV TOF AV TOF
km m/s days m/s days | m/s days m/s days

300000 30.18 75.92 2647 62.34| 2645 62.34 26.22 76.34
400000 84.61 7548 7252 60.73| 7241 60.73 7146 77.89
500000 14226 74.98 120.46 59.48 | 120.21 59.48 118.02 79.71
600000 200.94 74.42 169.74 58.52 | 169.30 58.52 165.25 82.07
700000 258.99 73.83 219.94 57.80|219.24 57.80 212.57 86.10

Table TV.5 240,000 km Negative = Family: Transfer Costs.

that exist primarily below the x —y plane, that is, in a negative ? direction, solutions
that achieve all conditions of cptimality require three impulses. The optimal transfers are
presented in Figure IV.14. The addition of the third impulse to the transfer produces
only a small reduction in the cost (less than four percent of the optimal two-impulse cost),
but optimizing the time and location of that maneuver, simultaneously with the endpoint
locations, moves the arrival positions to locations that represent delayed arrivals on the halo

orbits, compared with early arrivals that are required for optimal two-impulse solutions.
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The plot of the transfer costs versus the arrival amplitudes (Figure 1V.15) also emphasizes
that the trends established by other optimal solutions that include motion in a negative 2
direction are maintained.

For all sets of nominal endpoints that are considered in this study (including many com-
binations that are not discussed in this document), the optimization procedure converges
to a solution that is equivalent to either a positive z solution or a negative : transfer, as
represented by the two types of families discussed previously (to within defined numerical
tolerances). If continuation is employed, however, additional solutions are possible that
retain the general characteristics of these families but possess slightly altered shapes. Also,
for superior transfers from halos with amplitudes equal to 110,000, 200.000, and 240,000
km, to an 800,000 km destination halo, continuation is necessary to achieve an optimal
three-impulse solution that is below the x — y plane, that is, a negative  transfer. Optimal
two-impulse solutions and nominal three-impulse transfers to the 800,000 km halo can be
computed as direct transfers from the selected departure halo to the 800,000 km orbit; how-
ever, to achieve an optimal three-impulse solution, a transfer to a smaller halo is required to
supply a first guess. The nominal three-impulse transfer computed using the primer vector
to evaluate the appropriate interior maneuver, with endpoints at the locations determined
in the optimal two-impulse solution, does not provide an adequate nominal solution for
convergence to an optimal three-impulse transfer. Both the cost and shape of the solutions
computed using continuation are influenced by the size of the halo orbit used to provide the
improved nominal three-impulse path.

To illustrate the effects of a continuation procedure, two optimal three-impulse transfers
from a 240,000 km halo to an 800,000 km halo are plotted in Figure IV.16. Both transfers
are below the x — y plane, that is, negative z transfers. The solution labeled as ‘300000’
uses the transfer to the 300,000 km halo (in Figure IV.14) to compute the first guess.
The ‘600000’ transfer is generated from the 600,000 km member of the 240,000 km A.,
negative : family (Figure IV.14). Both of the solutions are optimal impulsive transfers
between the 240,000 and 800,000 km halos as shown by the two primer histories; however,
the negative = excursions in both solutions in Figure 1V.16 are less than that predicted by
the trends in Figure IV.14. In all transfer families that have been previously presented,
increasing the amplitude of the arrival halo increases the maximum z excursion of the
transfer (in magnitude) (relative to transfers to smaller halo orbits); however, when this
type of continuation is employed, the maximum z excursion associated with the transfer
is generally less than that of the transfer used to produce the nominal solution. Also, the
excursions of the solutions in the positive = direction in Figure IV.16 (the shifts in the arrival

positions away from the location where z is zero) are less than that predicted by the trends
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associated with the arrival positions in Figure 1V.14. Thus, the shapes of the solutions
computed using continuation differ from the characteristics of family members computed
with different procedures. The transfer cost is, however, consistent with that predicted
by Figure IV.15. The cost for the ‘300000’ solution is 263.15 m/s; the transfer cost in
case ‘600000’ is 262.55 m/s. Solutions computed using continuation that differ from those
presented in the two types of families that have been discussed thus far are possible for all
halo orbit combinations. Thus, many solutions exist that satisfy the necessary conditions
for optimality for each pair of departure/arrival halo orbits; however, in all optimization
problems that have been considered without the use of this type of continuation technique,
the algorithm converges to one of the two classes of families that have been discussed. The
necessity of continuation for the computation of optimal transfers to the 800,000 ki halo
(in the negative 2 direction) is believed to be the result of the large change in the arrival
position that is required between the optimal two-impulse solution and the optimal three-
impulse transfer and not necessarily the large difference in the amplitudes of the initial and
final halos. It is possible to construct optimal three-impulse transfers to the 800,000 km
halo without continuation if a nominal three-impulse path is defined with endpoints at the
locations where = is zero (the endpoints used in the nominal two-impulse solutions). In
this case, smaller coast arcs are required, and convergence is achieved. This contradicts
the optimization steps that have been defined in this work (the results of the optimal two-
impulse solutions are ignored), but it tends to support the conclusion that the difficulty is,

in some respect, associated with the change in the endpoints.

C. Southern Halo Orbits

The previous discussion of superior transfers employs northern halo orbits for both the
departure and arrival trajectories; however, transfers between southern halos of sizes similar
to those considered in the northern families are available as mirror images of the northern
solutions. A southern halo orbit can be computed from a corresponding northern halo by
changing the sign of = and Z in the state vector that defines the halo orbit. ‘'he symmetry
of the equations of motion with respect to the z coordinate also permits a transfer path
between southern halo orbits to be constructed from a transfer between northern halos.

To illustrate solutions for southern halos, a family of transfers is considered from a
southern departurc halo of A. amplitude equal to 110,00 km to various southern halo orbits
as the destination orbits. These target orbits are defined with 1. amplitudes equal to:
160,000; 200,000; 240,000; 300,000; 400,000; 500,000; 600,000; and 700,000 km. Optimal

transfers between these pairs of halo orbits are presented in Figure IV.17. The solutions are
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symmetric about the z-axis with respect to the northern trajectories presented in Figure
IV.10. The magnitudes of the impulsive maneuvers are equal to those seen in Table IV'.3:
however, the out-of-plane component of the AV vectors for the transfers between southern
halos are the negative of the components of (AV - 2) for their northern counterparts. The
state transition matrix corresponding to a transfer between southern orbits is constructed
by multiplying the entries that are associated with = and # (rows and columns three and
six as developed in equation 11.43) by negative one. Given this transformation and the sign
changes in the AV’s, the solution for the mirror image primer is computed from equation
HI.67 as P, = {pin P2n —pan}? where the primer vector for the northern halo solution is
defined as §,, = {pin p2n pg,,}T; therefore, the magnitude of the primer is unchanged. Thus,
this discussion also identifies solutions between southern halo orbits, although it focuses on

transfers between northern halos.

D. Inferior Transfers: Positive » Families

Given the two types of solutions that are available for superior transfers, similar classes
of inferior transfers are sought. Optimal inferior transfers with motion generally above the
x —y plane (in a positive 2 direction) are available as time-free, two-impulse solutions. Op-
timal three-impulse transfers below the plane (negative 3) are also available. Northern halo
orbits are used in the following examples; however, transfers between southern halo orbits

can be constructed using the transformations discussed previously for superior solutions.

1. Positive = Family: 600,000 km A, Departure Halo Orbit

A family of inferior transfers, represented by target halo orbits with amplitudes equal
to: 110,000; 160,000; 200,000; 240,000; 300,000; 400,000; and 500,000 km, is constructed for
a 600,000 km A. departure halo orbit. The nominal departure position for each transfer is
selected as the location along the 600,000 km departure halo orbit where the x component
of acceleration is zero and y is negative. Locations where the x component of acceleration
is zero and y is positive along each of the target halos are the nominal arrival positions.
The y — z projections of the nominal two-impulse transfers for this family are presented
in Figure IV.18 with arcs of the 600,000 km departure halo and the 110.000 km arrival
halo orbits also included. For inferior transfers, point o indicates the departure position
for transfer to the largest destination halo orbit (the 500,000 km halo in this case); point
[ designates the arrival position on the smallest target halo orbit (the 110,000 km halo).
The same nominal two-impulse departure position along the 600,000 km halo is employed

in each of the nominal two-impulse solutions. The associated primer magnitude plots are
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included in the lower frame of the figure. In each case, the slopes of the primer are non-zero
at the terminal times; therefore, coast arcs will reduce the cost.

Transfer costs for this family are given in Table IV.6. The entries in the first row of this

Final Halo A. Nominal Optimal
2-Impulse 2-Impulse

AV TOF AV TOF

km m/s days m/s days

110000 239.17 73.25 235.16 68.08
160000 219.58 73.44 214.52 67.23
200000 203.12 73.69 197.29 66.62
240000 185.95 74.00 179.47 66.08
300000 158.82 74.56 151.73 65.37
400000 109.96 75.61 103.18 64.44
500000 56.80 T76.63 52.39 63.78

Table IV.6 600,000 km Positive = Family: Transfer Costs.

table (the 110,000 km case) are equivalent to entries in the row corresponding to a 600,000
km halo in Table IV.1. Entries in the third row (200,000 km A.) are equivalent to data in
the row for the 600,000 km solution in Table IV.2 for the 200,000 km A,, positive = superior
transfer family. This correspondence is indicative of similarities that exist among superior
and inferior transfers that connect the same two halo orbits (in the circular problem). The
terminal positions for a superior transfer can be transformed algebraically to those of an
inferior solution between the same two halos using the symmetry of the halo orbits. If the
departure state vector for a superior transfer is defined by X, = {20 vo 20 2o Yo :'O}T,
and the arrival state vector is X; = {z; ys 27 £; y; 3;}7, the corresponding initial state
vector for an inferior solution is defined Xoi = {2y —y; z; —2; §y —37}7, and the
state vector at arrival for the inferior transfer is :\7/; ={z =Y 20 —Zo o -:'O}T.
(The subscript i indicates that the state is associated with an inferior transfer.) The cost
for the transformed solution is equivalent to the cost for the original path; however, the
signs of the components of the AV vectors reflect the changes in the state vectors. If the
departure, interior, and arrival impulses for a superior three impulse transfer are defined
as AT, = {dvgy dver dva}T, AV, = {dvpy dvpg dugs}T, and AV, = {dvyy dvyz dvgs}T,
respectively, the departure, interior, and arrival maneuvers for the corresponding inferior
solution are given by AV,; = {dvyy —dvg dvfg}T, AV, = {dvpmy —dvpg dv,3}T, and

A—fﬁ = {dv,; —dv,y dv,3}T. This type of transformation is only possible for transfers
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between symmetric (and, therefore, periedic) orbits since the transformed position vector
is not necessarily included in the new departure or target trajectory if the original orbit
is not symmetric. Therefore, inferior transfers are considered in this work independently
of the corresponding superior solutions to evaluate the application of the algorithm to the
construction of inferior transfers. (Recall, the optimization algorithm does not rely on any
specific characteristics of the halo orbits.) Small differences in inferior and superior solutions
that are computed independently may exist due to the use of finite numerical tolerances in
the test for optimality. For positive = families, the solutions are cquivalent to within the two
decimal places presented in the tables of this report; however, in negative : transfers that
require larger changes relative to the nominal solutions and, therefore, more computations,
minor variations between superior and corresponding inferior solutions are evident. Such
differences are generally less than one percent of the quantity in which the difference occurs
(and in most cases substantially less than one percent).

Optimal superior positive = transfers are time-free, two-impulse solutions to the opti-
mization problem; therefore, corresponding optimal inferior transfers are also two-impulse
trajectories. The optimal transfers for the 600,000 km A., positive r family are plotted in
Figure IV.19 with the associated primer histories. Zero slopes in the primer history at the
endpoints of each solution indicate optimal coast arcs. Also, the derivative of each primer
1s continuous across the interior impulse, and the magnitude of each primer is less than one
at all interior times. Thus, the solutions satisfy all necessary conditions for optimality. The
costs for this family are plotted in Figure IV.20 versus the target amplitude. A slope of
approximately 45 to 50 m/s per —100,000 km change in amplitude is predicted, as expected
given the symmetry of the solutions to existing results. In inferior transfer families, the
50 m/s value provides a better approximation for transfers to large halo orbits (consistent
with the conclusion from analysis of the superior families), but, in terms of the change
in amplitude, the 45 m/s per —100,000 km slope yields a better approximation for large
changes from the departure halo. This conclusion agrees with the slope in Figure 1V.3, for
example, corresponding to superior families; that is, the 45 m/s value is appropriate for
small target amplitudes while the 50 m/s approximation is a better slope for large target

amplitudes.

2. Positive = Family: 700,000 km A, Departure Halo Orbit

A second family of inferior transfers with a path predominantly above the x — y plane
(the positive 2 direction) is defined by a departure halo with out-of-plane amplitude equal
to 700,000 km. In this case, the following target halo amplitudes are considered: 110,000
200,000; 240,000; 300,000; 400,000; 500,000; and 600,000 km. The nominal transfer costs,
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using endpoint locations defined as the positions where the x components of acceleration

are zero, are included in Table IV.7. The rows in this table for transfer to the 110,000

Final Halo A. Nominal Optimal
2-Impulse 2-Impulse
AV TOF AV TOF
km m/s  days m/s  days

110000 29542 T73.06 288.38 67.18
160000 276.22 73.29 267.78 66.44
200000 260.07 73.56 250.57 65.91
240000 243.20 73.91 232.78 65.43
300000 216.54 74.53 205.06 64.82

400000 168.44 75.74 156.56 64.02
500000 11591 76.98 105.78 63.46
600000 59.48 78.07 53.41 63.12

Table IV.7 700,000 km Positive = Family: Transfer Costs.

km and 200,000 km halos are equivalent to the rows for transfer to a 700,000 km halo in
Tables IV.3 and IV.6, respectively, consistent with the symmetry that exists for superior
and inferior transfers between halo orbits in the circular problem. The solutions for this
family are plotted in Figure IV.21. Consistent with other superior and inferior transfer
families with paths above the x — y plane (positive ), optimal impulsive solutions exist
that include only two-impulses. The costs in Figure IV.22 are plotted versus the amplitude
of the arrival halo orbits. The slope of the curve is approximately equal to that of other

positive = transfer families.

3. Positive z Family: 800,000 km A. Departure Halo Orbit

Various arrival halo orbits are used to construct another family of inferior transfers with
paths of motion that are generally above the x — v plane (positive ). The departure orbit
1s defined with an amplitude equal to 800,000 km; the destination halos are generated with
the following amplitudes: 110,000; 160.000; 200,000: 240,000; 300,000; 400,000; 500,000;
600,000; and 700,000 km. In this family, the transfers to the 110,000 km and 200,000
km halos are similar to the superior transfers to an 800,000 km halo from the 110,000
and 200,000 km halos in the positive = families. The nominal and optimal transfer costs for
members in this family are listed in Table IV.8 for nominal transfers computed with terminal

positions where the x components of acceleration are zero. Consistent with the trends that
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Final Halo A, Nominal Optimal
2-Impulse 2-Impulse

AV TOF AV TOF

km m/s days m/s days
110000 352.60 T2.83 342.12 66.57
160000 333.77 73.08 321.55 65.91
200000 317.91 73.38 304.37 65.44
240000 301.36 73.74 286.60 65.02
300000 275.19 74.41 258.92 64.48
400000 227.97 75.74 21046 63.79
500000 176.31 77.14 159.72 63.32
600000 120.57 78.45 107.37 63.05
700000 61.47 7956 5398 062.94

Table IV.8 800,000 km Positive = Family: Transfer Costs.
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exist in other positive = families, optimal solutions are achieved with two impulses. Also,
solutions are obtained without the use of continuation for each member of the family. The
shapes of the optimal solutions in this family, plotted in Figure IV.23, are consistent with
other inferior solutions that exist above the fundamental plane, that is, in a positive 2
direction. Also, the approximately linear relationship between the total AV and the change
in the amplitude, indicated in Figure 1V.24, maintains the same slope found in other positive

= transfer families, that is, 45 to 50 m/s per —100,000 km.

E. Inferior Transfers: Negative : Families

Given the relationships that exist between superior and inferior transfers that connect
pairs of halo orbits, the existence of inferior transfers with paths below the x — y plane (ina
negative 2 direction) is expected. Such transfers are available as transformations of superior
transfers or as solutions to the optimization algorithm given a nominal transfer that exists

as a negative $ solution.

1. Negative : Family: 500,000 kmm A, Departure Halo Orbit

Members of a family of inferior transfers that depart from a 500,000 km halo orbit and
arrive at halos with amplitudes equal to the following are considered: 110,000; 200,000;
240,000; 300,000; and 400,000 km. Consistent with the calculation of superior transfers
computed in the negative ? direction, nominal endpoints are selected at locations where z
is zero. The nominal departure point is the position where z is zero and y is positive on
the 500,000 km departure halo. At the nominal arrival position on each final halo orbit, z
is zero and y is negative. The nominal transfers, and arcs corresponding to the 110,000 km
halo orbit and the 500,000 km halo orbit, are plotted in Figure IV.25. The primer histories
are also included in the figure. The transfer costs for the family are seen in Table IV.9.
The costs and times listed in the first row of this table are equivalent to the entries in the
500,000 km row of Table IV.3 for the 110,000 km positive = family with the exception of the
nominal three-impulse cost and the optimal three-impulse time. In Table IV.3, the nominal
three-impulse cost is 173.57 m/s compared with a cost of 173.83 in Table IV.9: the optimal
three-impulse time in Table IV.3 is 78.10 days compared with a time of 78.11 days in Table
IV.9. Differences in the optimal solutions are the result of the numerous computations
that are required to achieve optimal transfers in negative = families. Recall, in superior
transfers that take place generally below the x — y plane (negative ), the endpoints of the
optimal transfer in each step are significantly different from the nominal terminal locations.

Given the use of finite tolerances for the evaluation of optimality and the large shifts in
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Final 4, Nominal Optimal Nominal Optimal
2-Impulse 2-Impulse 3-Impulse 3-Impulse
AV TOF AV  TOF| AV TOF AV TOF
km m/s days m/s days | m/s days m/s days
110000 197.86 75.32 173.78 61.44 | 173.83 61.44 171.54 78.11
160000 178.12 75.22 153.95 60.62 | 154.00 60.62 151.55 78.73
200000 160.81 75.11 137.47 60.02 | 137.51 60.02 135.01 79.23
240000 142.25 T74.98 120.46 59.48 | 120.50 59.48 118.02 79.71
300000 11229 74.74 94.05 58.75| 94.08 58.75 91.81 80.43
400000 9791 7424  48.01 57.76 | 48.03 57.76  46.57 81.61

Table IV.9

500,000 km Negative = Family: Transfer Costs.
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the endpoints that are required, small variations among the optimal solutions are possible.
Larger variations that exist between corresponding nominal three-impulse costs in the two
types of families are primarily the result of the application of alternate assumptions in the
algorithm. A comparison of the optimal two-impulse costs and the nominal three-impulse
AV magnitudes listed in Table IV.9 indicates that each three-impulse AV is shightly larger
than the corresponding two-impulse cost, although the purpose of the additional impulse is
to reduce the total cost. As discussed in the development of the algorithm (section 111.D.3),
all assumptions employed in the derivation of the equations 111.95 and I11.99 (that define
the position at which to apply a third impulse, and the magnitude and position of the
maneuver) cannot be imposed simultaneously when the terminal positions of the transfer
arc constrained. In the families discussed previously, the nominal three-impulse path is
constructed by calculating a value of AV at the interior time and constraining the AV,
while shifting the location of the impulse as required to achieve position continuity at the
interior position. In the inferior transfer families, the nominal solutions are computed by
constraining the location of the interior impulse and varying the AV. In gencral, fixing the
AV value yields a slightly lower cost than solutions that constrain the proposed interior
position; therefore, the nominal (three-impulse) costs computed for inferior transfer families
are higher than the costs that may be possible if the AV were fixed. Nominal solutions were
computed with fixed interior positions (rather than fixed interior AV’s) to test the impact
of this assumption on the result of the subsequent optimization process. Although slightly
higher transfer costs are achieved in nominal three-impulse solutions when the interior
position requirement is imposed, the results of the optimization are generally consistent
with optimal solutions comnputed using a nominal solution generated using a fixed interior
AV,

The optimal inferior transfers representing this family and the associated primer histories
arc plotted in Figure IV.26. The solutions satisfy the requirements of the time-free problem,
as indicated by zero primer slopes at the ends of the transfers. At the interior impulse
time, the derivative of the primer is zero, and the derivative is continuous within defined
standards; therefore, the time and location of the interior impulse are optimal. TFinally,
the magnitude of the primer is less than one at all non-impulse times. Thus, the solutions
satisfy all necessary conditions for optimal time-frec solutions. The costs for the family are
plotted in Figure IV.27. Consistent with the conclusions reached in other families, Figure
IV.27 predicts an approximately linear relationship between the target amplitude and the
total AV,
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2. Negative : Family: 600,000 km A. Departure Halo Orbit

A second family of optimal inferior solutions in the negative 3 direction is defined in-
corporating a 600,000 km A, departure halo. Table IV.10 lists the transfer costs for the
following target amplitudes: 110,000; 160,000; 200,000; 240,000; 300,000; 400,000; and

500,000 km. The optimal three-impulse transfers for this family are plotted in Figure IV.28

Final A, Nominal Optimal Nominal Optimal
2-Impulse 2-Impulse 3-Impulse 3-Impulse

AV TOF AV TOF! AV TOF AV TOF

km m/s days m/s days | m/s days m/s days

110000  256.05 74.78 222.87 60.18 | 222.97 60.18 218.72 80.95
160000 236.52 74.68 203.14 59.48 | 203.23 59.48 198.75 81.38
200000 219.37 74.57 186.70 58.98 | 186.80 58.98 182.22 81.73
240000 200.94 74.42 169.74 58.52 | 169.83 58.52 165.25 82.08
300000 171.16 74.17 143.39 57.91 | 143.47 57.91 139.05 82.59
400000 117.02 73.65 9740 57.08| 97.46 57.08 93.83 83.43
500000 59.22 73.01 49.41 56.47 | 49.43 56.47 47.27 84.35

Table IV.10 600,000 km Negative = Family: Transfer Costs.

with the corresponding primers. The transfets to orbits of amplitude 110,000, 200,000 and
240,000 km are symmetric about the z axis to those computed in the 110,000, 200,000,
and 240,000 km negative z, superior transfer families, for transfer to the 600,000 km orbit.
The corresponding table entries also indicate similarities in the solutions with only minor
differences in related data. In agreement with the results found in other negative : families,
the costs, plotted in Figure IV.29, predict a change in AV in the range of 43 to 48 m/s per
100,000 km decrease in the amplitude of the target orbit.

3. Negative = Family: 700,000 km A. Departure Halo Orbit

The data for a negative = inferior transfer family, defined by a departure halo orbit
of amplitude equal to 700,000 km, is presented in Table IV.11. The nominal solutions are
constructed from endpoints located where z is zero, consistent with the definitions employed
in other negative = inferior transfers. Rows corresponding to the 110,00 and 200.000 km
halo orbits are consistent with corresponding entries in Tables 1V.3 and IV 4 for transfer
to a 700,000 km halo orbit, with small differences due to alternate assumptions in the
computation of the nominal three-impulse paths and other numerical issues. The optimal

solutions for this family are plotted in Figure IV.30; Figure IV.31 represents the relationship
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Final A. Nominal Optimal Nominal Optimal
2-Impulse 2-Impulse 3-Impulse 3-Impulse
AV TOF AV TOF| AV TOF AV TOF
km m/s days m/s days | m/s days m/s days
110000 313.67 74.20 272.86 59.21 | 273.03 59.21 265.89 87.81
160000 294.31 74.09 253.22 58.62 | 253.39 58.62 246.00 86.74
200000 277.29 73.98 236.85 58.19 | 237.02 58.19 229.51 86.32
240000 258.99 73.83 219.94 57.80 ] 220.10 57.80 212.57 86.08
300000 22940 73.56 193.65 57.29 | 193.80 57.29 186.41 85.95
400000 175.88 73.05 147.72 56.60 | 147.85 56.60 141.25 86.00
500000 118.05 7233 99.76 56.10 | 99.84 56.10 94.73 86.33
600000 58.98 T71.59 50.36 55.77 | 50.39 55.77 47.47 87.01

Table IV.11

700,000 km Negative = Family: Transfer Costs.
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between the cost and the amplitude of the target halo orbit.  This example emphasizes
several trends realized in other negative = inferior solutions: three impulses are required to
achieve optimality; the transfer predominantly exists below the planc of primary motion,
that is, in the negative $ direction; and a change in cost of approximately 43 to 48 m/s is

required for each —100,000 km change in the arrival amplitude.

4. Application

To demonstrate one application of the transfers that have been presented in this work,
a transfer from a circular Earth parking orbit of altitude 185 km to an L; halo orbit with
an amplitude of 110,000 km is considered. The insertion cost at the halo orbit for a direct
transfer between the two orbits is approximately 180 m/s[32]. In recent work, Barden
has examined the transfer problem between the Earth and libration point orbits in search
of a solution for which the insertion cost at the halo is zero, a “free” transfer{32]. Such
solutions were shown to exist, but they arrive at halo orbits with relatively large out-of-
plane amplitudes. Combining a solution of this type with an inferior transfer, such as one
presented in this work, could potentially yield an Earth-to-halo transfer cost that is less
than that required for transfer directly to halo orbits that are smaller than those available
with free solutions. As an example, consider the specific transfer problem from an Earth
parking orbit and the 110,000 km A. halo orbit. A free transfer to a halo of this size is not
available; however, a free insertion does exist for a halo with A, equal to approximately
440,000 km. Thus, the complete path (Earth to 110,000 km halo orbit) is computed as
three segments. First the free transfer between the Earth and the 440,000 km halo orbit is
computed. Next, an optimal inferior transfer between the 440,000 km halo and the 110,000
km halo is generated. Finally, a coast arc along the 440,000 km halo orbit is determined
that connects the arrival point for the first segment to the departure position for the inferior
transfer.

Using the slope computed for the transfer families that have been presented here, a
reduction in the amplitude of roughly 330,000 km should require a AV of approximately 142
m/s. This prediction is computed using the 43 m/s per 100,00 km slope predicted for inferior
transfer families that are computed below the x — y plane, in the negative z direction. (Note
that it is not necessary to travel in the negative # direction; however, since the transfer costs
for solutions in that direction are generally slightly smaller than corresponding positive 2
transfers, the negative direction is selected.) Thus, the three-step transfer should require a
smaller total AV than the direct solution. To verify that assumption, an inferior transfer

from the 440,000 km halo to the 110,000 km orbit is computed. The cost corresponding to
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this solution is 143.50 m/s; therefore, the total cost for the three-step solution is less than
the 180 m/s direct transfer cost.

The three segments of the transfer are plotted in Figure IV.32. The label *E’ denotes
the departure position at the Earth: *#’ indicates the arrival at the 440,000 km halo; ‘o’ is
the departure position from the 440,000 km halo on the inferior transfer; *f* denotes the
arrival position the the desired final halo orbit of amplitude 110,000 kin. The transfer time
from the Earth to the 440,000 km halo is 211 days. The time of flight from the 440,000
km halo to the 110,000 km orbit is 76 days. However, the total transfer time between the
Earth and the target (110,000 km) orbit also includes the coast time along the 440,000 km
halo, that is, the time between the insertion position after the transfer out from the Earth
and the optimal departure position for the inferior transfer between the halos. Thus, the

total transfer time is approximately 329 days.
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V. OPTIMAL TRANSFER PATHS: ELLIFTIC PROBLEM

In the circular restricted three-body problem, a transfer between two specified orbits is
constructed by computing a trajectory that passes through one position along cach orbit.
Thus, finding a transfer between the orbits is identical to finding a transfer between the
positions. Algorithms designed to compute transfers in the clliptic restricted problem must
also incorporate constraints on time thai are associated with the positions along the orbits;
that is, a trajectory that connects two positions that are included in the selected orbits
does not connect the two orbits if the times of departure and arrival at the positions is not
consistent with their definition as positions along the orbits. The optimization algorithm
developed for use in the circular problem is modified to accommodate the additional time
constraints. By considering the impact of the timing issues on the optimization process,
families of transfers, computed in the elliptic problem, can be constructed that possess

characteristics that are similar to their circular problem counterparts.

A. Preliminary Definitions

The construction of trajectories in the elliptic restricted problem requires the selection
of appropriate initial position and velocity vectors and specification of a quantity that
represents the location of the primaries at the time associated with the state vector. Thus,
the definition of both the halo orbits and the transfer path between the orbits must consider

this additional time requirement.

1. Construction of Near-Halo Orbits

Periodic halo orbits with amplitudes in the range of interest are not available in the Sun-
Earth elliptic restricted problem (or the Sun-Earth/Moon barycenter system); therefore,
trajectories that maintain the general shape of a halo orbit, but are not precisely periodic,
are employed. Such trajectories are denoted as near-halo orbits. The near-halo orbits are
computed using a multi-state differential corrections algorithm developed by Howell and
Pernicka for the computation of general trajectories in the restricted three-body problem([22].

State vectors defined at intervals approximately one-quarter revolution in length, along a
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periodic halo orbit (that is, computed in the circular problem), are identified as target states
for input to the algorithm. One of the states is selected as the position that corresponds
to the maximum z excursion along the halo orbit. The time of periapsis passage of the
primaries that is associated with this position is defined to be zero. (Thus, the primatries
are assumed to be at periapsis when the vehicle is at the maximum z position along the halo
orbit.) Then, given the set of target state vectors, the algorithm adjusts the target points to
produce a trajectory that is continuous in both position and velocity but does not necessarily
include any of the original targeted positions. To accomplish this objective, the algorithm
numerically integrates the differential equations that are associated with the elliptic problem
using the six-dimensional original target states as the initial conditions. Then, appropriate
differential corrections routines are employed to compute the modification of the states
that yields position and velocity continuity at each of the patch points. Since the position
associated with the maximum : excursion along the halo orbit is also modified in the
procedure, the position associated with the zero periapsis time along the near-halo orbit is
not coincident with the position of maximum = excursion along the path. Thus, the near-
halo orbit is constructed so that the time of periapsis passage is zero at a location near, but
not exactly at, the position of maximum z excursion. (That is, the primaries are not exactly
at periapsis when the vehicle is at the position corresponding to the maximum = excursion
along the near-halo orbit.) This criterion is used to define both the initial and final orbits.
The definition of the times of periapsis associated with the departure and arrival orbits is
an important step in the process of determining optimal transfers between the orbits, since
the definition of these times is incorporated in the selection of the times of flight that may
be considered for the transfer paths.

Although the Howell/Pernicka algorithm produces several state vectors along the near-
halo path for computational purposes, a single state vector defines a unique near-halo orbit
(as a single initial state vector defines a halo orbit in the circular problem). Thus, one state
is selected to represent the trajectory for use in the optimization routine. Then, numeri :al
integration, forward or backward in time, from that initial state produces new terminal
states along the orbit for use in time-free optimization problems. Thus, the techniques
employed in the circular problem are also applicable in the elliptic problem, given the

initial conditions that define the desired departure/arrival halo orbits.

2. Optimization Algorithm

Given the dependence of the near-halo orbits on time. a transfer between the orbits must
intersect the orbits at times that are consistent with the periapsis times that are employed

in the construction of the near-halos. This provides a constraint on transfers computed
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in the elliptic problem that does not exist in circular problem solutions. Given selected
terminal positions, the transfer time for a solution between those positions is spectfied as
the difference in the times of passage through each respective point. Thus, the variable-time
optimization step in the algorithm is climinated. Although lower cost transfers between the
specified positions may be available, such trajectories do not yield transfers between the
selected orbits. The time associated with an interior position is not required to satisfy any
additional constraints since that position is not assumed to exist along a specific orbit. No

other modification of the algorithm is required.

B. Optimal Impulsive Transfers

Two types of superior transfers between halo orbits are presented to illustrate the appli-
cation of the optimization algorithm in the elliptic problem. The near-halo orbits that are
used in both cases are identified by the amplitudes associated with the periodic halo orbits
(computed in the circular problem) that provide the target points for the Howell/Pernicka
algorithm; therefore, the actual maximum z excursions of the near-halo orbits are not
exactly equal to the amplitudes that are used to identify the paths. The approximate max-
imum : excursion, in a positive direction, for one revolution of each near-halo is listed in

Table V.1 with the amplitude of the halo orbit that was used to define the target points. In

Halo Orbit Near-Halo Orbit
Amplitude Maximum z excursion

km km
110,000 111,390
160,000 163,930
200,000 203,644
240,000 244,345
300,000 305,355
400,000 408,303
500,000 508,055
600,000 611,270

Table V.1 Orbital Amplitudes in the Circular and Elliptic Problems.

cach case, the amplitude of the halo orbit provides a reasonable representation of the size

of the near-halo trajectory.



1. Positive z Family: 110,000 ki A, Departure Near-Halo Orbit

A family of superior transfers that depart from a 110,000 km near-halo orbit and move
above the x —y plane (in a positive # direction) is represented by solutions for the fol-
lowing necar-halo orbit amplitudes: 160,000; 200,000; 240,000; 300,000; 400,000: 500.000:
and 600,000 km. The nominal endpoint location is selected such that the x component of
acceleration is zero and the y position component is negative; at the nominal arrival point,
X is again zero and y is positive. Note that, in the elliptic problem, the r and x components
of acceleration are not equal. Furthermore, the locations where each of these quantities
1s zero arc significantly different; however, the location where the libration point centered
component of acceleration (X) in the # direction is zero can be identified.

The location where % is zero is determined from knowledge of # and zp,, where r;
represents the position of the Ly libration point relative to the barycenter. As an equilibrium
solution to the equations of motion (equations I1.23 through 11.25), the position and velocity

of the libration point are governed by

i

Ty = o—— Xy . V.1

L1 55 1 | (v.1

Differentiating this expression, and using equations I1.13 and I1.14, the acceleration of the

libration point along the # axis can be expressed in the form
_ z11 (ecosE — e?)

B = 3 [V.2)

Then, % is given by

£ = F - Fp. [V.3]

Thus, the terminal points for the transfer can be identified.

Nominal costs for solutions employing endpoints where % is zero are included in Table
V.2. The nominal transfer costs are gencrally close to those computed for similar transfers
computed in the 110,000 km A, positive = family for the circular problem; however, the
transfer times between the two families differ by three to four days. These results are a
consequence of the timing condition that is used to define the target orbits. Recall, both the
departure and the arrival near-halo orbits are defined such that the primaries are at periapsis
near the location of maximum = excursion. The actual periapsis time relative to the time of
maximum = excursion influences the shape of the orbits; however, it has little impact on the
relative orientation of the trajectories. The use of the same time of periapsis passage for the
primaries in the definition of both orbits is, however, relevant to this result. By constructing
each near-halo such that a maximum = excursion point along the trajectory corresponds

to the time when the primaries are near periapsis, the time required for transfer between



Final Halo A, Nominal Optimal

2-Impulse 2-Impulse
AV TOF AV  TOF
km m/s days m/s days
160000 2282 7522 2269 76.73
200000 39.45 7536 39.37 76.60
240000 56.96 75.51 56.93 T5.77
300000 84.49 75.80 84.41 74.35

132.28 72.61
182.92 70.55
234.89 69.50

400000 132.91
500000 186.29
600000 241.23

(=21

- =] =] =] =

- o >

N O O o o
—

—

Table V.2 110,000 km Positive : Family: Transfer Costs — Elliptic Problem.
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the two near-halo trajectories is generally close to the nominal transfer time computed in
the variable-time optimization step in the circular problem. Solutions in which the elliptic
problem transfer time is closer to that achieved in the circular problem can be constructed
by considering the circular problem transfer time in generating the target near-halo orbit,
that is, using the desired transfer time to define the periapsis location of the primaries at
a point of maximum 2 excursion on the near-halo path. However, placing the maximum =
point in both departure and arrival near-halos close to the time of periapsis of the primaries
produces solutions that demonstrate the application of the algorithm in the elliptic case
without introducing additional issues that are not relevant to the optimization problem.
The nominal transfers for this family and the associated primer histories are plotted in
Figure V.1. Note that these plots show the path relative to a rotating, oscillating libration
point centered coordinate frame. The general shape of each transfer is similar to the solution
in the corresponding circular family. Since the slopes of the primers in the lower frame are
non-zero at the terminal times, coast arcs will reduce the cost. The optimal time-free
solutions for the family are plotted in Figure V.2. In each case, optimality is achieved with
two impulses, and the endpoints remain relatively close to the nominal locations. Also,
the optimal costs presented in Table V.2 are within three percent of the corresponding
nominal AV’s. A plot of the costs versus the approximate amplitude for the members of
this family, Figure V.3, predicts a cost of approximately 45 to 50 m/s per 100,000 km change
in the maximum z-excursion distance. Thus, the results are generally consistent with the
solutions developed in the circular problem. Similar costs are possible in both systems, and
the optimal transfer time in the elliptic problem is within two days of the time required in

the transfers designed as solutions in the circular problem.

2. Negative z Family: 110,000 km A, Departure Near-Halo Orbit

A second family of superior transfers in the elliptic problem is represented by solutions
that depart from a near-halo orbit with amplitude of 110,000 km, along a path that is
generally below the x —y plane, in a negative i direction. The following target orbit
ampiitudes are considered: 200,000; 240,000; 300,000; 400,000; 500,000; and 600.000 km.
The nominal costs for this family, computed for departure where the z component of position
is zero and the y component of position is positive and arrival conditions such that position
component z is zero and ¥ is negative, are included in Table V.3. The nominal costs
are significantly different than those seen in Table IV.3 for menibers of the corresponding
transfer family assuming circular primary orbits. Also, the nominal transfer times differ
from those computed for transfers in the negative # direction in the circular problem. The

time of maximum = excursion, relative to periapsis of the primaries, used to construct the
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near-halo orbits is selected such that the time to transfer between positions on the near-
halo orbits where the x component of acceleration is zero is similar to the time to transfer
between positions where X is zero on the halo orbits (that is, the halo orbits that ate used
to construct the near-halos). (Transfer times in the elliptic problem are similar to transfer
times for solutions computed in the circular problem for transfers in the positive 3 direction.)
Since the criterion used to construct the near-halo orbits defines transfer times for solutions
that occur above the x — y plane in the elliptic problem to be similar to transfer times
for solutions above the plane in the circular problem, transfer times for solutions below
the plane in the elliptic problem are notably different from transfer times for negative =
transfers in the circular problem. (Note that negative = transfers are generally close to one-
half revolution in length, but positive = transfers are generally less than one-half revolution.
Thus, although the time to travel along the positive = arc of the near-halo halo is similar
to the time required to travel along the negative z arc, the transfer times for the specific
positions that have been considered here are not similar between the two cases.) Since the
transfer times between the circular and elliptic problems are similar for positive z solutions
that incorporate the specific positions that have been discussed, transfer times for negative
= transfers in the elliptic problem arc different from their circular problem counterparts
(assuming that the same near-halo orbits are used in both cases, as has been assumed in
this study). The optimal two-impulse transfer costs in the elliptic problem are, however,
similar to those of the circular problem solutions. Also, in both systems, the primers for
the optimal two-impulse solutions exceed one. Thus, an interior impulse is included.

The optimal three-impulse transfers and the primer histories are plotted in Figure V 4.
Optimal three-impulse solutions are achieved for each of the destination near-halo orbits
that are presented; however, for orbits with small amplitudes (such as the 200,000 km case),
the optimization of the interior impulse, simultaneously with the terminal positions, requires
large changes in the coast arcs that result in longer times of flight than that predicted by
the trends exhibited by other members of the family. (The time of flight for the 200,000
km case is substantially longer than the transfer times for other members of the family.)
The disparity in the orders of magnitude of the two types of gradient expressions that
are employed (as discussed in section I11.D.3) is particularly influential in the optimization
of solutions of this type. Although optimal endpoints that produce transfer times that
are consistent with the times of flight predicted by transfers to larger near-halo orbits are
casily identified in the optimization process, continuity in the derivative of the primer and
the Hamiltonian across the interior impulse is not achieved with those endpoints, to the
tolerances that have been specified for the evaluation of optimality at the interior time.

(The discontinuitics are generally one to two order of magnitude larger than that which
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is considered acceptable.) To achieve optimality in the three-impulses simultancously, in
cases where the optimization algorithm fails to achieve an optimal interior impulse due
to the disparity in the orders of magnitude of the clements of the gradient, an iterative
procedure is employed that considers the terminal positions separately from the interior
positions. If the algorithm that has been discussed to this point achieves a solution for
which the interior impulse does not satisfy the tolerances, but further improvements in the
time and position of the interior impulse are not possible due to the higher tolerance that
is possible for those components of the gradient vector (relative to the tolerance that is
pessible for the terminal positions?, an optimizatior problem is considered that reduces the
cost by including additional coast ares while constraining the interior position and time to
the current locations. First, the endpoints are optimized assuming a fixed interior position
and time. Although the actual coast arcs that are incorporated in this step are generally
less than a few minutes in duration, the gradient of the cost function with respect to the
time and location of the interior impulse in the resulting solution is generally several orders
of magnitude larger than the gradient achieved in the solution that could not be further
improved by considering all impulses simultaneously. Thus, the next step is to again attempt
to improve the solution by considering all three impulses simultancously. (For the transfer
that includes the additional coast arcs, the gradient elements associated with the interior
impulse are several orders of magnitude larger than the tolerance that is specified for those
components; therefore, further changes in the interior impulse characteristics are possible).
In this step, large changes in both the terminal positions and the interior quantities are
possible; therefore, large changes in the time of flight are generally introduced. This process
of iteratively optimizing only the terminal positions followed by the optimization of the
three impulses is continued until no further reductions in the cost are possible in either
step (or until the tolerances specified for each component of the gradient are satisfied).
While this procedure generally converges to a solution that satisfies all of the tolerances, it
may cause larger changes from the nominal solution than are expected. The characteristics
of the first solution to which the algorithm converges (before the endpoints are optimized
separately from the interior impulse) are generally consistent with the trends predicted by
other members of the family for which the algorithm does achieve an acceptable optimal
solution without the additional separate optimization steps, but the additional steps may
produce substantial changes in that solution. However, the reduction in the cost that results
from the additional steps is usually less than 0.1 m/s. Thus, the additional optimization
does not substantially influence the cost, but it can have a significant impact on the shape

of the transfer and, in particular, the total time of flight. (The 200,000 km near-halo orbit
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optimal three-impulse transfer presented in Figure V.4 is the only transfer presented in this
document that requires the application of these additional optimization steps.)

The total costs for the optimal solutions for this family are included in Table V.3. The

Final A, Nominal Optimal Nominal Optimal
2-Impulse 2-Impulse 3-Impulse 3-Impulse
AV TOF AV  TOF | AV TOF AV  TOF
km m/s days m/s days [ m/s days m /s days

200000  50.50 83.65 37.90 (4.21| 37.90 64.21 37.48 90.95
240000 7747 83.12 5497 64.04 | 54.98 64.04 54.57 81.43
300000 206.41 83.12 81.55 63.63| 81.56 63.63 80.94 78.14
400000 192.54 82.54 127.56 62.90 | 127.58 62.90 126.47 76.35
500000 276.38 81.96 175.98 60.90 | 176.03 60.90 173.46 78.19
600000 344.67 81.38 225.38 60.06 | 225.47 60.06 221.36 78.64

Table V.3 110,000 km Negative : Family: Transfer Costs — Elliptic Problem.

costs for this family are slightly higher than those for the corresponding negative = family in
the circular problem; however, relative to the 110,000 km A. positive = family in the elliptic
problem, the costs associated with these transfers are smaller. (Recall, costs for negative
: families in the circular problem are also smaller than costs for positive z families.) The
costs for the family are plotted in Figure V.5 versus the target amplitude. For the optimal
transfer costs, an approximately linear curve is established with a slope of 43 to 48 m/s
per 100,000 km change in the amplitude: however, in this family, the nominal transfer costs
do not follow an approximately linear curve. The Howell/Pernicka multi-state differential
corrections algorithrn that is used to define the departure/arrival near-halo orbits modifies
the positions of a set of target points to achieve an orbit that is continuous in position
and velocity, but, the algorithm is not specifically designed to produce a halo orbit. Given
target points that approximate a halo orbit, a near halo-orbit is generally computed, but
the closeness of the near-halo orbit to a truc halo orbit cannot be specifically controlled.
While the general shape of the resulting trajectory trajectory approximates the halo shape,
the timing condition associated with any one individual position on the curve may be
notably different than a position on the halo orbit that has a similar characteristic. The
arrival position employed in the nominal transfer to the 300,000 km near-halo orbit in
this family is located at the position where z is zero on the near-halo (consistent with the
definition of the arrival positions for all members of this family), but the dislocation of the

nominal cost for this case (evident in Figure V.5) is the result of an unusual timing condition
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that is associated with that particular position as computed by numerically integrating the
state vector defined by the Howell/Pernicka algorithm to the position where z is zero. The
optimal cost for this case is consistent with the trend predicted by other members, reflective
of the result that the general shape of the 300,000 km near-halo orbit is consistent with
the ‘halo shape,” although any one individual position may appear to be incompatible.
The optimization algorithm searches over the entire near-halo orbit for appropriate arrival
positions; therefore, the misalignment of specific intervals of the near-halo from an orbit
that may be a better approximation of the original orbit does not substantially impact the
search for an optimal transfer to the orbit. The nominal cost is associated with a specific,
selected position. The optimal cost is also computed for a specific position, but that position
is selected in the context of other positions on the orbit that produce larger costs.

While the optimal AV’s are similar to their circular problem counterparts, the optimal
trajectories are significantly different. Recall, optimal negative » transfers (where most of
the motion occurs below the x — y plane) in the circular problem include a relatively small
arc above the x —y plane (in the positive 3 direction) near arrival; however, the optimal
arrival positions in the elliptic problem transfers are closer to the x —y plane crossing.
Also, the transfer times are different in the two systems. Although disparate trajectory
characteristics are achieved, the total AV, the objective in the minimization problem, that is
computed for optimal solutions in the elliptic problem is close to that predicted by solutions
computed in the circular case. This does not imply that the optimal transfer cost for any
two near-halo orbits of approximately the sizes considered in a circular problem transfer will
require approximately the same cost as the circular solutions. It does, however, indicate

that similar transfer costs can be achieved in the two models.
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VI. CONCLUSIONS

The application of primer vector theory to the optimal transfer problem between pairs
of halo orbits, in conjunction with traditional numerical optimization techniques, yvields
impulsive transfers that satisfy all of the necessary conditions for optimality. Two classes
of optimal impulsive transfers exist that are characterized by the direction of the out-of-
plane motion along the trajectory and the number of impulses that are required to achieve
optimality. Optimal solutions using two impulses include motion above the x — ¥ plane,
in a positive 3 direction. Transfers in which the out-of-plane motion occurs in a negative
direction, that is, below the x ~ y plane along most of the trajectory, require three impulses.
In both cases, an increase in the amplitude of the orbit of approximately 100,000 kilometers
requires an additional cost of approximately 45 m/s. Transfers that exist in the negative
out-of-plane direction have slightly smaller costs than transfers between the same halo
orbits that are above the plane; however, the difference is generally less than two to three
percent of the total AV. This result can be extended to larger changes in the amplitude by
assuming a linear slope of approximately 45 to 50 m/s per 100,000 km change in the size of
the target halo orbit. Similar results are achieved for both superior and inferior transfers.
Optimal costs for transfers between near-halo orbits computed in the elliptic problem are
also possible; if the departure and arrival near-halo orbits are similar in size to the periodic
halo orbits used as the departure/arrival orbits in the circular problem, then the costs are
also likely to be similar.

In the development of the algorithm that is used to compute the optimal transfers, two
specific problems posed by carlier studies are addressed. The algorithm maintains the halo
orbits throughout the optimization process. Also, all impulses are optimized simultaneously.
This solution approach, however, introduces other issues that remain unresolved. The
computation of time-free, two-impulse transfers in the circular problem, where the transfer
time is not constrained by the definition of the halo orbits, requires the solution of a variable-
time optimization problem at each step in the optimization procedure. A solution for
the variable-time problem, possibly in the form of an additional analytic constraint that

could be incorporated in the underconstrained differential corrections procedure, or an
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analytic solution for the optimal transfer time, would eliminate the intermediate transfer
computations that are required to solve the variable-time problem at each stage in the
current algorithm.

The problem of achieving lower tolerances for the optimization of the coast arcs (com-
pared with the order of magnitude of elements of the gradient vector that are associated
with the interior impulse solution) is another unresolved issue. More accurate numerical
integration techniques, or lower machine tolerances, that would permit the specification of
lower tolerances at all stages of the computations (integration, differential corrections, and
continuity specifications), are two options for reducing the tolerance that may be achieved;
however, although all tolerances may be lowered with this approach, the smallest magni-
tudes that could be achieved for elements of the gradient vector that are associated with
the interior impulse would still be higher than those for elements that are associated with
the coast arcs. Thus, this approach does not solve the problem of unequal tolerance levels
among different types of variables.

The solutions that have been considered in this work are computed for primary motion
modeled consistent with the assumptions of the circular or elliptic restricted three-body
problems. The primer vector theory, as developed, is not, however, applicable to a more
general model of the primary motion. Although Hiday’s development of the primer vector
theory does not rely on the periodicity of the primary motion that exists in the elliptic
problem, it does include several steps in which the specific form of the equations of motion,
expressed in terms of the barycenter rotating coordinates, are employed. (For example,
useful properties of the derivatives of the acceleration terms, such as 83/ 0F, are used in the
development of the adjoint equation.) To consider the optimization of transfers between
orbits computed assuming primary motion modeled using ephemeris data, such as the mod-
cls employed in previous studies of halo and near-halo orbits (18], or using a model that
includes solar radiation pressure, a solution for the optimization problem defined for equa-
tions of motion that do not possess the form employed by Hiday’s derivation of the solution
is required. Although Hiday assumed a more general form for the equations than Lawden's
development, Hiday’s development does not include the type of terms that exist in more
general (ephemeris) models; therefore, an alternate derivative of the necessary conditions
for optimality is required.

As the transfers that have been presented indicate, optimal impulsive transfers can be
computed by combining the analytic primer vector analyses with numerical implementation
techniques. By defining ecach departure and target orbit by a single state vector, and requir-
ing the transfer trajectories to include positions that represent those states, transfers can

be constructed that retain the specified orbits. Also, since numerical integration is used to
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identify the new endpoints for the time-free aspects of the optimization problem, all *rans-
fers that are computed in the procedure connect the original orbits. Finally, the trajectory
is optimized as a single solution, rather than a collection of segments, by constdering all
of the impulses simnultaneously. By defining multi-state boundary value problems that in-
corporate the constraints on all of the variables of interest, trajectories can be constructed
that satisfy all of the reauired conditions using differential correctors that are specifically
designed to achieve those constraints. Thus, although numerical techniques form the basis
for this aspect of the continuing effort to obtain optimal transfers in the restricted problem,
the tools are successful because they are designed to satisfy the requirements of the analytic,

primer vector solutions while utilizing the dynamics of the non-linear problem.
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APPENDIX
COST DISTRIBUTION

Superior Transfers: Positive A, Families

Positive » Family: 110,000 km A. Departure Halo Orbit

Final Halo A, Nominal Optimal
2-Impulse 2-Impulse
AW AV, AV Al AV, AV
km m/s m/s m/s m/s m/s m/s
160000 1047 1049 2097 | 1035 10.39 20.74
200000 19.08 19.15 3823 | 1895 19.08 38.02
240000 27.91 28.08 56.00| 27.80 28.08 55.88
300000 41.61 42.04 83.65| 41.51 42.14 83.65
400000 65.68 66.85 132.52 | 65.36 66.82 132.18
500000 91.18 93.42 184.59 ] 90.21 92,69 182.90
600000 117.86 121.30 239.17 | 115.87 119.29 235.16
700000 145.44 149.98 295.42 | 142.17 146.22 288.38
860000 173.62 178.98 352.60 | 167.00 173.12 342.12

Table A.1 110,000 km Positive = Family:

Two-Impulse Transfer Cost Distribution.
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2. Positive z Family: 200,000 km A. Departure Halo Orbit

Final Halo A, Nominal Optimal
2-Impulse 2-Impulse
AW AV, AV Al Al AV
km m/s m/s m/s m/s m/s m/s
240000 8.92 8.94 I7.87 8.92 8.95 17.86
300000 22.81 2295 45.76 | 22.74 2291  45.65
400000 47.26  47.90  95.16 | 46.79 47.42 94.21
500000 73.19  T4.67 14786 | T1.88 73.10 144.98

600000 100.32 102.80 203.12| 97.78  99.51 197.29
700000 128.32 131.75 260.07 | 124.32 126.26 250.57
800000 156.87 161.04 317.91 | 151.36 153.01 304.37

Table A.2 200,000 km Positive = Family: Two-Impulse Transfer Cost Distribution.



B. Superior Transfers: Negative A, Families

1. Negative r Family: 110,000 km A. Departure Halo Orbit

Final Halo A.

Nominal

2-Impulse

Optimal

2-Impulse

Al AV, Al Al AV, AV

km m/s m/s m/s m/s m/s m/s
160000 10.34 1036 20.70 | 10.33 9.69 20.02
200000 16.92 2159 38.51 19.09 17.52  36.61
240000 28.84  28.26 57.10 | 28.13 25.55 53.68
300000 43.88 43.10 86.99 | 42.12 37.98 80.09
400000 70.78  70.03 140.81 | 66.27 59.74 126.01
500000 99.73 98.14 19786 91.12 8266 173.78
600000 132,11 124.01 256.12 | 116.29 106.58 222.87
700000 158.99 154.68 313.67 | 141.45 131.41 272.86
800000 187.52 182.08 369.60 | 166.35 157.11 323.46

Table A.3 110,000 km Negative z Family:

Two-Impulse Transfer Cost Distribution.

Final Halo A, Nominal Optimal
3-Impulse 3-Impulse
AV, AV, AV AV Al AV, AV, AV
km m/s mfs m/s m/s m/s m/s mfs m/s
160000 10.30 0.6 9.66 20.02| 10.07 0.58 9.37 20.02
200000 18.98 0.21 1741 36.61 1832 1.84 16.42 36.57
240000 2791 042 2534 53.67 | 2662 3.76 23.18 53.57
300000 41.62 093 37.52 80.06 | 3923 7.79 3276 79.78
400000 65.00 2.26 58.67 125.92| 61.26 17.15 46.60 125.00
500000 B8.70 4.14 80.74 173.57 | 86.02 29.28 56.23 171.54
600000 11245 6.46 103.59 222.50 | 117.09 43.84 57.79 218.72
700000 135.92  9.17 127.19 272.28 | 166.40 60.60 38.90 265.80

Table A.4 110,000 km Negative = Family:

Three-Impulse Transfer Cost Distribution.
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2. Negative z Family: 200,000 km . Departure Halo Orbit

Final Halo A, Nominal Optimal
2-Impulse 2-Impulse
Al Al AV Al Aly AV
km m/s m/s m/s m/s m/s m/s
240000 9.43 9.40  18.84 8.62 8.47 17.08
300000 24.54 2445 4899 | 2214 21.40 43.55
400000 51.87 51.43 10331 | 4581 43.76 89.57
500000 80.95 79.86 160.81| 70.34 67.13 137.47

600000 110.70 108.67 219.37| 95.27 91.43 186.70
700000 140.22 137.06 277.29 | 120.25 116.60 236.85
800000 168.87 164.58 333.45 | 145.00 142.61 287.61

Table A.5 200,000 km Negative = Family: Two-Iinpulse Transfer Cost Distribution.

Final Halo A. Nominal Optimal
3-Impulse 3-Impulse

AWy AV, AW AV AWy AV, AV AV

km m/s m/s m/s m/s m/s m/s mfs m/s
240000 8.48 0.26 8.33 17.08 770  1.88 741 17.00
300000 21.73 0.77  21.00 48.99| 19.50 5.81 17.90 43.22
400000 44.62 2.17 42.67T 89.46 | 40.17 14.91 33.37 8845
500000 67.96 4.16 65.10 137.23| 63.27 26.62 45.12 135.01
600000 91.41 6.64 88.23 186.28 | 91.28 40.46 50.48 182.22
700000 114.59 9.54 112.05 236.18 | 130.29 55.93 43.30 229.51

Table A.G 200,000 km Negative = Family: Three-Impulse Transfer Cost Distribution.
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3. Negative : Family: 240,000 km A. Departure Halo Orbit

/
\‘ Final Halo A. Nominal Optimal
2-Impulse 2-Impulse
Al Al AV AW AV, AV
km m/s m/s m/s m/s m/s m/s
300000 15.11  15.07 3018 | 13.35 13.12  26.47
400000 4245 4216 84.61 | 3681 3571 7252
500000 72.04  70.21 14226 | 61.21 59.25 120.46
600000 101.45  99.49 200.94 | 86.05 83.69 169.74
700000 130.90 128.09 258.99 | 110.97 108.97 219.94
800000 159.50 155.77 315.28 | 135.68 135.08 270.75
Table A.T 240,000 km Negative = Family: Two-Impulse Transfer Cost Distribution.
Final Halo 4. Nominal Optimal
3-Impulse 3-Impulse
AV AV, AV AV AV AV: AV AV
(‘ km m/s m/s m/fs m/s m/s m/s m/s m/s
- 300000 13.06 0.55 12.84 2645 12.06 3.92 27.04 26.228
400000 35.73 197 3472 7241| 3149 1293 2704 71.46
500000 58.91 4.02 57.29 120.21 | 53.79 2449 39.74 118.02
600000 82.21 6.58 80.51 169.30 | 80.45 38.08 46.73 165.25
700000 105.23 9.61 104.40 219.24 | 116.25 53.14 43.19 21257

Table A.8 240,000 km Negative z Family:

Three-Impulse Transfer Cost Distribution.



C. Inferior Transfers: Positive z Families

1. Positive = Family: 600,000 ki . Departure Halo Orbit

Final Halo A, Nominal Optimal
2-Impulse 2-Impulse
AW AlL AV Al AlY AV
km m/s m/s m/s m/s m/fs m/s
110000 121.30 117.86 239.17 | 119.29 115.87 235.16
160000 111.24 108.34 219.58 [ 108.46 106.06 214.52
200000 102.80 100.32 203.12| 99.51 97.78 197.29
240000 94.00 91.95 185.95] 90.33 89.14 179.47
300000 80.14 78.68 158.82 | T76.17 75.56 151.73
400000 55.31  54.65 109.96 | 51.65 51.53 103.18
500000 2848 2832 56.80 1 26.19 26.20 52.39

Table A.9 600,000 km Positive z Family:

Two-Impulse Transfer Cost Distribution.

2. Positive » Family: 700,000 km A, Departure Halo Orbit

Final Halo A. Nominal Optimal
2-Impulse 2-Impulse
AW AV, AV AW AV, AV
km m/s m/s m/s m/s m/s m/s
110000 14998 145.44 29542 | 146.21 142.17 288.38
160000 140.07 136.15 276.22 | 135.27 132.51 267.78
200000 131.75 128.32 260.07 | 126.26 124.32 250.57
240000 123.08 120.13 243.20 | 117.03 115.75 232.78
300000 109.40 107.14 216.54 | 102.82 102.25 205.06
400000 84.85 83.58 168.44 | 7826 78.29 156.56
500000 58.22  57.69 11591 | 5281 5297 105.78
660000 29.80 29.68 59.48 | 26.6T 26.74 53.41

Table A.10 700,000 km Positive = Family: Two-Impulse Transfer Cost Distribution.
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3. Positive = Family: 800,000 km A, Departure Halo Orbit

Final Halo A, Nominal Optimal
2-Impulse 2-Impulse
AW AV, AV Al Al AV
km m/s m/s m/s m/s m/s m/s
110000 178.98 173.62 352.60 [ 173.12 169.00 342.12
160000 169.23 164.54 333.77 | 162.08 159.47 321.55
200000 161.04 156.87 317.91 [ 153.01 151.36 304.37
240000 152.51 148.85 301.36 | 143.74 142.86 286.60
300000 139.06 136.14 275.19 [ 129.50 129.42 258.92
400000 11490 113.07 227.97 | 104.95 105.51 210.46
500000 88.64 87.67 17631 | 79.55 80.17 159.72
600000 60.48 60.09 120.57 [ 53.49 53.88 107.37
700000 30.78  30.70 61.47 | 26.93 27.05 53.98

Table A.11 800,000 km Positive = Family: Two-Impulse Transfer Cost Distribution.
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D. Inferior Transfers: Negative : Families

Negative z Family: 500,000 km A. Departure Halo Orbit

Final Halo A, Nominal Optimal
2-Impulse 2-Impulse
A, AW AV Al AW AV
km m/s m/s m/s mfs mfs m/s
110000 98.14 99.73 197.86 | 82.66 91.12 173.78
160000 88.40 89.72 178.12 | 7446 79.49 153.95
200000 79.86 80.95 160.81 | 67.13 70.34 137.47
240000 70.70 T1.55 142.25]59.25 61.20 120.46
300000 55.87 56.43 112.29 | 46.62 4743  94.05
400000 28.82 29.08 57.91 | 2396 24.05 48.01

Table A.12 500,000 km Negative = Family: Two-Impulse Transfer Cost Distribution.

i Final Halo A, Nominal Optimal
( 3-Impulse 3-Impulse
) AV AV, AV AV | AW AV, AV AV
km m/s m/s m/s m/s | m/s mfs mfs m/fs
110000 82.59 0.05 91.19 173.83 ] 56.22 29.29 86.03 171.54
160000 74.39 0.05 79.56 154.00 | 50.27 28.18 73.11 151.35
200000 67.07 0.05 70.40 137.51 | 45.13 26.62 63.26 135.01
240000 59.19 0.04 61.26 120.50 | 39.73 24.50 53.79 118.02
300000 46.57 0.03 47.48 94.08 | 31.32 20.35 40.14 91.81
400000 23.94 0.02 24.07 48.03| 1645 11.24 18.87 46.57

Table A.13 500,000 km Negative = Family: Three-Impulse Transfer Cost Distribution.
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Negative z Family: 600,000 km A. Departure Halo Orbit

Final Halo A, Nominal Optimal
2-Impulse 2-Impulse
AW AV, AV Al AV, AV
km m/s m/s m/s m/s m/s m/s
110000 126.65 129.40 256.05 | 106.59 116.29 222.87
160000 117.08 119.44 236.52 | 98.60 104.53 203.14
200000 108.67 110.71 219.37 | 9143  95.27 186.70
240000 99.62 101.33 200.94 | 83.69 86.05 169.74
300000 84.96 86.20 171.16 | 71.21 72.18 143.39
400000 57.50 59.52 117.02 ] 4869 48.71 97.40
500000 29.49  29.73  59.22 1 2474 24.67 49.41
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Table A.14 600,000 km Negative z Family: Two-Impulse Transfer Cost Distribution.

Final Ralo A. Nominal Optimal
3-Impulse 3-Impulse
Ay AV, AV AV AVy AV, AV, AV
km m/s m/s m/s m/s | m/s m/s m/s m/s
110000 106.45 0.10 116.42 222.97 | 57.78 43.84 117.09 218.72
160000 98.48 0.10 104.66 203.23 | 54.00 42.31 102.44 198.75
200000 91.31 0.10 9540 186.80 | 50.52 40.45 91.25 182.22
240000 83.58 0.09 86.17 169.83 | 46.73 38.08 80.44 165.25
300000 71.11 0.08 7228 143.47 | 4053 33.62 64.90 139.05
400000 48.63 0.06 48.78 97.46 | 20.02 24.18 40.63  93.83
500000 2472 002 2469 4943 [ 15.69 1279 18.80 47.27

Table A.15 600,000 km Negative = Family: Three-Impulse Transfer Cost Distribution.
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Negative = Family: 700,000 ki A, Departure Halo Orbit

Final Halo A, Nominal Optimal
2-Impulse 2-Impulse
AV AV, Al Al Al Al
km m/s m/s m/s m/s m/s m/s
110000 154.81 158.86 313.67 | 131.41  141.45 272.86
160000 145.37 148.94 294.31 | 123.64 129.590 253.22
200000 137.06 140.23 277.29 | 116.60 120.25 236.85
240000 128.14 130.85 258.99 | 108.97 110.97 219.94
300000 113.63 115.78 229.41 | 96.61 297.04 193.65
400000 83.84 92.04 175.88 | 74.16 2 73.56 147.72
500000 58.71  59.35 118.03 | 50.17 049.539 99.76
600000 29.52 2945 5898 | 2529 125.07 50.36

150

Table A.16 700,000 km Negative = Family: Two-Impulse Transfer Cost Distribution.

Final Halo A, Nominal Optimal
3-Impulse 3-Impulse
AV, AV, AW AV | AVY; AV, Al AV
km m/s m/s m/s m/s | m/s m/s m/s m/s
110000 131.19  0.17 141.68 273.03 | 38.89 60.60 166.41 265.89
160000 123.42 0.17 129.80 253.39 | 42.46 58.27 145.27 246.00
200000 116.39 0.17 12046 237.02 | 43.37 55.92 130.22 229.51
240000 108.77 0.16 111.17 220.10 | 43.26 53.13 116.18 212.57
300000 96.43 0.15 97.22 193.80 | 41.50 48.21 96.71 186.41
400000 74.03 0.12 7369 147.84 | 35.75 38.2T 67.24 141.25
500000 50.09 0.08 49.67 99.84 | 26.96 26.61 41.16 94.73
6000600 25.25 0.03 2510 5038 {15.03 13.72 18.72 47.47

Table A.17 700,000 km Negative : Family: Three-Impulse Transfer Cost Distribution.



E.  Superior Transfers: Elliptic Problem

1. Positive 2 Family: 110,000 ki A. Departure Near-Halo Orbit

Final Halo A, Nominal Optimal
2-Impulse 2-Impulse
Al AV, AV AW Al, AV
km m/s m/s m/s m/s m/s m/s
160000 11.01 11.81 22.82 7.80 1480 2269
200000 19.40  20.06 3945 16.20 23.17 39.37
240000 28.16 28.81 56.96| 25.09 31.84 56.93
300000 4179 4271 8449 38.92 4549 84.41
400000 66.12  66.79 13291 | 64.36 67.92 132.28
500000 91.74 9455 186.29| 87.99 94.93 182.92
600000 119.00 12223 241.23 | 114.89 119.99 234.89

Table A.18 110,000 km Positive 2 Elliptic Family: Two-Impulse Transfer Cost
Distribution.
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Negative = Famiiy: 110,000 km A. Departure Near-Halo Orbit

Final Halo A, Nominal Optimal
2-Impulse 2-Impulse
Al Al AV AW Alg Al
km m/s m/s m/s m/s m/s m/s

200000 13.82  36.68 50.50 8.13 29.77  37.90

240000 23.11 5436 7747 1555 3943 5497

300000 82.59 123.82 206.41] 28.07 53.48 81.55

400000 76.62 115.92 19254 ] 55.20 7235 127.56

500000 110.09 166.29 276.38 | 75.27 100.71 175.98

600000 14745 197.22 344.67 | 103.74 121.63 225.38
Table A.19 110,000 km Negative = Elliptic Family: Two-Impulse Transfer Cost

Distribution.
Final Halo A, Nominal Optimal
3-Impulse 3-Impulse
Ay AV, Al AV LAV, AV, Al AV
km m/s m/s m/s m/s | m/s m/s m/s m/s

200000 8.13 0.00 29.76 37.90| 1.18 3.83 3247 37.48
240000 15.56 0.00 3942 54.98| 4.52 6.36 43.68 54.57
300000 28.08 0.00 53.47 81.56 | 12.69 1043 57.82 80.94
400000 55.24 0.02 7232 127.58]36.43 17.83 72.21 126.47
500000 75.35 0.05 100.63 176.03 | 43.37 30.46 99.63 173.46
600000 103.88 0.10 121.50 22547 | 71.02 42.47 107.88 221.36

Table A.20 110,000 km Negative z Elliptic Family: Three-Impulse Transfer Cost
Distribution.
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