Additional contraction when a stick is accelerated
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According to the special theory of relativity a moving
stick suffers Lorentz contraction. The contraction is given
by

L =Ly(1 —v*/c, (1)

where L, is the proper length' of the stick and L is the
length of that stick measured in a system in which the stick
is moving with velocity v parallel to the axis of the stick, ¢
being the velocity of light. Consequently, the faster the
stick is moving, the larger is the contraction. Now consider
a stick that is moving with a velocity v, relative to an iner-
tial system OXY (Fig. 1) initially and then it is accelerated
to a larger velocity v,. According to Eq. (1) the stick as seen
by an observer stationary in OXY system should then ap-
pear to be shorter than it was. The problem of how this
additional contraction comes into existence in the case that
the acceleration takes place simultaneously at all points of
the stick in a frame moving with the stick has been dis-
cussed by Atkinson.” Some aspects of a situation related to
the present problem have also been discussed briefly by

Evett.?
Now suppose the observer in OXY system insists on

making an arrangement so that the whole stick is acceler-
ated simultaneously according to his measurement. Since
in the present situation, the observer sees that every point
of the stick is accelerated at the same instant of time, the
distance between every two points of the stick remains the
same as before the acceleration and hence no additional
contraction should be brought to the stick. However, ac-
cording to the special theory of relativity, since the stick
has been accelerated, it should suffer an additional shorten-
ing. Which argument is correct? The answer is both of
them are correct and they are not contradictory.

It should be noted that Eq. (1) is in fact just a relation
between the two lengths of a stick measured by two observ-
ers moving relative to each other; the equation says nothing
besides this. In the present case, it is the proper length of
the stick that has become lengthened and hence the para-
dox is resolved. The effect is expounded in the following
argument: Suppose the observer in OXY system sees the
whole stick start to move faster at an instant ¢ of his time, an
observer moving with the rear end A4 of the stick will find
that he is accelerated only after the leading end B has at-
tained the acceleration. If we use ¢ and ¢ ; to designate,
respectively, the instant of time, observed by the observer
moving with the rear end 4, that the rear end and the lead-
ing end start to move faster, we have then by Lorentz
transformation*

th—th= — WAV =/, (2)

where v is the original velocity before the acceleration tak-
ing place and /is the length of the stick observed in the OXY
system, which is a constant in the present case; the negative
sign in the right-hand side of Eq. (2) indicates that ¢ ; is
smaller than ¢ ; or, the leading end B is accelerated first and
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then the rear end A4 is accelerated. This accounts qualita-
tively for the result that the proper length is lengthened.

According to the special theory of relativity, the amount
of lengthening in the proper length due to the increase of
velocity should be

1%,) = 1% = 1[(1 —v3/¢%) 712 — (1 = v} /c%) 712,

(3)

where/ °(v,) and / °(v,) stand for the proper length of the stick
in the moving states of velocities v, and v,, respectively,
relative to the OXY system. That this right amount of
lengthening in the proper length of the stick resulting from
the acceleration is shown in the following argument: Ac-
cording to the preceding analysis, whenever the observer
stationary in OXY system sees the whole stick simulta-
neously attain an infinitesimal amount of additional veloc-
ity Av, observer stationary at the rear end 4 of the stick will
also observe this additional velocity in the whole stick final-
ly. However, he finds himself pick up the Av only after the
leading end has been accelerated for a period of time

At = (/A /V(1 —v*/c?). (4)
During this time interval, the leading end B then moves
farther apart from him by a distance

Al° = (4v)'As, (5)
where (4v)' is the velocity of the leading end B relative to
the rear end A during the period of time 4+. It should be
noted that (4v)’ is not equal to 4v. The velocity transforma-

tion law implies that for point B to have velocity v + 4v in
frame OXY, it must have velocity

(Av) = Av/[1 — vlv + Av)/c?] (6)

in a frame moving with point 4. In the limit of Av—0, Eq.
(6) becomes

(Av) = Av/(1 — v*/cA). )]

Upon combining Egs. (4), (5), and (7), the infinitesimal addi-
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Fig. 1. Stick 4B moves with velocity v relative to OXY system.
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tional lengthening in the stick takes on the form
Al° = [p/cHlAv/(1 — v* /P (8)

Consequently the total lengthening resulting from the ac-
celeration from v, to v, is

1%0,) — 1%0,) = J.vz(v/cz)l /(1 = v¥/c?*? dv. (9)

Remembering / is a constant in the present case, we obtain
finally
190,) — 1%0,) = I (1 — 03/c) "2 — 1(1 — v} /)",
(10)

which is identical to Eq. (3).

Finally, it should be mentioned that the lengthening in
the proper length of the stick is, of course, due to the force
acting along the stick, which produces the acceleration.

'See, e.g., Panofsky and Phillips, Classical Electricity and Magnetism
(Addison-Wesley, Reading, MA, 2nd ed., 1962), p. 291.

R. d’E. Atkinson, Am. J. Phys. 48, 581 (1980).

*A. A. Evett, Am. J. Phys. 40, 1170 (1972).

“The equation is directly obtained from Lorentz transformation by set-
ting £, = t, in the OXY system.

Cosmological and quantum constraint on particle masses

C. Sivaram

Indian Institute of Astrophysics, Bangalore-560034, India

(Received 13 July 1981; accepted for publication 30 September 1981)

In his well-known book Gravitation and Cosmology, Ste-
ven Weinberg' has drawn attention to a curious relation
involving the Hubble constant H,, the gravitational con-
stant G, Planck’s constant #, the velocity of light ¢, and the
mass of a typical elementary particle m. The relation is’
[Eq. (16.4.2) of Weinberg]

m = (#Hy/Ge)'>=m.,,. (1)

He considers this as a clue pointing to the fact that param-
eters pertinent to particle physics are not determined solely
by considerations of microphysics, but in part by the influ-
ence of the whole universe. He also suggests that in consid-
ering the possible interpretation of Eq. (1), one must note
the remarkable fact that it relates a single cosmological
parameter, H,, to the fundamental constants #, G, C, and
m... He also points out that Eq. (1) is so far unexplained. In
the following discussion we shall attempt to understand the
hitherto unexplained relation (1), as a simple constraint im-
posed on the mass of an elementary particle by combina-
tion of the uncertainty principle with H,. We first ask the
question whether the gravitational self-energy of a single
particle has any meaning in the quantum sense of measur-
ability. Is it a measurable quantity? Consider an elemen-
tary particle of mass m. By quantum mechanics we have to
localize the wave packet representing it over a region of
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dimension (#/mc). The gravitational self-energy of the par-
ticle corresponding to this localization would be
Gm’* Gm’c
= = 2
P #/me #i )
This has to be measurable at least over the Hubble age of
the universe given by (1/H,). The uncertainty principle

would then constrain E, and therefore m through the
relation

(Gm’c/f) (1/H ) =4, 3)
giving
m=(#H,/Gc)'?, 4)

which is the same as Eq. (1). Weinberg’s relation may then
be understood as the operational requirement that the mass
of an elementary particle be such that its gravitational self-
energy be at least measurable over a Hubble period. The
notion of the gravitational self-energy of a single particle
and its measurability is usually ignored in discussions on
quantum gravity.

'S. Weinberg, Gravitation and Cosmology (Wiley, New York, 1972).
*Reference 1, Chap. 16, p. 619.

© 1982 American Association of Physics Teachers 279



