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Abstract : The importance of the Unruh e¤ect lies in the fact that, together
with the related (but distinct) Hawking e¤ect, it serves to link the three
main branches of modern physics: thermal/statistical physics, relativity the-
ory/gravitation, and quantum physics. However, di¤erent researchers can
have in mind di¤erent phenomena when they speak of �the Unruh e¤ect�
in �at spacetime and its generalization to curved spacetimes. Three di¤er-
ent approaches are reviewed here. They are shown to yield results that are
sometimes concordant and sometimes discordant. The discordance is discon-
certing only if one insists on taking literally the de�nite article in �the Unruh
e¤ect.� It is argued that the role of linking di¤erent branches of physics is
better served by taking �the Unruh e¤ect�to designate of family of related
phenomena. The relation between the Hawking e¤ect and the generalized
Unruh e¤ect for curved spacetimes is brie�y discussed.

1 Introduction

One way to achieve immortality in physics is to have your name attached
to an important equation or e¤ect. By this measure William G. Unruh is
numbered among the immortals by having his name attached to
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1The �for philosophers� quali�cation is not supposed to signal that the discussion
is less technical than treatments in the physics literature but rather that the emphasis
is on issues of concern to philosophers of science. For this reason physicists may �nd
the discussion uninteresting and/or annoying. For this I have no apology but only the
explanation that, despite the focus on a common subject matter, physics and philosophy
of physics necessarily di¤er in style and emphasis.
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which asserts that an observer in constant linear acceleration through the
Minkowski vacuum for a non-interacting scalar �eld will �nd herself immersed
in a thermal bath at a temperature proportional to the magnitude a of her
(proper) acceleration. (From here on set } = k = c = 1 unless otherwise
noted.) In Unruh�s own colorful characterization �You could cook your steak
by accelerating it� (Unruh 1990, pp. 108-109). This method of cooking is
not apt to replace a charcoal grill since an acceleration of 1024cm= sec2 is
required to achieve a temperature of 3000C (ibid, p. 109). But it is not the
size of the e¤ect but its existence that matters: the Unruh e¤ect and the
related (but distinct) Hawking e¤ect serve to link the three main branches of
modern physics� thermal/statistical physics, relativity theory/gravitation,
and quantum physics� and to my knowledge these are the only e¤ects that
currently serve this function. Together they are widely regarded as forming
a valuable signpost in the search for a quantum theory of gravity (see Smolin
2000). The literature on the Unruh e¤ect begins with Unruh (1976, 1977a,
1977b), and it continues in a steady stream down to the present day,2 with
the number of citations to Unruh (1976) averaging �fty or above in recent
years.
A related e¤ect was obtained earlier by Davies (1975); namely, when the

right Rindler wedge (see Sec. 3 below) is equipped with a re�ecting wall to the
right of the origin, an observer uniformly accelerated through the Minkowski
vacuum sees the wall radiate at (what would come to be called) Unruh or
Davies-Unruh temperature. There is no book dedicated to the Unruh e¤ect,
nor is there a published canonical review article.3 But the interested reader
can get a good sense of the literature by consulting Sciama et al. (1981),
Birrell and Davies (1982), Tagaki (1986), Fulling and Ruijsenaars (1987),
Ginsburg and Frolov (1987), and Wald (1994, Ch. 5). A review article
by Crispino et al. (2007) currently in preprint form will surely become a
standard source. An overview of proposed experimental tests can be found
in Rosu (2001) and Crispino et al. (2007).
The Unruh e¤ect is not uncontroversial� some critiques can be found

in Belinskii et al. (1997), Fedotov et al. (1999), Narozhny et al. (2000),

2The results of Unruh (1977a) were presented in July 1975 at the �rst Marcel Gross-
mann Meeting on General Relativity. I take this to be the �rst public presentation of the
Unruh e¤ect.

3This situation can be taken as con�rmation of the interpretation of �the Unruh e¤ect�
o¤ered below.
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Narozhny et al. (2002), and Oriti (2000).4 Although the naysaying is largely
without merit, the fact that the naysayers can publish in main line physics
journals shows that there is some confusion about what the Unruh e¤ect is.
This confusion derives in large part, I will argue, from the fact that there are
at least three di¤erent approaches to the Unruh e¤ect that yield related but
not always concordant results. This does not mean that the Unruh e¤ect does
not exist (as some naysayers insinuate) but rather that �the Unruh e¤ect�is
a bit of a misnomer since it refers ambiguously to one or another of a family
of e¤ects.
Additionally, the controversy was also fueled by the fact that the Un-

ruh e¤ect has been enlisted in the service of two allied campaigns. One was
to operationalize the particle concept in quantum �eld theory (QFT), the
slogan being that �Particles are what particle detectors detect.�5 The other
campaign had as its goal the demotion of the particle concept in QFT to
second class citizenship, the argument being that the notion of particle has
to be relativized to a reference frame or an observer. The Unruh e¤ect sup-
posedly supports this campaign as follows: the detector employed by Unruh
(1976) in his initial exploration of the eponymous e¤ect and the monopole
version used by DeWitt (1979) have been labeled �particle detectors,�and
(allegedly) when such detectors are in constant linear acceleration through
the Minkowski vacuum they register a thermal �ux of particles, variously
called Rindler or Fulling particles.6 Thus, one sometimes sees references
to the �Fulling-Unruh e¤ect�(Korbakken and Leinaas 2004) or the �Fulling-
Davies-Unruh e¤ect�(see Vanzella and Matsas 2001 andMatsas and Vanzella
2003).7 My own view (which I will not defend here) is that there are strong

4At various junctures these critical papers display a bizarre quality. For a response to
the Russian group and a rejoinder from them, see Fulling and Unruh (2004) and Narozhny
et al. (2004). .

5�What we mean by a �particle�cannot sensibly be expressed without reference to a
detector. All we can predict and discuss (as far as the physical world is concerned) are
the experiences of detectors�(Davies 1978, p. 71).

6I will speak of Fulling quanta since Rindler had no hand in showing how to quantize the
Klein-Gordon �eld from the point of view of Rindler observers (see Sec. 6 and Appendix
C).

7�In 1976 Unruh found that the Minkowski vacuum, i.e. the state associated with the
nonexistence of particles with respect to inertial observers, corresponds to a thermal bath
of particles at the temperature TFDU = a=2� (~ = c = k = 1) to uniformly accelerated
observers with proper acceleration a = const. This has clari�ed previous results of Davies
[1975], and con�rmed Fulling�s conclusion that elementary particles are observer depen-
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reasons for regarding particles as having status of epiphenomena in QFT in
that the best interpretation of the theory does not count them as being part
of the basic ontology but rather seeks to explain how and why particle-like be-
havior arises under certain circumstances; but I believe that the case for this
interpretational stance can be made without having to appeal either to an
operationalist conception of particle or the dubious notion that a uniformly
accelerating observer encounters a �ux of Fulling quanta.
In what follows I will examine three approaches to the Unruh e¤ect. Sec.

2 gives a brief review of modular theory, the mathematical tool needed for the
most rigorous and model-independent approach. The application of modular
theory to the Rindler wedge and other regions of Minkowski spacetime is
discussed in Sec. 3. Sec. 4 reviews the generalization of the Unruh e¤ect to
curved spacetimes and the relation of this generalized e¤ect to the Hawking
e¤ect. As with the �at spacetime case, the key concepts are drawn form mod-
ular theory. While there can be no doubt about the precision and power of
the mathematical apparatus of modular theory, there are reasons to be chary
about drawing physical consequences from the apparatus. Some of these rea-
sons are aired in Sec. 5. This makes it desirable to explore other approaches
to the Unruh e¤ect that do not rely on modular theory. Sec. 6 explores
a way of understanding the Unruh e¤ect in terms of the Fulling quantiza-
tion of the Klein-Gordon �eld on a wedge region of Minkowski spacetime.
Sec. 7 discusses the explication of the Unruh e¤ect in terms of the response
of accelerated detectors. Summary and conclusions are presented in Sec. 8.
Throughout the focus of the discussion will be on non-interacting scalar �elds
because this is the case for which a large number of precise results have been
proven. Readers interested in the Unruh e¤ect for interacting �elds can start
with Gibbons and Perry (1978) and Unruh and Weiss (1984). The list of
references at the end represents only a small slice of the vast literature on
the Unruh e¤ect and topics directly related to it, but it is intended to be
representative enough to provide guidance to readers who wish to explore
various facets of the Unruh e¤ect in more depth.
Achieving a balance between readability and rigor when expositing these

topics is not easy, and I can only hope that the choices I have made do
not fatally compromise either goal. As far as possible, details on operator
algebras, relativistic spacetimes, etc. have been relegated to the Appendix.

dent.�(Matsas and Vanzella 2003, p. 1573) I leave it to the reader to decide whether this
is an accurate characterization of what �Unruh found�in 1976.
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2 KMS states and modular theory

For a number of leading theoretical physicists, the o¢ cial version of the
Unruh e¤ect is explicated in terms of KMS states and modular theory (see,
for example, Sewell 1982, Kay and Wald 1991, and Wald 1994, 1999, 2001,
and Haag 1996, Sec. V.4.1). However, as far as I am aware Unruh himself
has never endorsed this approach, and his own expositions of the eponymous
e¤ect emphasize the detector approach described below in Sec. 7. This
section provides a quick and super�cial review of some of the terminology
and results of modular theory. Readers desiring more details are referred to
Bratelli and Robinson (1997) and Emch and Liu (2001).
In quantum statistical mechanics (QSM) a Gibbs state at inverse tem-

perature � (= 1=kT = 1=T in our chosen units) is expressed as a den-
sity operator %� = exp(��H)=Tr(exp(��H)) acting on a Hilbert space H,
where H (the Hamiltonian) is a self-adjoint operator on H. Such a state de-
scribes the equilibrium of, say, a box of gas in contact with a heat reservoir
at temperature 1=�. The density operator %� de�nes an algebraic state '
on the von Neumann algebra B(H) of bounded operators on H by setting
'�(A) := Tr(%�A), A 2 B(H) (see Appendix A). Further, the Hamiltonian
H generates a one-parameter group of dynamical automorphisms of that
algebra by �t(A) := exp(itH)A exp(�itH), t 2 R and A 2 B(H). As be�t-
ting of an equilibrium state, '� is invariant under these automorphisms, i.e.
'�(�t(A)) = '�(A) for all A 2 B(H). Assuming that the extension of �t
to complex values of t is such that z 7! '�(A�z(B)) is analytic in the strip
f0 < Im(z) < �g of the complex plane, it is easy to verify that '� satis�es
the condition '�(A�i�(B)) = '�(BA), A;B 2 B(H), which will play a key
role in what follows.
Now consider a case where there may be no density operator of the appro-

priate form� say because normalization fails, as will be the case when H has
a continuous spectrum as usually happens when the thermodynamic limit is
taken in which the number of particles N and the volume V of the gas go to
+1 while keeping N=V constant. It is highly desirable to have an analogue
of a Gibbs equilibrium state to cover such situations. Only after physicists
produced the desired analogue was it realized that mathematicians had in-
dependently been developing the relevant technical apparatus. In hindsight
the key concepts can be introduced as follows. At the most general level the
system of interest is described by a von Neumann algebra of observables M
(which typically will not be isomorphic to the familiarB(H) of ordinary QM)
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and a one-parameter group of automorphisms �s, s 2 R, ofM. (I have used s
rather than t as the group parameter since I do not want to beg the question
as to whether s is time.8) A state ' onM satisfying the condition that for any
A;B 2M there is a function fA;B(z) analytic on the strip f0 < Im(z) < �g
such that fA;B(s) = '(�s(A)B)) and fA;B(s+ i�) = '(B�s(A)) for all s 2 R
is called a (�s; �)-KMS state after Kubo, Martin, and Schwinger, who �rst
recognized the importance of the condition for quantum statistical mechanics
(see Kubo 1957 and Martin and Schwinger 1959).9 Such a state satis�es the
condition noted above that is characteristic of the algebraic counterpart of
a Gibbs state; namely, '(A�i�(B)) = '(BA) for all A and B in a weakly
dense �s-invariant subalgebra of M. Note that KMS states are guaranteed
to be �s-invariant; thus, if �s can be identi�ed with the dynamical auto-
morphism group, KMS states exhibit stationarity, the most basic property
of equilibrium states. And KMS states also possess other properties of equi-
librium states, such as stability and passivity10 (see Bratelli and Robinson
1997 and Emch and Liu 2001). In sum, there is strong evidence that KMS
states provide the correct mathematical generalization of Gibbs states. KMS
states have features that Gibbs states lack, but this typically all to the good.
For example, a (�s; �)-Gibbs state (if it is exists) is unique; but there can
be many distinct (�s; �)-KMS states. The latter fact allows KMS states to
represent di¤erent thermodynamical phases. This feature of KMS states will
not play any role here.
Note that � can be eliminated by rescaling the group parameter: ' is a

(�s; �)-KMS state if and only if it is a (�u;�1)-KMS state, where u = ��s.
Without any loss of generality mathematicians set � = �1 and call this
form of the resulting form of the KMS condition the modular condition.
The minus sign has no physical signi�cance and simply re�ects the fact that
the mathematicians who developed modular theory used a sign convention

8The Connes-Rovelli thermal time hypothesis, crudely put, is that time� not just the
direction of time but time itself� arises from statistical considerations (see Connes and
Rovelli 1994 and Rovelli 2004, Secs. 3.4 and 5.5) and that in appropriate circumstances
the group parameter s is to be identi�ed with the physical time that governs macroscopic
thermodynamical processes. A discussion of this fascinating proposal will be reserved for
another occasion.

9KMS states are de�ned not only for von Neumann algebras but for C�-algebras as well.
I emphasize the application to von Neumann algebras because of the use made below of
the Tomita-Takasaki theorem.
10Passivity means that energy cannot be extracted from the system by an external

perturbation that is periodic in time.

6



di¤erent from the one used by the physicists who worked in QSM.
The formalism of KMS states is quite �exible, and it applies not only

to states of systems obtained from taking the thermodynamic limit in QSM
but also, for example, to states in relativistic QFT as will be seen in the fol-
lowing section. The application proceeds via the celebrated Tomita-Takasaki
theorem:

Theorem. Let M be a von Neumann algebra acting on a Hilbert
space H and let ' be a faithful normal state on M. Then there
exists a unique one-parameter group of automorphisms �s , s 2 R,
ofM such that ' satis�es the modular condition with respect to
�s, i.e. ' is a (�s;�1)-KMS state.

At the abstract level sketched above modular theory provides no way to
choose a preferred parameterization of the automorphism group and, thus,
allows the �temperature�1=� to be set at any value in the range (0;+1) by
rescaling the group parameter. And relatedly, the abstract theory provides
no connection between the group parameterization and the experienced time
of an observer who is to measure the �temperature�1=�. The missing ingre-
dients have to come not from the mathematical theory but from the details of
physical applications to concrete cases. One promising class of applications
occurs in QFT when the modular group has a geometric action on spacetime.
Examples are discussed in the next section.

3 Modular automorphism groups with geo-
metric actions in Minkowski spacetime and
the modular time hypothesis

In the algebraic formulation of relativistic QFT (see Haag 1996) a C�-algebra
A(O) of observables is associated with each open bounded region of O �
R4 of Minkowski spacetime R4; �ab. This association is assumed to have
the net property that if O1 � O2 then A(O1) � A(O2). If O1 and O2 are
relatively spacelike, Einstein causality (aka microcausality) demands that
[A(O1);A(O2)] = 0. The quasi-local algebra for the entirety of Minkowski
spacetime A(R4) is given by [OA(O), where the overbar denotes the closure
with respect to the C�-norm. The focus of most of the discussions of the
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Unruh e¤ect is the Klein-Gordon �eld of mass m � 0 (see Appendix C). I
will continue this tradition, although as become apparent the apparatus used
here has much wider applicability. The construction of the Weyl form of the
canonical commutation relation (CCR) algebra for the Klein-Gordon �eld
has been carried out and extensively investigated (see, for example, Kay and
Wald 1991 and Wald 1994). Fortunately, we will need to make use of only a
few details of the construction for present purposes.
In any approach to QFT that takes the basic algebras to be C�-algebras,

the von Neumann algebras that are the home of some of the physically
important observables are representation-dependent objects. The standard
practice is to focus on vacuum representations, and that practice will be
followed here. So let 'M be the Minkowski vacuum state for the Weyl
CCR algebra A(R4) of the Klein-Gordon �eld. The von Neumann alge-
bra a¢ liated with the local algebra A(O) for an open region O � R4 is
MM(O) := (�'M jA(O)(A(O)))00 where 'M jA(O) denotes the restriction of 'M
to the subalgebra A(O) � A(R4), �'M jA(O) is the GNS representation deter-
mined by 'M jA(O), and �00�denotes the double commutant (see Appendix A).
To apply KMS theory to MM(O) we need to be assured that the (unique)
canonical extension of 'M jA(O) to MM(O) is a faithful normal state. (From
here on I will use the same symbol for the this state and its canonical exten-
sion.) To obtain this assurance for any region O whose causal complement
Oc (consisting of all spacetime points that are spacelike with respect to O)
contains a non-null open set, start from the fact that the GNS representa-
tion of A(R4) determined by 'M is (unitarily equivalent to) a Fock space
representation in which the GNS vector is just the Minkowski vacuum vector
j0Mi. By the Reeh-Schleider theorem j0Mi is a cyclic vector with respect
to MM(Oc) and, thus, is a separating vector for MM(Oc)0. By Einstein
causality MM(O) � MM(Oc)0 and, thus, j0Mi is a separating vector for
any MM(O) where O has non-null causal complement. Thus, the vector
state �j0M i on MM(O) corresponding to j0Mi is a faithful normal state for
MM(O).11 By the Tomita-Takasaki theorem �j0M i is a (�s;�1)-KMS state
11Here �j0M i is the algebraic state de�ned by �j0M i(A) = h0M jAj0M i for all A 2

MM (O). To see that this state is faithful note that if �j0M i(A
�A) = 0 then jjAj0M ijj

= 0 which means that Aj0M i = 0 since j0M i and, thus, A = 0 because j0M i is a sepa-
rating vector. That �j0M i is normal follows from the fact that it is a vector state. This
might seem puzzling since �j0M i is a mixed state (see below). In ordinary QM the set of
vector states is identical with the set of pure states. But in the setting of algebraic QM the
di¤erence between pure and mixed states corresponds to those that determine respectively
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with respect to a unique automorphism group �s. But �j0M i is nothing other
than the canonical extension of 'M jA(O) to MM(O).
Until the work of Bisognano and Wichmann (1975, 1976) this easy result

caused not the slightest stir in the mathematical physics community since
there was no a priori reason to expect that the modular group associated
with an arbitrary open region of Minkowski spacetime with non-null causal
complement would have geometrical signi�cance. But remarkably, such sig-
ni�cance holds for Rindler wedge regions. The right Rindler wedge R pic-
tured in Fig. 1 is the region x > jtj where (x; y; z; t) is an inertial coordinate
system. R is covered by Rindler coordinates (�; y; z; �) where the (�; �) are
related to (x; t) by

x = � cosh(�); t = � sinh(�) (2)

In Rindler coordinates, the Minkowski line element becomes

ds2 = d�2 + dy2 + dz2 � �2d�2 (3)

which make it evident that (�; y; z; �) is a static coordinate system (see Ap-
pendix B). For future reference note that the Rindler coordinates �go bad�
on the boundaries x = �t of R where � takes in�nite values. And also note
that when considered as a spacetime in its own right, R is globally hyper-
bolic with the hypersurfaces � = const of constant Rindler time forming a
foliation of Cauchy surfaces. The orthogonal trajectories of these surfaces are
timelike hyperbolae corresponding to the worldlines of observers in constant
linear acceleration. The (proper) acceleration a along one of these trajecto-
ries varies from trajectory to trajectory according as a = 1=�, and the proper
time �a along such a trajectory is given by �a = �� = �=a. The distance
between trajectories as measured the hypersurfaces � = const is independent
�, giving an example of what is called Born rigid motion (see Appendix B).
The results of Bisognano and Wichmann (1975, 1976) show that the mod-

ular automorphism group for the restriction of the Minkowski vacuum state
to MM(R) does have geometrical signi�cance since its generators are the
Lorentz boosts on R, i.e. the orbits of the modular group are the hyperbo-
lae of constant acceleration. When the group parameter is chosen to be the
Rindler time �, the restriction of the Minkowski vacuum state toMM(R) is
a (��; 2�)-KMS state.

irreducible and reducible GNS representations.
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The relevance of this result for the Unruh e¤ect� which was initially
explored by Unruh (1976) not on the basis of modular theory but rather by
exploiting detectors (see Sec. 7)� was �rst recognized by Sewell (1982) who
proposed that a natural rescaling of the modular group would give the Unruh

temperature (1). The temperature T =
1

2�
from the Bisognano-Wichmann

theorem, Sewell wrote,

is not the observed temperature, however, since this is based on
the time [�], rather than the proper time �a. In fact, the tem-
perature observed by Oacc [a uniformly accelerating observer] will
take the value Ta, corresponding to a rescaling of time from [�]

to �a ... [i.e. Ta =
a

2�
]. (p. 209)

It seems fair to interpret these remarks as embodying what I will call
the modular temperature hypothesis, which comes in a restricted and an ex-
tended form. Suppose the modular automorphism group �s for a (�s; �)-KMS
state ' has geometrical signi�cance in that the modular �ow is everywhere a
timelike �ow on spacetime. The restricted modular temperature hypothesis
(RMTP) applies to the case where the proper time � of an observer whose
worldline belongs to the said �ow is such that d�=ds is constant along the
observer�s worldline. It posits that the inverse temperature ~�� measured
by this observer is given by � x d�=ds. In the Rindler wedge case this posit
(per design) associates the inverse Unruh temperature 2�=a with an observer
moving with constant linear acceleration a. The extended modular temper-
ature hypothesis (EMTP) is designed to cover cases where d�(s)=ds varies
along the world line of an observer. It posits that the local inverse tempera-
ture ~�� (s) measured by an observer whose worldline belongs to the modular
�ow is given by � x d�(s)=ds. The modular temperature hypothesis is rarely
made explicit, but without it� or some similar hypothesis� modular theory
does not associate any de�nite temperature with an observer. Martinelli
and Rovelli (2003) explicitly advocate the EMTH in order to apply modular
theory to diamond and future cone regions of Minkowski spacetime.
A diamond regionD(L) of Minkowski spacetime, where L is the dimension

of the diamond, can be speci�ed in inertial coordinates (x; y; z; t) as a region
such that j�!x j + jtj < L. Restricted to D(L), the Minkowski vacuum state
for a m = 0 Klein-Gordon �eld is a KMS state for the diamond algebra.
The m = 0 �eld is conformally invariant and a conformal transformation
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can be used to map a wedge region to a diamond region. The latter can be
used to transfer the modular �ow on the wedge to the diamond, resulting in
timelike worldlines with uniform acceleration that start at the past vertex
of the diamond and terminate at the future vertex. This suggests that the
modular group for D(L) has a geometric action and that the group orbits
are identical with those given by the transfer construction. A proof that the
suggestion is correct is given by Hislop and Longo (1982). Application of the
EMTH yields the result that the modular temperature associated with an
orbit parameterized by proper time is �a is given by

T (�a) =
La2

2�(
p
1 + a2L2 � cosh(a�a))

(4)

(Martinelli and Rovelli 2003). For observers with a large acceleration a
(which is needed for an orbit that stays near the boundary of the diamond)
and for large L, the associated modular temperature is approximately equal
to the Unruh temperature a=2�. For a centrally located observer, who has
zero acceleration, the extended modular temperature hypothesis associates a
temperature of 2=�T , where T = 2L is the elapse of proper time along the
observer�s worldline from the bottom tip to the apex of the diamond. Such
observers con�ned to small diamonds and, thus, having short lifetimes can
console themselves with the fact that they have a high temperature asso-
ciated with them. Indeed, by making their lifetimes su¢ ciently short, they
can overcome the smallness of the (suppressed) numerical factor }=2�ck so as
to make the modular temperature rise above the ordinary background room
temperature.
The other instance where the modular group is known to have a geometric

action is the case of the Minkowski vacuum state for a m = 0 Klein-Gordon
�eld restricted to the algebra associated with interior V+ of a future light
cone, which without loss of generality can be situated at the origin of an
inertial coordinate system (i.e. V+ consists of those points such that t > j�!x j).
Since V+ does not have a non-null causal complement one cannot proceed as
the case of a wedge or diamond. But advantage can be taken of the fact that
in Minkowski spacetime of even dimension the m = 0 the �eld propagates at
exactly the speed of light. Consequently, the algebra of observables associated
with V+ and the algebra associated with the twin past cone V� commute (see
Buchholz 1978). By the Reeh-Schleider theorem j0Mi is cyclic with respect
to the V� algebra and, thus, is separating for the commutant algebra which
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includes the V+ algebra. The upshot is that the restriction of j0Mi to the
V+ algebra de�nes a faithful normal state and, thus, by the Tomita-Takasaki
theorem a KMS state. The modular group �s for this state acts by spacetime
dilations (see Haag 1996, Sec. V.4). Martinetti and Rovelli (2003) interpret
the orbits of �s as inertial worldlines that fan out from the origin. Proper
time along one of these worldlines is related to the modular parameter by
�(s) = exp(�2�s). The extended modular temperature associated with these
observers is non-zero at birth and then decreases exponentially.
These somewhat startling consequences of the EMTH might lead one to

doubt it. But such doubters who at the same time want to apply RMTH to
Rindler wedges have to provide a principled motivation for accepting RMTP
while rejecting EMTH, for otherwise doubts about the latter will also infect
the former. Such a motivation might start with the observation that only in
cases where the RMTP applies is it guaranteed that the modular group �s
for a (�s; �)-KMS state ' can be reparameterized using the proper time � of
an observer; and it continues by asserting that only when such a reparame-
terization is possible can the modular automorphism group be identi�ed with
the dynamical automorphism group for an observer with proper time � . In
these happy circumstances ' is a (�� ; ~�� )-KMS state with ~�� = � x d�=ds,
i.e. the RMTH is equivalent to the statement that the value of the inverse
temperature associated with an observer is to be read o¤ the reparameteri-
zation of modular group by said observer�s proper time. Doubts about the
EMTH can also be explored by comparing its predictions for D(L) and V+
with the responses of appropriate detectors.12 I will not pursue this matter
here and will restrict attention to cases falling under the RMTH.

4 The Unruh e¤ect in curved spacetimes and
its relation to the Hawking e¤ect

A null surface N of a relativistic spacetime M; gab is said to be a Killing
horizon if there is a Killing �eld �a ($�cgab = 0) normal to N (see Appendix

12The rub, of course, is deciding what an appropriate detector is for such cases. Inertially
moving Unruh-Dewitt detectors that have been switched on the asymptotic past give a
null result (see Sec. 7). Switching on in the �nite past will produce transients, but these
e¤ects should dissipate in a �nite time leaving a null response. Such null responses would
seem to clash with the predictions of the EMTH for D(L) and V+. Perhaps, however,
Unruh-Dewitt detectors are not appropriate. But then what are appropriate detectors?
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B). This concept is important to black hole physics since it is known that
the event horizon of a stationary black hole must be a Killing horizon. A
bifurcate Killing horizon for a four-dimensional spacetime consists of a pair
of null surfaces NA and NB that intersect in a spacelike two-surface S such
that NA and NB are both Killing horizons with respect to the same Killing
�eld �a. Provided that there is a Cauchy surface containing S, the bifurcate
horizons divide the spacetime up into four wedges F;P;L;R as indicated
schematically in Fig. 2.
In the case of Minkowski spacetime, the Killing �eld �a = [x(@=dt)a +

t(@=@x)a] has the associated bifurcate Killing horizon consisting of null planes
intersecting at the origin. The wedge regions L and R where the Killing
horizon �eld is timelike are, of course, the left and right Rindler wedges.
Consider the quasi-free states on the Weyl CCR algebra for a Klein-Gordon
�eld propagating on Minkowski spacetime.13 Among these states there is
a unique non-singular one that is invariant under the automorphisms of the
algebra corresponding to the isometries whose generator is the horizon Killing
�eld in the region where this �eld is timelike. This state is none other than
the Minkowski vacuum state, and (as we already know) the restriction of this
state right Rindler wedge algebra is a KMS state at inverse temperature 2�.
A non-singular state ' is one that satis�es the Hadamard condition which
guarantees that the point-splitting method of renormalization yields a �nite
expectation value hTabi' of the stress-energy tensor Tab(�) := ra�rb� � 1

2

gab(rc�rc�+m2�2) for the free �eld � (see Wald 1994 for details).
Kay and Wald (1991) show how this situation generalizes to a minimally

coupled free scalar �eld propagating on a curved globally hyperbolic space-
time with bifurcate Killing horizons such that the intersection S of NA and
NB is contained in a Cauchy surface. More speci�cally, they prove that on
a �large� subalgebra of a L or R wedge algebra of observables there is at
most one quasi-free non-singular (Hadamard) state that is invariant under
the automorphisms generated by the Killing horizon isometries.14 They also
show that under the further assumption of the existence of a �wedge rever-
sal� isometry, the restriction of the unique invariant state� if it exists� to
the observables of the large subalgebra of observables that are localized in
one of the L or R wedges is a KMS state at Hawking temperature

13The GNS representation induced by such a state has a natural Fock space structure
(see Appendix C).
14Kay (1993) shows that the quasi-free assumption can be dropped.
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TH =
�

2�
(5)

with respect to the automorphism group generated by the Killing horizon
isometries. Here � := �1

2
(ra�b)(ra�b), evaluated on the horizon, is the

surface gravity. It can be shown that � = lim(aV ) where V := (��a�a)1=2
is the norm of the horizon Killing �eld, a := (abab)

1=2 is the norm of the
acceleration ab := �crc�

b=V of the the orbit, and the limit is taken as the
horizon is approached. The surface gravity � is constant on the horizon (see
Wald 1984, Sec. 12.4).15 The inevitability of the Hawking temperature for
linear quantum �elds is reinforced by the result of Haag et al. (1984) showing
that if there is a KMS state with respect to the bifurcate Killing horizon �eld
and if this state satis�es a condition of local de�niteness� roughly, the state
must be indistinguishable from the Minkowski vacuum in the in�nitesimal
regime� then the temperature of the state must be �=2�.
Applying the modular temperature hypothesis, the inverse temperature

associated with an observer whose worldline is an orbit of the Killing hori-
zon �eld is 2�=� multiplied by the ratio of the observer�s proper time to
the modular parameter (here the Killing parameter), yielding the modular
temperature

T =
�

2�V
. (6)

When appropriate vacuum states exist (6) encapsulates what can be deemed
a generalized Unruh e¤ect for curved spacetimes. The task now is to �nd
when these states exist and to compute � and V for these cases and, thereby,
the modular temperature.
In the case of Minkowski spacetime a vacuum state for a Klein-Gordon

�eld satisfying the conditions of the Kay and Wald (1991) theorem does
exist� it is, of course, the Minkowski vacuum. As a consistency check we
can compute the surface gravity � = lim(aV ) using the fact that in a Rindler
wedge a = 1=� and V = � (recall that � is the Rindler spatial coordinate)
giving � = 1 and a modular temperature equal to the Unruh temperature. In
the case of the Kruskal maximal extension of the Schwarzschild solution (see

15If �a is a Killing �eld, then so is C�a where C is an arbitrary constant, which seems to
lead to an ambiguity in the value of the surface gravity. But in the case of an asymptotically
�at spacetime the ambiguity can be squelched by requiring that V = (��a�a)1=2 ! 1 as
r !1.
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Fig. 3) the desired vacuum state also exists� in the literature it is called the
Hartle-Hawking vacuum state j0Hi (see Hartle and Hawking 1976).16 Here

a =
GM

r2(1� 2GM
r
)1=2

, V = (1� 2GM
r
)1=2

where r is the Schwarzschild radial coordinate and M is mass of the black
hole, yielding a modular temperature of

�

2�V
=

1

8�GM(1� 2GM
r
)1=2

for an observer moving along the orbit r = const. As the the horizon at r =
2M is approached,

�

2�V
! a

2�
, which is the same form as the Unruh e¤ect

for Minkowski spacetime. But note a key di¤erence between this generalized
Unruh e¤ect and the Unruh e¤ect for �at spacetime. The latter is rightly
referred to as an acceleration e¤ect, for as the Rindler spatial coordinate � !
1, the acceleration of the Killing orbit a ! 0 and the Unruh temperature
TU ! 0. (Unruh himself tends to use the term �acceleration radiation�to
refer to the Unruh e¤ect in �at spacetime.) But in the case of the Hartle-
Hawking vacuum for Kruskal spacetime, as r !1, a! 0 while the modular

temperature
�

2�V
! 1

8�GM
.17

Examples of non-existence results for a generalized Unruh e¤ect are given
by a minimally coupled Klein-Gordon �eld on either the globally hyperbolic
portion of Kerr spacetime, which describes a rotating black hole, or the
Schwarzschild-de Sitter spacetime, which is composed of an in�nite chain of
alternating Schwarzschild and de Sitter spacetimes. There is no appropriate
KMS state for these cases; indeed, there is no Hadamard vacuum state in-
variant under the automorphisms generated by the Killing horizon isometries
(Kay and Wald 1991).
On a more positive note, the generalized Unruh e¤ect does hold for de

Sitter spacetime. For a m > 0 minimally coupled Klein-Gordon �eld Allen

16The names of the vacuum states are somewhat confusing: the Hartle-Hawking vacuum
is the state relevant to the (generalized) Unruh e¤ect while the Unruh vacuum is the state
relevant to the Hawking e¤ect (see below).
17For a solar mass black hole, this corresponds to a temperature of 6x10�8 0C.
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(1985) found a one (complex) parameter family vacuum states invariant un-
der the de Sitter group of isometries.18 But only one of these, the �Euclidean
vacuum,�satis�es a Hadamard-type condition. This condition is weaker than
the one used in Kay and Wald (1991), so it is not apparent whether their
results apply. Fortunately, there are independent proofs that the restriction
of the Euclidean vacuum state to a wedge region corresponding to a bifurcate

Killing �eld produces a KMS state at Hawking temperature
�

2�
=
1

2�

p
�=3

where � > 0 is the cosmological constant (see Bros and Moschella 1996).
As noted by Wald (1994, p. 127) every non-accelerated observer in de Sit-
ter spacetime has an associated modular temperature equal to the Hawking
temperature since for any timelike geodesic  in de Sitter spacetime a bifur-
cate Killing �eld �a can be chosen to be tangent to  and normalized along
 so that V = (��a�a)1=2 = 1. Here then is another example where the gen-
eralized Unruh e¤ect is not an acceleration e¤ect. For conformally coupled
m = 0 scalar �eld (see Appendix C) on de Sitter spacetime it has been ar-
gued that the temperature measured by an observer in uniform acceleration

a through the conformal vacuum is
1

2�

r
�

3
+ a2 (see and Narnhofer et al.

1996).
All of the results reported above pertain to non-interacting scalar �elds,

which might occasion the worry that what is being called the generalized
Unruh e¤ect is an artifact of focusing on overly simple case. This worry
is somewhat assuaged by Summers and Verch�s (1996) model-independent
proof that when a state on a net of local algebras is restricted to a subnet
of algebras, the members of which are invariant under the automorphisms
generated by the Killing horizon isometries, the result is a KMS state at
inverse Hawking temperature. Of course, the question of the existence of
the appropriate algebras and states is a model-dependent a¤air, and not
surprisingly most of the positive existence results have been obtained for the
simplest case of linear scalar �elds.
Returning to Kruskal spacetime, in addition to the Hartle-Hawking vac-

uum two other candidate vacuum states are available: the Boulware vacuum
(see Boulware 1975) and the Unruh vacuum (see Unruh 1976).19 The Boul-

18For m = 0 no such vacuum state exists.
19A overview of the properties of the three candidate vacuum states for Kruskal space-

time can be found in Novikov and Frolov (1989, Ch. 10). Rigorous algebraic versions of
these states can be found in Dimock and Kay (1987).
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ware vacuum j0Bi can be seen as analogue of the Fulling vacuum j0F i for
a Rindler wedge algebra in Minkowski spacetime. The Fulling quantization
will be discussed in Sec. 6 (see also Appendix C); but for present purposes
su¢ ce it to say that for both j0F i and j0Bi the positive frequency modes
are de�ned relative to the Killing horizon trajectories. Like j0F i, j0Bi is a
non-thermal, indeed, pure state on a L or R wedge algebra. And just as j0F i
is singular (non-Hadamard) at the edges of the Rindler wedge (see Sec. 6),
so j0Bi is singular on both the past (or white hole) horizon and the future
(or black hole horizon) horizon (labeled respectively HP and HF in Fig. 3).
The invocation of the �Hawking temperature� in the above exposition

should not be taken as an invitation to con�ate the generalized Unruh ef-
fect with the Hawking e¤ect which asserts that at su¢ ciently late times a
black hole radiates with a thermal spectrum at Hawking temperature (6) as
seen by an observer near in�nity (Hawking 1975, Wald 1975). Sometimes a
derivation of the generalized Unruh e¤ect is taken eo ipso as a demonstration
of the Hawking e¤ect (see, for example, Sewell 1980). But as emphasized by
Wald (1994, 1999), the Hawking e¤ect and the generalized Unruh are quite
distinct since they refer to di¤erent states of the quantum �eld� in the case of
Kruskal spacetime, they refer respectively to the Unruh and Hartle-Hawking
vacuums.

In the Hawking e¤ect, the asymptotic �nal state of the quantum
�eld is a state in which the modes of the quantum �eld that ap-
pear to a distant observer to have propagated from the black hole
region of the spacetime are thermally populated at temperature
[TH ], but the modes which appear to have propagated in from
in�nity are unpopulated. This state (usually referred to as the
�Unruh vacuum�) would be singular [non-Hadamard] on the white
hole horizon in the analytically continued spacetime containing
a bifurcate Killing horizon. On the other hand, in the Unruh
e¤ect and its generalization to curved spacetimes, the state in
question (usually referred to as the �Hartle-Hawking vacuum�) is
globally non-singular and all modes in the quantum �eld in the
�left and right wedges�are thermally populated.20 (Wald 1999,

20The fact that the Unruh vacuum state is singular on the white hole horizon might seem
to call into question the basis of the Hawking e¤ect. But note that Kruskal spacetime is
not a good model for the formation of a spherically symmetric black hole through the
process of gravitational collapse. A more realistic model would eschew the Kruskal white
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pp. A182-183)

The di¤erence between the generalized Unruh e¤ect and the Hawking e¤ect
is at its starkest in the case of a Kerr black hole. As already noted there is
no analogue of the Unruh e¤ect, at least not on the approach that takes the
Unruh e¤ect and its generalization to curved spacetime to be a statement
about KMS states; but the derivation of the Hawking e¤ect in the form of
particle creation in the formation of a Kerr black hole goes through (Wald
1994, p. 129).
The importance of the Hawking e¤ect is at least two fold. First, it

provides the physical grounding for black hole thermodynamics by show-
ing that the Hawking temperature is the physical temperature of a black
hole and, thus, that the expression for black hole entropy, originally devel-
oped by Berkenstein (1973) on the basis of a formal analogies, is truly the
thermodynamic entropy of a black hole.21 Second, when backreaction e¤ects
of the Hawking radiation are taken into account, it is found that a black
hole looses mass at a rate that leads to the evaporation of a black hole in a
�nite time.22 The Unruh e¤ect does not occupy such a fundamental role in
black hole physics. Nor was it intended for such a role; indeed, in its original
incarnation was supposed to apply just to �at spacetime, and it was only
as an afterthought that it was generalized to black hole and other curved
spacetimes.

5 Some qualms about the modular theory ap-
proach

Although never made explicit, the following attitude is implicit in a signi�-
cant fraction of the literature on the Unruh e¤ect: �The Unruh e¤ect in �at
spacetime and its generalization to curved spacetimes is no more and no less
than what is given in the theorems (reviewed in Secs. 3-4) that �ow from
QFT by way of modular theory. The modular temperature hypothesis need

hole and with it the past horizon on which the Unruh vacuum state becomes singular.
21For a survey of black hole thermodynamics, see Wald (1998, 2001).
22For a solar mass black hole the evaporation time is �nite but very long� on the order

of 1067 years. What happens when a black hole evaporates is a matter of controversy, e.g.,
is information lost in the process? For a very readable (but somewhat biased) overview of
the controversy, see Susskind (2008).
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not be regarded as an extra empirical hypothesis but as part of an implicit
de�nition of the concept of modular temperature. Since there is no arguing
with theorems, case closed with no further need for discussion.�While this is
a respectable attitude for mathematicians to adopt, it spells shortsightedness
for physicists and an outright dereliction of duty philosophers of physics.
A KMS state is an analogue of a Gibbs state, and as with all analogical

reasoning one can wonder how reliable the analogy is and what inferences
it supports; in particular, when is it safe to infer that the analogical �tem-
perature� 1=� appearing in a KMS state has something like its ordinary
thermodynamical meaning?23 In the applications originally envisioned by
Kubo, Martin, and Schwinger� KMS states for systems obtained by taking
the thermodynamic limit of ordinary thermodynamical systems� doubts are
readily assuaged. For example, in some model cases it can be shown that
the limiting system acts as a thermal reservoir at temperature 1=� in that
if it is coupled to a �nite system, the latter will be driven to thermal equi-
librium at temperature 1=� (see Sewell 1974). The need for reassurance is
more pressing in instances where the KMS state characterizes a system that
is not the thermodynamic limit of an ordinary thermodynamical system but
a system that, a priori, does not lend itself to thermodynamical description,
such as a quantum �eld in a vacuum state.
In the �at spacetime case the needed reassurance would take the form of

comparing the deliverances of modular theory with the responses of physical
objects accelerated through the Minkowski vacuum. But there is an apparent
obstacle to even getting started on making such comparisons. Consider the
question

23A salutary example where a formal �temperature� has no connection to statistical-
thermodynamical temperature is given by Srinivansan et al. (1997). Consider a plane
wave mode �(x; t) = cos(!t� k � x) of a zero-mass Klein-Gordon �eld traveling along the
x-axis in Minkowski spacetime, i.e. k = (k; 0; 0). The Fourier transform with respect to

the proper time � of an observer is given by ~�(
) =
Z +1

�1
cos(!t(�) � k � x(� ))exp( �

i
�). For an observer with uniform acceleration a along the x-axis, the power spectrum

P(
) := 
=j~�(
)j2 has three terms, one of which is N(
) = 1

exp(2�
=a)� 1 , i.e. a
Planck distribution in 
 at Unruh temperature. But as the authors note, �The system we
are considering has no �uctuations or temperature in the sense of statistical physics�(p.
6693). Formal results of this type are sometimes billed as demonstrating that the Unruh
e¤ect has �classical roots�(see Pauri and Vallisneri 1999). On the contrary, I take them
as raising a caution �ag� in both classical and quantum settings� when drawing physical
conclusions from formal temperature expressions.
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Q1: My steak is now accelerating through the Minkowski vacuum,
and the wordlines of the points of the steak produce a Born rigid
motion described in Sec. 3. What modular temperature does a
point undergoing an acceleration of magnitude a experience?

The answer to Q1 is not necessarily given by plugging the value of the ac-
celeration into the formula T = }a=2�ck. In fact without the help of further
information modular theory does not supply an answer to Q2; indeed, from
the point of view of modular theory whether or not it makes sense to give a
de�nite answer to Q1 depends not only on the present state of motion of the
steak but on its entire history, past, present and future. In brief, the point
is this: the philosophy behind the modular theory approach to the Unruh
e¤ect is that an observer experiences a thermal state because she can access
only a limited subalgebra of the full algebra of observables of the quantum
�eld; but that such limited access obtains is not assured by the facts about
any proper portion of the observer�s history.
To develop the point, start with a humble example from ordinary QM,

say, a system of two spin 1=2 particles in a singlet state which is, of course,
a pure state. For an observer who has access to only one of the particles
the relevant state is the restriction of the singlet state to the algebra of ob-
servables associated with said particle. Because the singlet state encodes
correlations between the two particles, tracing out the degrees of freedom as-
sociated with the unobserved particle produces a mixed state on the algebra
of observables associated with the particle to which the observer has access.
And so it is in the case of QFT. Suppose that the system is a Klein-Gordon
�eld on Minkowski spacetime and the state is the Minkowski vacuum state.
An observer who always has been and always will be in constant linear ac-
celeration has access only to those observables associated with the Rindler
wedge to which her world line is con�ned. For her the relevant state is the
Minkowski vacuum state restricted to her Rindler wedge algebra. Because
the Minkowski vacuum state encodes correlations between relatively space-
like regions, the restriction of this pure state to a Rindler wedge region is a
mixed state.24 And� this is the surprise that comes out of relativistic QFT�

24Lemma: Let A be a C�-algebra and let B be a C�-algebra subalgebra of A. If the
restriction 'jB to B of a state on A is a pure state, then '(XY ) = '(X)'(Y ) for all X 2 B
and all Y 2 A such that [Y;B] = 0. Now let B and C be subalgebras of A associated with
relatively spacelike regions. By Einstein causality [B; C] = 0. To say that a state ' encodes
correlations between observables belonging to B and C is to say that there are X 2 B and
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not just any mixed state but a state with thermal properties, at least by the
lights of modular theory.
Now consider an observer who maintains constant linear rectilinear ac-

celeration for a �nite stretch of (proper) time as long as you like but who
is unaccelerated in the asymptotic past and/or future. Such an observer
has access to observables associated with regions outside any Rindler wedge
region and, consequently, the argument that for her the relevant state is a
mixed, thermal (KMS) state no longer applies. This makes it mysterious
how to mesh the deliverances of modular theory with the registrations of
laboratory instruments, and the mystery is not resolved by appealing to nos-
trums about the need for idealizations in applying textbook physics to real
world situations. Consider an idealized point-like instrument, and if you like
idealize it further by assuming that it is forever in hyperbolic motion. If
the idealizations are not pernicious then, whatever the details of how the
instrument works, the reading it gives at some �nite proper time25, say �now,
cannot depend on times � > �now; in particular, it cannot depend on whether
tomorrow, the next day, or a billion years from now it ceases to accelerate.
(Unless, of course, there is backwards causation, a possibility I will not en-
tertain here.) But the association of a modular temperature requires that
the instrument executes hyperbolic motion for all � including � > �now.26

Ignoring this conundrum only opens the way to another worry embodied
in a second question.

Q2: Suppose I put my steak in Born rigid motion through the
Minkowski vacuum so that the mean modular temperature as-
sociated with the worldlines of the steak is 3000C. Will it be
charred?

Modular theory is silent on this question since it only assigns temperatures
to special families of observers (= families of worldlines). To learn the
response of a physical object, the worldlines of the points of which form one
of these special families, requires assumptions about the constitution of the

all Y 2 C such that '(XY ) 6= '(X)'(Y ). Hence, by the Lemma it follows that 'jB is not
pure.
25Needless to say, an instrument that registers only at � = +1 is useless for theory

testing.
26Misgivings about the use of modular theory to explicate the Unruh e¤ect can be read

between the lines of some of the physics literature. But the �rst explicit expression of
misgiving I could �nd is in Schlicht (2004), which comes rather late in the game.
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object and how the constituents couple to quantum �elds. One might hope
that for a wide range of constitutions and couplings the resulting response is
fairly generic. The enterprise of showing that the hope is ful�lled would need
to call on empirical hypotheses and mathematical techniques that are not
part of modular theory, and if the enterprise is successful it would establish a
version of the Unruh e¤ect that is independent of the modular theory version.
It would be surprising if there were not some concordance of the two versions;
but it would be equally surprising if they were in complete agreement.
In sum, while modular theory strongly suggests that in QFT thermal

e¤ects arise from acceleration, other ways are needed to substantiate these
e¤ects, at least if �thermal� is to have a meaning that goes beyond the
incestuous sense that is implicitly de�ned by the theorems of modular theory.
Two such ways are discussed in the following sections. Sec. 6 takes up the
idea that the thermal e¤ects detected by an observer uniformly accelerating
through the Minkowski vacuum state for a Klein-Gordon �eld arise from the
fact that said observer encounters a thermal bath of quanta. This is an idea
that might seem to be still born by de�nition� the vacuum state is devoid of
quanta. However, a common response in the literature is that although the
Minkowski vacuum is, of course, devoid of Minkowski quanta, said observer
encounters a thermal �ux of quanta of a di¤erent species� Fulling quanta.
This response will be found wanting. Sec. 7 explores a way of rationalizing
the Unruh e¤ect in terms of the response of detectors to acceleration, an
approach that is quite independent of modular theory.

6 Fulling and other non-Minkowskian quanta

The following are typical sentiments found in the literature on the Unruh
e¤ect:

Unruh�s observation was that the theory that is thereby con-
structed [quantizing using Fulling modes] is not unitarily equiv-
alent to the usual free �eld theory on Minkowski spacetime. Of
even greater surprise was the subsequently discovered fact that
the usual Poincaré invariant vacuum state appropriate to Minkowski
space ... contains a thermal distribution with respect to the
Fulling Fock space. (Sciama et al. 1981, p. 343)

The Minkowski vacuum is full of Rindler [Fulling] photons, al-
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though it is devoid of Minkowski photons. (DeWitt 1979, p.
694)27

Sometimes the Unruh e¤ect is characterized as �the equivalence between
the Minkowski vacuum and a thermal bath of Rindler [Fulling] particles�
(Crispino et al. 2007, p. 2). The main goal of this section is to explain why
I think this characterization is misleading.
As noted above, if a right Rindler wedge R of Minkowski spacetime is

considered a spacetime in its own right it is a globally hyperbolic spacetime
that is covered by the static Rindler coordinates. One can follow the quanti-
zation procedure outlined in Appendix C to quantize the Klein-Gordon �eld
on this spacetime using the Rindler time coordinate � rather than the the
inertial time t to identify the positive frequency modes of the �eld, i.e. using
�i@=@� rather than �i@=@t as the energy operator. This procedure was �rst
carried out by Fulling (1972, 1973) who showed that it yields a notion of
particle (or better quantum) distinct from that of the standard Minkowski
quantization.
Now the idea that a number of physicists have had is that we can get a

handle on what is experienced by an observer in constant linear acceleration
through the Minkowski vacuum by expressing the Minkowski vacuum state
j0Mi in the Fock space of the Fulling representation. One encounters in
the literature formulae in which j0Mi is written as a superposition of the
(tensor) products of positive frequency Fulling modes for the left L and
right R Rindler wedges. Tracing out over the degrees of freedom in, say,
L produces a mixed state for the wedge algebra A(R) in the form of a
thermal density operator at Unruh temperature (see, for example, Sciama
et al. 1981, Unruh and Wald 1984, Lee 1986, and Takagi 1986, Sec. 2.8,
and Ginsburg and Frolov 1987). Such expressions supposedly justify the
idea that an observer uniformly accelerated through the Minkowski vacuum
encounters a thermal �ux of Fulling quanta. These results, together with
analogous results for curved spacetimes, have sometimes been advertised as
�thermalization theorems�(see Israel 1976, Lee 1986, and Takagi 1986, Sec.
2.8, and Ginsburg and Frolov 1987).

Strictly speaking, however, the crucial formulae involved are mathemati-
cally ill-de�ned, and genuine thermalization results that establish an Unruh

27DeWitt refers to photons because, for reasons that will become clear in the following
section, he is working with the case of a m = 0 Klein-Gordon �eld.
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e¤ect for Minkowski spacetime and a generalized e¤ect for curved spacetime
cannot bypass the need to prove the satisfaction of an appropriate KMS
condition.28 To see why the ambition of expressing the Minkowski vacuum
state as a density operator in the Fulling representation is unful�llable, be-
gin by noting that the Fulling vacuum state 'F is a pure state on A(R)
and, thus, the Fulling representation �'F (A(R)) is irreducible; by contrast
the Minkowski representation �'M jA(R)(A(R)) is reducible since 'M jA(R) is
a mixed state. Thus, trivially, the Minkowski and Fulling representations
are not unitarily equivalent, a fact noted in Fulling (1972). What Fulling
(1972, 1973) did not establish is the stronger conclusion that these represen-
tations are disjoint, a result that follows from the fact that the von Neumann
algebraMM(R) := �'M jA(R)(A(R))

00 a¢ liated with the Minkowski represen-
tation is a Type III factor (see Araki 1964) while that associated with the
Fulling representation MF (R) := �'F (A(R))

00 is a Type I factor (see Ap-
pendix A). In outline, the argument is that factor representations are either
quasi-equivalent or disjoint; but quasi-equivalent representations must have
a¢ liated von Neumann algebras which are �-isomorphic, whichMM(R) and
MF (R) are not since they are of di¤erent types. (The alert reader will have
noted that this disjointness result has nothing to do with the speci�c nature
of the Fulling representation per se; it relies only on the fact the representa-
tion arises from a pure state on the algebra at issue and, thus, is irreducible.
Hence, the disjointness from the Minkowski representation would hold for
any other candidate vacuum state on A(R).) The importance of this result
is that disjointness of the representations implies that no normal state of
one representation (i.e. no state expressible as a density operator in that
representation) is a normal state of the other.29

Of course, the fact that formulae expressing 'M jA(R) as a density operator
in the Fulling representation are mathematically ill-de�ned does not imply
that they do not express approximately correct truths in that they yield
approximately correct results when used to calculate quantities of interest.
To justify this approximation idea one might appeal to Fell�s theorem which

28If this is the point that the Russian school which naysayers the Unruh e¤ect (Belinskii
et al. 1997, Fedotov et al. 1999, Narozhny et al. 2000, and Narozhny et al. 2002) intends
to make, then they are correct. But it hardly follows that the Unruh e¤ect does not exist.
29See Bratelli and Robinson (1987, Theorem 2.4.26). Physicists sometimes express this

disjointness property by saying things like �every element of the Hilbert space that con-
tains the Rindler [Fulling] vacuum is perpendicular to the Hilbert space containing the
Minkowski vacuum�and vice versa (see, for example, Gerlach 1989).
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shows that any non-degenerate representations �1 and �2 of a Weyl algebra
W are weakly equivalent in the sense that any any normal state ' for one
representation, any �nite list of observables O1; O2; :::; On 2 W, and any
error tolerances �1; �2; :::; �n > 0, there is a normal state '0 for the other
representation such that j'(Oj) � '0(Oj)j < �j for all j = 1; 2; :::; n. The
theorem applies in the present case since the A(R) at the center of attention
is a Weyl algebra. The trouble is that appeals to Fell�s theorem cannot
help with the key observables of interest in the present case because they are
representation dependent in that they live not in the C�-algebra A(R) but in
the von Neumann algebrasMM(R) andMF (R) a¢ liated with the Minkowski
and Fulling representations respectively. In particular, this is true of the total
Fulling particle number operator NF

R and the number operators N
F
k;R for the

individual Fulling modes (labeled by k) for R. Nevertheless, one can try
to calculate the values of these operators for the Minkowski vacuum state,
and the answers one obtains in both cases is �1�(see Letaw and Pfautsch
1981, p. 1495). These results can be glossed as �The Minkowski vacuum is
�lled with an in�nity of Fulling quanta of every mode,�but strictly speaking
what they mean is that the Minkowski vacuum vector is not in the domain
of either NF

R or N
F
k;R.

Just as there are attempts to understand the Unruh e¤ect for Minkowski
spacetime in terms of a thermal �ux of Fulling quanta, so there are attempts
to understand the generalized Unruh e¤ect in Kruskal spacetime (recall Sec.
4) in terms of a thermal �ux of Boulware quanta encountered by an observer
who is accelerating through the Hartle-Hawking vacuum, the Boulware and
Hartle-Hawking vacuums being respectively the analogues of the Fulling and
Minkowski vacuums (see Israel 1976, Sciama et al. 1981, and Ginsburg and
Frolov 1987). The objections to this construal of the Unruh e¤ect for the
Minkowski case apply equally to the Kruskal case on the supposition that
the von Neumann algebra a¢ liated with the Hartle-Hawking representation
of a wedge algebra for Kruskal spacetime is a non-Type I factor, for then
it would follow that the Hartle-Hawking representation is disjoint from the
Boulware representation. Although I believe that this supposition holds, I
know of no formal proof.
Returning to the Unruh e¤ect in Minkowski spacetime, there are excellent

mathematical physicists who acknowledge the technical di¢ culties reviewed
above but who, nevertheless, but �nd it heuristically useful to think of the
Minkowski vacuum state as de�ning a thermal density operator in the Fulling
representation. But heuristics, no matter how useful and suggestive, cannot
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be trusted to adjudicate foundational issues, especially if the heuristics do
not have a well-founded basis. And it is for just this reason that Wald (1994,
117-118), who advocates the heuristic, points to the need for a characteriza-
tion of what it means for 'M jA(R) to be a thermal equilibrium state without
presuming (per impossible) that 'M jA(R) exists as a density matrix in the
Fulling representation. A formal characterization that �ts the bill is provided
by the KMS condition. But as argued in the preceding section, that formal
characterization needs to be supplemented in order to give thermodynamic
content to the notion of temperature it embodies. The idea that this tem-
perature can be understood in terms of a thermal bath of Fulling quanta was
one way of trying to provide such content. Under scrutiny, however, that idea
turns out to have only heuristic value. To try to add real value by appeal to
KMS theory leads to a circle, and multiple loops around the circle will not
provide the sought after content.
There is a second independent reason to doubt that appealing to the

Fulling representation is a good method for getting a handle on what is expe-
rienced by an observer in constant linear acceleration through the Minkowski
vacuum. It comes from the claim that a necessary condition for a state '
on the wedge algebra A(R) (or the canonical extension of ' to its a¢ liated
von Neumann algebra �'(R)00) to be physically realizable is not simply that
it satisfy for A(R) (or �'(R)00) whatever adequacy conditions are demanded
for physically acceptable states but also that ' can be extended to state on
the global algebra for Minkowski spacetime that also satis�es the adequacy
conditions. If these adequacy conditions include the Hadamard condition
then 'F is condemned as physically unrealizable, for it cannot be extended
beyond R as a Hadamard state since hTabi'F diverges as the edges of the
wedge are approached� in fact, the energy density approaches �1.
In rejoinder it might be claimed that the uniformly accelerated observers

who are con�ned to the Rindler wedge R have every right to treat R as
the entirety of spacetime and, thus, every right to quantize a la Fulling and
so arrive at 'F as the vacuum state of the �eld; that 'F becomes singular
when extended to a state on a larger spacetime into which R is embedded is
irrelevant to observers con�ned to R. Although this claim has some initial
plausibility, its plausibility vanishes when applied to analogous situations
where it leads to patently unacceptable consequences.
Consider, for example, a family of observers who are born at the origin of

the inertial coordinates (x; y; z; t) of Minkowski spacetime and who disperse
by moving with uniform speeds (< c) along the x-axis. A coordinate system
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(X;Y; Z; T ) adapted to the motion of these observers and covering the future
cone V+ to which they are con�ned is given by

x = a�1 exp(aT ) sinh(aX), T = a�1 exp(aT ) cosh(aX) (7)

y = Y , z = Z

The capitalized coordinates are known as Milne coordinates. In them the
Minkowski line element takes the form

ds2 = exp(2aT )(dX2 � dT 2) + dY 2 + dZ2 (8)

The T = const hypersurfaces, which are orthogonal to the trajectories of the
X = const worldlines of the observers, give a foliation of V+ by Cauchy sur-
faces for V+ considered as a spacetime in its own right (see Fig. 4). Parroting
the rejoinder under consideration into the present case, the claim would be
that observers con�ned to V+ have every right to consider V+ as the entirety
of spacetime and, thus, every right to quantize appropriately to this consid-
eration. Since the metric components in the (X; Y; Z; T ) coordinate system
are T -dependent, the quantization procedure outlined in Appendix C cannot
be applied. But one can proceed in the spirit of the quantization applied to a
Klein-Gordon �eld propagating in an expanding Friedman-Walker-Robertson
cosmological model. That is, one can construct an In one-particle Hilbert
space and thence a Fock space from the positive frequency modes in the
asymptotic past (T ! �1) and an Out one-particle Hilbert space and cor-
responding Fock space from the positive frequency modes in the asymptotic
future (T ! +1). One then �nds that in this scheme there is �particle
creation�because the T ! �1 positive frequency modes evolve to a linear
combination of T ! +1 positive and negative frequency modes (see Pad-
manabhan 1990). Interestingly, in the m > 0 case the Unruh temperature
makes an appearance in the formula for the number density nk of created
particles

nk =
1

exp(2�jkxj=a)� 1
(9)

where kx is x-component of the linear momentum. But the point is that no
serious physicist believes that genuine particle creation takes place in a �at
spacetime.
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Padmanabhan (1990) worried that this example suggests that alleged
instances of particle creation in curved spacetime might be spurious e¤ects
due to an unfortunate choice of coordinate system and urged that �We have
to produce a sensible criterion which will distinguish particle creation due to
spacetime curvature e¤ects from e¤ects due to choice of coordinates�(1990,
p. 2473). A di¤erent but equally e¤ective response to the challenge raised
by this example is to develop a criterion of physically realizable states and to
show that it excludes the In and Out vacuum states for V+ obtained from
quantizing in the Milne coordinates. Such a criterion is already at hand,
viz. a physically realizable state on the algebra of observables associated
with V+ must be extendible to a nonsingular state on the full algebra of
observables associated with Minkowski spacetime. This criterion has been
deployed by Winters-Hilt et al. (2000), who motivate it by the idea that
physically admissible states are those that arise from the evolution of regular
initial data in the remote past. And they show that it excludes the Milne
In and Out vacuum states on V+ because such states are ill-behaved at the
boundary of V+.

7 Detectors

To give operational content to the idea that an observer accelerated through
the Minkowski vacuum experiences thermal e¤ects the most natural move is
to equip her with an appropriate detector that is coupled to �eld, and because
the Unruh temperature varies with the acceleration and, thus, from worldline
to worldline, it is natural to try to design a point-like detector. The DeWitt
(1979) detector obliges by using a point-like particle initially in its ground
state. A transition of the detector particle to an excited state counts as the
detection event, although what the detector is detecting is not immediately
obvious. The coupling of the DeWitt detector to the Klein-Gordon �eld �
is of the form �m(~x(�))�(~x(�)), where ~x(�) is the world line of the detector
parameterized by proper time � , � > 0 is the coupling constant, and m(~x(�))
is the monopole charge. The Unruh (1976) detector, consisting of a particle
in a box, is somewhat more realistic in that it is spatially extended. In the
Rindler wedge case its components follow the Lorentz boost trajectories with
mean acceleration a. The DeWitt monopole detector can be viewed as a
long wavelength or low-energy approximation of the box detector (see Grove
and Ottewill 1983). I will discuss results concerning the monopole detector,
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and will follow standard practice in the literature by referring to it as the
Unruh-DeWitt detector.
Consider an Unruh-DeWitt detector which has been switched on in the

asymptotic past and which is moving through the Minkowski vacuum. To
�rst order in perturbation theory the probability that at proper time � 0 the
detector will be found in an excited state at energy E above its ground state
energy E0 is given by

C(E)
Z �0

�1
d�

Z �0

�1
d� 0 exp(�iE(� � � 0))h0M j�(~x(�))�(~x(� 0)j0Mi (10)

where E := E � E0. The coe¢ cient C(E), which expresses the sensitiv-
ity of the detector and depends on the internal details of the detector,
will be ignored. The focus will be on the response function F�0(E) :=Z �0

�1
d�

Z �0

�1
d� 0 exp(�iE(��� 0))h0M j�(~x(�))�(~x(� 0)j0Mi and more particu-

larly on the on the time derivative of F�0(E) with respect � 0, which determines
the detector transition rate and which is independent internal details of the
detector. A little manipulation shows that

_F�0(E) = 2
Z 0

�1
dsRe[exp(�iEsh0M j�(~x(� 0))�(~x(� 0 + s)j0Mi] (11)

_F�0(E) is independent of � 0 when the worldline ~x(�) of the detector is such
that the geodesic distance between two points ~x(� 1) and ~x(� 2) depends only
on j� 1 � � 2j, which is characteristic of a stationary motion (Letaw 1981). In
such cases the subscript on _F�0(E) will be dropped. There has been some
debate about how to perform the regularization needed to get a �nite answer
from the computation of the two-point function h0M j�(~x(�))�(~x(� 0)j0Mi, but
recently general agreement on this matter has crystallized (see Schlicht 2004,
Langlois 2006, and Louko and Satz 2006).
For inertial motion the response of the detector is null in the sense that

_F (E) = 0 for E > 0 although, of course, _F (E) is non-zero for E < 0 due to
the possibility of spontaneous emission from the detector.30 For a detector
in hyperbolic motion with acceleration a through the Minkowski vacuum of

30An interesting side issue is whether an inertially moving Unruh-DeWitt detector that
explores the �eld only in a Rindler wedge region can tell the di¤erence between the
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a m = 0 �eld on Minkowski spacetime of dimension d = 4 the response is
thermal (Planckian) at Unruh temperature:

_F (E) = E
2�

1

exp(E=T )� 1 ; T =
a

2�
(11)

While this result �ts well the modular theory approach to the Unruh
e¤ect, a discordance between the modular theory approach and the detector
approach becomes apparent in other cases. In particular, the modular theory
derivation of the Unruh e¤ect sketched in Secs. 2-3 applies to m > 0 Klein-
Gordon �elds as well as the m = 0 case, and it holds for all spacetime
dimension d. But the response of an Unruh-DeWitt detector in hyperbolic
motion in d = 4 Minkowski spacetime is far from Planckian for large m > 0
(Tagaki 1986, Sec. 4.5). This discrepancy can be traced to the fact that the
KMS condition ensures thermal equilibrium in the sense of detailed balance:
for E > 0, _F (E) = _F (�E) exp(�E=T ), i.e. the upward transition rate for
E0 ! E is equal to the probability of the downward transition transition
for E ! E0 multiplied by the equilibrium probability of the excited state.
But this balancing is not su¢ cient to guarantee that the spectrum of Unruh-
DeWitt detector excitations is thermal (Tagaki 1986, Sec. 4.3).31 Second, for
d > 4 the expression for _F (E) acquires an additional numerical factor that
depends on E . Third, and most surprisingly, for am = 0 �eld in a Minkowski
spacetime odd d, a �statistics reversal�takes place�in which the Bose factor
E=(exp(E=T ) � 1) is replaced by a Fermi factor 1=(exp(E=T ) + 1) (Tagaki
1986, Sec. 4.2)32

Minkowski and Fulling vacuums. The question is a little delicate since an inertial de-
tector can be con�ned to a Rindler wedge region for only a �nite amount of proper time.
But however the question is parsed the answer is certainly positive since the autocorre-
lation functions h0M j�(~x(�))�(~x(� 0)j0M i and h0F j�(~x(�))�(~x(� 0)j0F i that determine the
detector responses in the Minkowski and Fulling vacuua are di¤erent for any two distinct
points ~x(�) and ~x(� 0) on the detector�s world line; see Unruh (1992) and compare to Grove
(1988) and Candelas and Sciama (1983), the latter of whom seem to be claiming that an
inertial detector cannot distinguish between j0M i and j0F i.
31In the literature on detectors �thermal�is used ambiguously to characterize a response

where _F (E) satis�es detailed balance vs. a response where _F (E) has a Planckian spectrum.
I use it here in the latter sense.
32Some insight into the origin of this statistics reversal is given by Unruh (1986). If

the autocorrelation function in (11) is computed using a complete set of Fulling modes, it
is found that each mode is thermally populated populated. It is the integration over all
the modes to which the detector is sensitive that produces the statistics reversal for odd
spacetime dimension.
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How does the detector approach square with the idea that the modu-
lar temperature associated with an observer in constant linear acceleration
through the Minkowski vacuum can be interpreted as the temperature of
a thermal bath of non-Minkowskian particles/quanta? The response of a
Unruh-DeWitt detector can be analyzed in terms of the absorption of Fulling
quanta and the emission of Minkowski quanta for the case of a m = 0 Klein-
Gordon �eld (see Unruh and Wald 1984). But such an analysis is subject to
the general qualms about Fulling quanta reviewed in Sec. 6. Moreover, inso-
far as explanation consists of deduction from general principles,33 an explana-
tion of detector responses can be carried out entirely within the Minkowski
representation, without any need to use or mention the Fulling represen-
tation: just substitute an explicit expression for the worldline ~x(�) of the
detector into the expression for _F�0(E) and start calculating. Note that this
explanation works for all m � 0 �elds, all spacetime dimensions, and all mo-
tions of the detector� even those that are not associated with a stationary
frame of reference and, thus, are not subject to a particle/quanta explanation
since there is no natural way to associate a non-Minkowskian particle/quanta
concept with such a frame, at least not one that does not involve spurious
particle creation in �at spacetime. In sum, if uniformity of explanation is
a virtue, the explanation of detector responses that sticks to the Minkowski
representation and eschews non-Minkowskian particles/quanta is to be pre-
ferred.
A case that illustrates how the various concepts discussed above fail to

meld is provided by the analysis of a Unruh-DeWitt detector at rest in a
frame rotating with constant angular velocity ~! about the axis of rotation.
This frame is stationary but, of course, not static. Since the detector cannot
move with a speed greater than c (= 1), the domain of the frame consists of
those spacetime points at a distance R from the axis of rotation such that
~!R < 1. Considered as a spacetime in its own right, this domain is not
globally hyperbolic and, thus, rigorous quantization procedures that rely on
global hyperbolicity do not apply. There is no natural notion of event horizon
for the family of uniformly rotating observers, as there is for the Rindler ob-

33In the philosophical literature this conception of scienti�c explanation is discussed
under the label of Hempel�s DN (for Deductive-Nomological) model; see Hempel (1970).
There are many criticisms of this model, but for present purposes it serves as good �rst-
order approximation to what quantum �eld theorists mean by explanation. Below I will
consider a demand that the explanation of the detector response take the form of a de-
duction exhibiting particular features.
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servers in constant linear acceleration, and thus a non-null detector response
for the former case cannot be classi�ed as �horizon e¤ect.�The spacetime
domain for which the rotating frame is de�ned does not have non-null causal
complement, and so the restriction of the Minkowski vacuum state to this
domain is not a KMS state (or at least the kind of argument given in Sec. 3
does not su¢ ce to show that it is a KMS state). An Unruh-DeWitt detector
at rest in the uniformly rotating frame shows a non-null response. _F (E) de-
pends on R and ~!, and although for any given R and ~! the transition rate
for the case of m = 0 and d = 4 has a Planck-like form it is not identically
Planckian (Letaw 1981). The fact that the detector becomes excited cannot
be attributed to the work being done to maintain it in orbit because this work
is zero. Nor can the response of the detector be explained as the detection of
particles/quanta, at least not if one ignores the fact that the relevant portion
of Minkowski spacetime is not globally hyperbolic and naively applies the
canonical quantization procedure34 to coordinates adapted to the rotating
frame. For the �rotating vacuum state�that results from this procedure co-
incides with the Minkowski vacuum state; in this sense, an observer at rest in
the rotating frame �sees�no particles/quanta, whether Minkowskian or �ro-
tating�(Letaw 1981, Letaw and Pfautsch 1981, and Padmanabhan 1982).35

This discordance disappears when the rotating frame is contained within a
limiting surface at radius R < 1=~! and Dirichlet boundary conditions are
imposed on the �eld (�(r = R; t) = 0), for then the response of a rotating
Unruh-DeWitt detector is null (Levin et al. 1993 and Davies et al. 1996).
These last points call for a bit of explication. In canonical quantization it

is assumed that a complete set of orthonormal modes of the �eld � appropri-
ate to a stationary frame, the worldlines of whose points are the trajectories
of a timelike Killing �eld �a, can be obtained from solutions to $�a� = �i!�.
For a static frame, i.e. �a is non-rotating as well as stationary (as assumed

34In so-called canonical quantization, the equal time CCR are imposed on the �eld oper-
ator � and the canonically conjugate momentum operator. It is assumed that the � can be
expressed as a linear combination of the positive norm modes �i as � =

X
i

(ai�i+ a
y
i�
�
i ).

As a result the creation and annihilation operators satisfy the familiar CCR [ai; aj ] =

[ayi ; a
y
j ] = 0 and [ai; a

y
j ] = �ij . The vacuum state is de�ned by the condition aij0i = 0 for

all i.
35Rejecting the naive application of canonical quantization as too naive to be trusted in

this case does not resolve the discordance between the detector approach and the particle
approach but only makes it worse since then no particle/quanta content can be associated
with the rotating frame.
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in the case treated in Appendix C), ! can always be chosen to be positive
so that the condition of a positive norm is equivalent to the condition of
positive frequency. But when �a is not static� as with a uniformly rotating
frame� some positive norm modes may have negative frequency. In canonical
quantization the creation and annihilation operators and, thus, the particle
number operators are de�ned by a decomposition of the �eld operator ob-
tained from positive norm modes.36 By contrast, an analysis of the response
of the Unruh-DeWitt detector shows that excitation depends on the presence
of negative frequency modes. Thus, in principle, excitation of the detector
at rest in a rotating frame can take place even in the absence of �rotating
particles�. And detailed calculations show that this possibility is in fact re-
alized when the detector is not contained within a limiting surface on which
Dirichlet boundary conditions are imposed (Letaw 1981, Letaw and Pfautsch
1981, Padmanabhan 1981, Sriamkumar and Padmanabhan 2002).
Part of attraction of a particle/quanta explanation of the response of an

accelerated detector is surely due to the tendency to think that a satisfac-
tory answer to �Why is the detector showing a non-null response (even after
being adjusted, if necessary, for transient e¤ects of switching the detector
on)?�must take the form �Because it is detecting X,�coupled with a ten-
dency to search for a thing-like entity to play the role of X. I think that both
tendencies should be resisted. But suppose that we give in to the �rst; and
suppose that we agree that, because of the examples just discussed, �X =
non-Minkowskian quanta�is not in general a suitable �lling. It then remains
to say what a generally satisfactory �lling is. The best general answer was
�rst suggested by Candelas and Sciama (1977) who noted that the response
function for an Unruh-Deitt detector is determined by the Fourier transform
of the autocorrelation function of the quantum �eld evaluated at points on
the detector worldline, and this transform is what statisticians recognize as
the power spectrum of noise or �uctuations of a stochastic process.37 As Can-
delas (1980) puts it, an Unruh-DeWitt detector is a ���uctuometer�rather
than a particle detector and, therefore, contains information both about the
�uctuations of the �eld and the motion of the box [detector]� (p. 2198).
Thus, insofar as a Unruh-DeWitt detector can be said to be detecting X, a
generally applicable (i.e. for arbitrary detector motion ~x(�)) is �the noise or

36The absence of �rotating particles� is no surprise since the positive norm rotating
modes are just the positive norm Minkowski modes transformed to rotating coordinates.
37In the statistics literature this is called the Wiener-Khinchin theorem; see Papoulis

(1991, Sec. 10. 3).
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�uctuations in the Minkowski vacuum.�
Returning to the case of a Unruh-DeWitt detector at rest in a uniformly

rotating frame, two quite di¤erent attitudes towards what to count as the
Unruh e¤ect are possible. Insofar as the Unruh e¤ect is identi�ed with the
existence of an appropriate KMS state, there is no Unruh e¤ect in the o¢ ng
since, as noted above, the restriction of the Minkowski vacuum to the space-
time domain on which the rotating frame is de�ned is (presumably) not a
KMS state. On the other hand, those who take detector response to be the
key feature of the Unruh e¤ect may want to follow Bell and Leinaas (1987)
in speaking of a �circular Unruh e¤ect� (see also Leinaas 1999 and Levin
et al. 1993). Although the transition rate function _F (E) for the case of a
m = 0 �eld and spacetime dimension d = 4 does not have exactly Planckian
form, Bell and Leinaas conclude that �a physical system in circular motion
is heated by the vacuum �uctuations�(ibid., p. 488).
The logical extreme of the Bell-Leinaas line is to recognize a � ____

Unruh e¤ect�where the blank is �lled in with any type of non-inertial motion
since in every such case _F�0(E) > 0 for E > 0. A more conservative attitude
would be to limit the �lling for the blank to cases for which _F�0(E) has the
�nearly�thermal form, where some principled criterion of nearness must be
supplied. The most conservative attitude would be to limit the �lling for
the blank to cases where _F�0(E) has exactly thermal form. Presumably, this
conservative stance requires that the allowed detector motions are stationary
(and thus _F�0(E) is independent of � 0). Letaw and Pfautsch (1982) have
classi�ed the stationary motions for Minkowski spacetime and they found
six distinct classes: the three obvious cases consisting of inertial worldlines,
hyperbolic worldlines, and helical worldlines; and three less obvious cases
consisting of worldlines whose spatial projections are �semi-cubical parabo-
las�containing a cusp at which the direction of motion is reversed, worldlines
whose spatial projections are catenaries, and rotating worldlines uniformly
accelerated normal to their plane of rotation. Only in the case of hyperbolic
motion through the Minkowski vacuum of a m = 0 �eld and spacetime di-
mension d = 4 does _F (E) have an exactly thermal form (Letaw 1981, Rosu
2002). Thus, on the most conservative version of the detector approach, the
Unruh e¤ect in Minkowski spacetime does not generalize to non-hyperbolic
motions.
The above discussion focused exclusively on the Unruh-DeWitt detector.

But accepting the detector approach as the principal means of understand-
ing the Unruh e¤ect carries a responsibility to broaden the discussion beyond

34



the simple monopole detector. In the �rst place, there is a need to consider
extended detectors. The idealization involved in the monopole detector con-
tains an inherent tension: the probe of the �eld is supposed to trace out a
classical worldline; but by the uncertainty principle this idealization is incon-
sistent with a thoroughgoing quantum treatment. Some of the complications
that can arise for detectors consisting of multilevel atoms and heavy ions are
discussed respectively in Marzlin and Audretsch (1998) and Mur and Kar-
nakov (1998). And even for idealized in�nitesimal point detectors there is a
need to investigate couplings to the �eld that go beyond the simple linear
coupling of the Unruh-DeWitt detector. An example of what such investi-
gations hold in store is given by Hinton�s (1983, 1984) analysis of detectors
that couple to a m = 0 �eld through derivatives of the �eld. He found that
in d = 2 Minkowski spacetime the spectrum of excitations for a derivatively
coupled detector in constant linear acceleration is the same as for an Unruh-
DeWitt detector. But he also found that the concurrence vanishes for d = 4
Minkowski spacetime where the derivatively coupled detectors can give non-
Planckian responses. Sriramkumur (2002) studied the response of monopole
detectors that are non-linearly coupled to the �eld through the n-th power of
the �eld. When d his even, the response of a such a detector in constant lin-
ear through the Minkowski vacuum is characterized by a Bose-Einstein factor
for all n; but when d is odd, the response is characterized by a Bose-Einstein
factor for n even and a Fermi-Dirac factor when n is odd.
In sum, if detector response is to hold the key to the Unruh e¤ect, then

either an argument has to be mounted to show that only a privileged class of
detectors is appropriate for probing the thermal properties of quantum �elds,
or else it has to be concluded that �the Unruh e¤ect� stands for di¤erent
e¤ects in di¤erent types of detectors.
Thus far the discussion of the detector approach to the Unruh e¤ect has

been con�ned to Minkowski spacetime, but obviously the response of accel-
erated detectors to vacuum states of quantum �elds on curved spacetimes
can be studied. The interested reader is referred to Candelas (1980), Sciama
et al. (1981), Birrell and Davies (1982), and Langlois (2006) for relevant
results. I will only mention two illustrative examples. First, for the Hartle-
Hawking vacuum state in Kruskal spacetime, the spectrum of excitations of
an Unruh-DeWitt detector whose worldline coincides with an orbit of the
Killing horizon �eld tends to a thermal spectrum at Hawking temperature
1=8�GM as r ! 1, which is in accord with the modular temperature as-
signment. Second, the response of an Unruh-DeWitt detector moving with
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uniform acceleration a in the vacuum of a conformally coupled m = 0 �eld

on d = 4 de Sitter spacetime is thermal at the temperature
1

2�

r
�

3
+ a2

(Langlois 2006). Attempts have been made to shortcut the details of the
detector analysis for de Sitter spacetime with a clever argument (Deser and
Levin 1997, 1999 and Jacobson 1998). The idea is to exploit the conformal
invariance of the �eld and the fact that d-dim de Sitter spacetime can be
embedded as a hyperboloid in (d + 1)-dim Minkowski spacetime. The two-
point functions which determine the response of a Unruh-DeWitt monopole
detector for the conformal vacuum for d = 4 de Sitter spacetime are same
as those induced by the Minkowski vacuum state of the d = 5 embedding
Minkowski spacetime. An observer who has uniform acceleration a4 in d = 4
de Sitter spacetime is seen to have uniform acceleration a5 in the d = 5 em-
bedding spacetime. The response of a detector carried by the latter observer
will be thermal (so the argument goes) at Unruh temperature T = a5=2�.

The desired result then follows from the fact that a5 =

r
�

3
+ a24. This clever

argument is undercut by the phenomenon of statistics reversal in Minkowski
spacetimes of odd dimension.

8 Conclusion

Of the three approaches to the Unruh e¤ect discussed above, the least help-
ful is what was called the particle approach which tries to rationalize the
Unruh temperature in terms of a thermal �ux of Fulling quanta.38 While
this approach retains some heuristic value, its value in settling foundations
issues is undercut by two fatal �aws in the idea that what is seen by an
observer in constant linear acceleration through the Minkowski vacuum can
be addressed by expressing the Minkowski vacuum vector in the Fulling Fock
space: �rst, because the Minkowski and Fulling representations are disjoint
so that no normal state (i.e. no state expressible as a density operator) of
one representation is a normal state of the other; and second because the
Fulling vacuum state is arguably not a physically realizable state.
The particle approach can be seen as a �awed attempt to prove a ther-

malization result of the form: when the Minkowski vacuum state is restricted
38Or a thermal �ux of Boulware quanta in the case of the generalized Unruh e¤ect for

Kruskal spacetime.
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to a Rindler wedge algebra it is thermal state at Unruh temperature. Where
the particle approach fails the modular theory approach succeeds in prov-
ing rigorous results that do not have to rely dubious appeals to the Fulling
representation. Or at least it succeeds if �thermal state�is identi�ed with a
KMS state with respect to the automorphism group generated by the Rindler
wedge isometries. But it is not easy to square the philosophy behind the mod-
ular theory approach with experimental measurements: the assignment of a
modular temperature to an observer requires that the observer can access
only a limited subalgebra of observables, which requires in turn a knowledge
of the entire past and future history of the observer; but barring backwards
causation, no laboratory registration taken at a �nite time is sensitive to what
the instrument does in the future. Moreover, the modular theory approach
does not always mesh with the deliverances of detectors. To mention two of
the discordances: the modular theory approach assigns a temperature equal
to Unruh temperature for an observer in constant linear acceleration through
the Minkowski vacuum of a m > 0 scalar �eld, but the noise of the vacuum
recorded by an Unruh-DeWitt detector is far from thermal (Planckian) for
large m; in the other direction, for an m = 0 scalar �eld, the spectrum of ex-
citations of an Unruh-DeWitt detector at rest in a uniformly rotating frame
is nearly thermal, but the modular theory approach does not apply to this
case.
The strength and weaknesses of the modular theory approach and the

detector approach are complementary. The former yields general, model-
independent results; but these results need to be related to experimental
measurements, something that modular theory by itself cannot accomplish.
The detector approach is attractive in that it ties the Unruh e¤ect directly
to measurable quantities; but it is highly model-dependent, with di¤erent
types of detectors with di¤erent couplings to the quantum �eld yielding di-
vergent verdicts about the response to various accelerated motions though
the vacuum.
The shortcoming and weaknesses of the three approaches mean that a

forced choice of one of them would result in a trilemma, each of whose horns
gores in a di¤erent way. But such a choice is forced only if one takes the def-
inite article in �the Unruh e¤ect�too seriously by insisting that the phrase
designates a single phenomenon characterizable in twenty words or less. In
ful�lling its role of linking thermal physics, relativity theory, and quantum
theory, it seems preferable to take �the Unruh e¤ect�as designating a fam-
ily of related but distinct phenomena. The di¤erences are less important
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than the similarities. The fact that similar results emerge from di¤erent ap-
proaches applied to a number of circumstances is a strong indication that a
fundamental principle of nature has been identi�ed, even if not completely
understood.
Needless to say, this eclectic reading of �the Unruh e¤ect�makes more

complicated a discussion of experimental tests of the Unruh e¤ect. I will
not attempt to provide details of the discussion here and simply refer the
interested reader to Rosu (2001) and Crispino et al. (2007) for overviews
of various experimental proposals. However, I do want to comment on the
overall shape of the discussion. Crispino et al. (2007) take the attitude
that �the Unruh e¤ect itself does not need experimental con�rmation any
more than free quantum �eld theory does� (p. 2). This would be a bit
over the top even if it were true that the Unruh e¤ect were a theorem of
QFT since every extant physical theory� even those as well tested as QFT�
can always use additional con�rmation, especially as concerns novel e¤ects.
Second, the review given here of the various approaches to the Unruh e¤ect
should make one leery of the notion that the e¤ect can be straightforwardly
derived from QFT without the use of additional physical hypotheses or novel
interpretative moves. Nevertheless, I do think the main point of Crispino et al.
(2007) regarding experimental tests is exactly on the mark; namely, typical
proposals for �experimental tests� of the Unruh e¤ect are misnamed since
they consist of showing how the e¤ect can be used to rationalize experimental
data. As an example, Bell and Leinaas (1987) were the �rst to suggest that
the observed depolarization of electrons in a magnetic �eld in accelerator
storage rings can be understood by treating spin as a thermometer that
measures the Unruh e¤ect (for discussions of this point of view see Akhmedov
and Singleton 2006, 2007, Leinaas 1999, Jackson 1999, McDonald 1999, and
Unruh 1998). The extreme version of this way of looking at the experimental
status of the Unruh e¤ect would consist in showing that the Unruh e¤ect is
required to maintain the consistency of a well-tested sector of QFT. Just such
an argument has been given by Vanzella and Matsas (2001) and Matsas and
Vanzella (2003), who claim that without the �Fulling-Davies-Unruh e¤ect�
inertial and accelerating observers would reach di¤erent conclusions about
the stability of protons. While I am not persuaded by their reasoning,39 the
general line of argumentation is important.

39In part because their argument relies heavily on the reality of Fulling quanta. But
perhaps the argument can be recast so as to avoid this feature.
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Although it is disappointing not to be able to supply simple and de�-
nite answers to the questions �What is the Unruh e¤ect?�and �What are
the prospects of experimental detection?�, I hope that the above discussion
shows, �rst, why simple and de�nitive answers are hard to come by and,
second, how the investigation of these questions casts light on some of the
most fundamental foundations issues at the interfaces of the main branches
of modern physics.
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Appendix

A. C�-algebras and von Neumann algebras40

A �-algebra is an algebra closed with respect to an involution A 3 A 7!
A� 2 A satisfying: (A�)� = A; (A + B)� = A� + B�; (cA)� = �cA� and
(AB)� = B�A� for all A;B 2 A and all complex c (where the overbar denotes
the complex conjugate). A C�-algebra is a �-algebra equipped with a norm,
satisfying kA�Ak = kAk2 and kABk � kAk kBk for all A;B 2 A, and is
complete in the topology induced by that norm. It will be assumed that all
the algebras of interest contain the identity I.
A representation of a C�-algebra A is a �-automorphism � : A ! B(H)

where B(H) is the algebra of bounded linear operators on a Hilbert space
H. The representation � is said to be cyclic if there is a vector j i 2 H
such that f�(A)j ig is a dense set. � is irreducible if there is no non-trivial
subspace of H that is invariant under �(A). Two representations � and �0
are unitarily equivalent i¤ there is a unitary map V : B(H�) ! B(H�0)
such that �0(A) = V �(A)V �1 for all A 2 A. A weaker notion of equivalence
of representations will be de�ned below once von Neummann algebras have
been introduced.
A state on an algebra A is a positive linear functional ' : A ! C such

that '(I) = 1. A state is said to be mixed if it can be written as a nontrivial
convex combination of other states; otherwise it is said to be pure. ' is
faithful to A if '(A�A) = 0 for A 2 A implies that A = 0. The basic result
on representations, called the Gelfand-Naimark-Segal (GNS) theorem, shows
that each state on a C�-algebra determines a cyclic representation: if A is
a C�-algebra and ' is a state on A, then there is a Hilbert space H', a
�-automorphism �' : A ! B(H'), and a cyclic vector j
'i 2 H' such that
'(A) = h
'j�'(A)j
'i for all A 2 A. The GNS representation is the unique
(up to unitary equivalence) cyclic representation. The GNS representation
�' determined by a state ' is irreducible just in case ' is pure.

40A comprehensive treatment of these topics can be found in Bratelli and Robinson
(1987, 1997) and Kadison and Ringrose (1991). De�nitions of the concepts used in the
body of the paper are recapitulated here.
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A von Neumann algebra M is a C�-algebra of bounded linear operators
acting on a Hilbert space H such that M is closed in the weak operator
topology or, equivalently, (M0)0 :=M00 =M, where �0�indicates the commu-
tant. (A sequence of bounded operators O1; O2; ::: acting on a Hilbert space
H converges in the weak topology to O just in case h 1jOj 2i converges to
h 1jO 2i for all j 1i; j 2i 2 H.) If � : A ! B(H) is a representation of
the C�-algebra A, the a¢ liated von Neumann algebra is the weak closure
of �(A) or, equivalently, the double commutant �(A)00. A normal state '
of a von Neumann algebra M acting on a Hilbert space H is a completely
additive state or, equivalently, a state that can be expressed as a density
matrix % on H via the trace prescription, i.e. '(A) = Tr(%A) for all A 2M.
A separating vector j i 2 H for a von Neumann algebra acting on H has
the property that Aj i = 0 implies that A = 0 for any A 2 M. In parallel
with the de�nition of a cyclic vector for a representation of a C�-algebra, a
vector j i 2 H for a von Neumann algebra acting on H is cyclic just in case
fMj ig is dense in H. A basic result is that a vector is cyclic for M just in
case it is separating forM0. A factor algebraM is one whose center M \M0

consists of multiples of the identity. The characteristic feature of a Type I
factor is that it contains minimal projectors. A Type III factor contains no
�nite projectors.
Quasi-equivalence of representations of C�-algebras is the relevant gener-

alization of the concept of unitary equivalence to reducible representations;
it means that the representations are unitarily equivalent up to multiplic-
ity. A basic result is that the quasi-equivalence of respresentations �1 and
�2 of A is equivalent to each of the following: (a) there is a �-isomorphism
� : �1(A)00 ! �2(A)00 such that �(�1(A)) = �2(A) for all A 2 A (Bratelli
and Robinson 1987, Theorem 2.4.26), and (b) every �1-normal state is a �2-
normal state and vice versa. �1 and �2 are said to be disjoint just in case no
�1-normal state is a �2-normal state and vice versa.
A Weyl algebra is a C�-algebra that encodes an exponentiated form of

the canonical commutation relations. For a construction of the Weyl algebra
for the Klein-Gordon �eld on a globally hyperbolic spacetime (de�ned in
Appendix B), see Kay and Wald (1991) and Wald (1994). A quasi-free state
on a this algebra has n-point functions that are sums of products of two-point
functions. The GNS representation of such a state is (unitarily equivalent to)
a Fock space representation with the GNS vector playing the role of the Fock
vacuum state. A rigorous algebraic procedure is available for quantizing the
Klein-Gordon �eld on a stationary globally hypberbolic spacetime (see Wald
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1994). Unfortunately, this procedure does not apply to Rindler spacetime
since it requires a (nowhere vanishing) timelike Killing �eld whose norm is
bounded away from zero. Thus, one must resort to the procedure described
below in Appendix C.

B. Relativistic spacetimes41

A relativistic spacetime M; gab consists of a di¤erentiable manifold M
(assumed for convenience to be C1) together with an everywhere de�ned
Lorentzian metric gab. The signature convention (+ ++�) is in e¤ect. This
de�nition includes, of course, Minkowski spacetime whereM = R4 and gab =
�ab (the Minkowski metric). A spacetime is said to be stationary if there exits
a (nowhere vanishing) timelike vector �eld �c satisfying the Killing condition
$�cgab = 2 r(a�b) = 0, where $�c is the Lie derivative with respect to �

c and
ra is the covariant derivative operator determined by gab. A timelike vector
�eld �c can be thought of as de�ning a reference frame, the trajectories of
the �eld being the worldlines of the points of the frame. An observer whose
worldline coincides with a trajectory of a stationary frame does not see any
change in the metric of spacetime as her �now�sweeps up her worldline. A
spacetime is said to be static if it admits a frame �c that is both stationary
and irrotational, i.e. �[arb�c] = 0. In a static spacetime it is always possible
to choose (locally) a coordinate system (x�; t) such that the line element
takes the form ds2 = g��(x

)dx�dx� � g44(x
)dt2, where �; �;  run over the

spatial coordinates.
A variety of causality conditions can be imposed on relativistic spacetimes

(see Wald 1984, Ch. 8). One of the strongest conditions is called global
hyperbolicity, which is equivalent to the condition that the spacetime admit a
Cauchy surface, i.e. a spacelike hypersurface that intersects every maximally
extended causal curve exactly once. An equation for a �eld propagating on
a globally hyperbolic spacetime is said to admit an initial value formulation
if appropriate initial data on a Cauchy surface �xes a unique solution of the
�eld equation. This is the case for a Klein-Gordon �eld whose quantization
is discussed below.
Let uc be the normed (ubub = �1) tangent �eld of a worldline. The

acceleration of the worldline is given by ac := _uc = ubrbu
c where the dot

denotes di¤erentiation with respect to proper time. Constant linear acceler-
ation means that _ac := ubrba

c = adadu
c. Di¤erentiating ubub = �1 gives

41The recommended reference here is Wald (1984).
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abub = 0. Using this fact, the condition of constant linear acceleration is seen
to imply that _adad = 0 and that the magnitude of acceleration a := (adad)1=2

is constant. When the acceleration is along, say, the x-axis of an inertial
coordinate system (x; y; z; t) of Minkowski spacetime, the worldline of an
observer in constant linear acceleration has the form of a hyperbola, i.e,
x2 � t2 = C > 0.
The reference frame de�ned by a timelike vector �eld �c is said to be Born

rigid if the expansion and shear of the �eld both vanish (see Wald 1994 for
de�nitions). This is equivalent to the condition that the distance between
in�nitesimally neighboring trajectories of �c, as measured at some instant in
the spacelike hyperplane orthogonal to one of them, is independent of the
instant chosen. Any stationary frame is Born rigid; but the converse need
not hold.

C. The Fulling quantization
In generally covariant form the minimally coupled Klein-Gordon equation

reads

gabrarb��m2� = 0 (C1)

where m is the mass of the �eld. A conformally coupled �eld obeys the
equation

gabrarb��
d� 2
4(d� 1)R��m2� = 0 (C2)

where R is the Ricci scalar and d is the dimension of the spacetime. For

the case m = 0 and d = 4, the resulting �eld equation gabrarb��
R

6
� = 0

is conformally invariant. In spacetimes (such as de Sitter spacetime) where
R is a nonnegative constant the conformally invariant equation is equivalent
to the equation for a minimally coupled �eld with mass m =

p
R=6. The

quantization for the minimally coupled �eld will be discussed here.
For a globally hyperbolic spacetime (C1) has a well-posed initial value

problem. Suppose now that the spacetime is not only globally hyperbolic
but static as well, and for sake of convenience suppose that there is globally
de�ned static coordinate system (x�; t). In such coordinates (C1) becomes

�@
2�

@t2
= g44

�
1p�g@�(

p
�gg��@��)�m2�)

�
� K� (C3)
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Since the di¤erential operator K contains only spatial derivatives, (C3) can
be solved by the separation of variables ansatz �(x; t) =  (x)�(t) to give

d2�(t)

dt2
+ !2�(t) = 0 (C4a)

K (x) = !2 (x) (C4b)

Since the spacetime is assumed to be globally hyperbolic it can be
foliated by a family �(t) of Cauchy surfaces. The operator K is formally
symmetric and positive on the Hilbert space L2(�; �d3x) of complex valued
square integrable functions on a Cauchy surface � 2 �(t), with the inner
product given by

< f; g >:=

Z
�

�f(x)g(x)�(x)d3x (C5)

where � = �g44p�g. Because it is independent of the choice of � from the
family �(t) this inner product is not indexed with �. Assuming that K has
a unique self-adjoint extension, the square root of this extension is a positive
linear operator, which serves as the single particle Hamiltonian relative to the
time t: One can choose an orthonormal basis f kg for L2(�; �d3x) consisting
of solutions to

K k = !2k k (C6)

The functions uk(x; t) = (2!2k)
�1=2 k(x) exp(�i!kt) and their complex con-

jugates u�k (called respectively the positive and negative frequency modes)
constitute a complete set of mode solutions in that a general solution to (C3)
can be written in the form

�(x; t) =

Z
~�

h
ak k(x) exp(�i!kt) + ayk 

�
k(x) exp(i!kt)

i d�(k)p
2!k

(C7)

The space of positive frequency solutions can be equipped with an inner
product, and the completion in this inner product gives the �one-particle�
Hilbert space H for the �eld. The state space for the �eld is constructed as
the symmetric Fock space F over H. That is, F is the completed direct sum
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1L
i=0

(S[
N
i

H]); where S[
N
n

H] denotes the symmetrized n-fold tensor product

of H and
N
0

H is stipulated to be C.

Needless to say, this procedure applies when the static coordinate system
is chosen to be an inertial coordinate system for Minkowski spacetime, and
the application of the procedure leads to the familiar Minkowski Fock space
FM and its vacuum vector j0Mi. (Di¤erent inertial systems produce unitarily
equivalent quantizations.) The procedure also applies to the Rindler coordi-
nates for the right Rindler wedge, leading to the Fulling Fock space FF and
its vacuum vector j0F i.
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Figure captions

Fig. 1 Rindler wedge regions of Minkowski spacetime; dashed lines indicate
null directions

Fig. 2 Bifurcate Killing horizons; sample orbits of the horizon Killing �eld
indicated by arrowed lines

Fig. 3 Kruskal space with external Schwarzschild spacetime embedded as a
wedge region R

Fig. 4 Milne coordinates for a future cone region of Minkowski spacetime
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