
Simplified derivation of the Hawking–Unruh temperature
for an accelerated observer in vacuum

Paul M. Alsinga)

Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87131

Peter W. Milonnib)

Theoretical Division (T-DOT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545

~Received 27 January 2004; accepted 23 April 2004!

A detector undergoing uniform accelerationa in a vacuum field responds as though it were
immersed in thermal radiation of temperatureT5\a/2pkc. An intuitive derivation of this result is
given for a scalar field in one spatial dimension. The approach is extended to the case where the field
detected by the accelerated observer is a spin 1/2 Dirac field. ©2004 American Association of Physics
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I. INTRODUCTION

Hawking1 predicted that a black hole should radiate with
temperatureT5\g/2pkc, whereg is the gravitational accel
eration at the surface of the black hole,k is Boltzmann’s
constant, andc is the speed of light~theHawking effect!. The
radiation results from the effect of the strong gravitation
the vacuum field. Shortly thereafter it was shown separa
by Davies and Unruh that a uniformly accelerated detec
moving through the usual flat space–time vacuum of c
vential quantum field theory responds as though it were
thermal field of temperature2–6

T5
\a

2pkc
, ~1!

wherea is the acceleration in the instantaneous rest fram
the detector~the Davies–Unruh effect!. We will refer to Eq.
~1! as theHawking–Unruh temperaturebecause its applica
bility to flat space–time accelerated detectors or to station
detectors situated outside the horizon of a black hole7 de-
pends only on the interpretation of the source of the ac
erationa.

The results of Hawking, Davies, and Unruh suggest p
found consequences for the merger of quantum field the
and general relativity and sparked intense debates over u
solved questions that are still being actively investigated
black holes are not really ‘‘black,’’ are naked singularities t
ultimate fate of black holes, or will the long-sought fusion
quantum mechanics and general relativity into a cohe
theory of quantum gravity prevent such occurrences?
quantum mechanical pure state is dropped into a black
and pure thermal~uncorrelated! radiation results, how doe
one explain the apparent nonunitary evolution of the p
state to a mixed state?

The intriguing consequence of quantum field theory
accelerated detectors indicated by Eq.~1! has not been de
rived in a physically intuitive way. Numerous explicit an
detailed calculations have appeared in the scientific litera
over the last 30 years for a wide variety of space–tim
However, even for the simplest calculation involving a sca
field ~bosons!, the intricacies of field theory technique
coupled with a forest of special function properties, ma
most derivations intractable for the nonspecialist. An inv
tigation of the flat space–time Davies–Unruh effect
1524 Am. J. Phys.72 ~12!, December 2004 http://aapt.org
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Dirac particles of spin 1/2~fermions! brings in a whole host
of new machinery, the least of which is the formulation
the Dirac equation in curvilinear coordinates~that is, in
curved space–time!. This formulation quickly goes beyond
the expertise of most nonexperts. However, in both the bo
and fermion cases, the beautiful and important results
Hawking, Davies, and Unruh can be stated quite simply:
a scalar field~bosons! a detector carried by an accelerat
observer detects a Bose–Einstein~BE! number distribution
of particles at temperatureT given by Eq.~1!, while for a
spin 1/2 field~fermions! a detector carried by an accelerat
observer detects a Fermi–Dirac number distribution at
same temperature.

The purpose of this paper is to present a simplified d
vation of Eq.~1! that is suitable for advanced undergradua
or beginning graduate students and elucidates the esse
underlying physics of the flat space–time Davies–Unruh
fect. Once the simplest features of a quantized vacuum fi
are accepted, Eq.~1! emerges as a consequence of tim
dependent Doppler shifts in the field detected by the ac
erated observer.

In Sec. II the essential features of uniform acceleration
reviewed, and in Sec. III we use these results to obtain
~1! in an almost trivial way based on the Doppler effect.
Sec. IV this simple approach to the derivation of the te
perature in Eq.~1! is developed in more detail. In Sec. V w
extend the previous calculations for scalar fields to spin
Dirac fields. We close with a brief summary and discussi

II. UNIFORM ACCELERATION

We will refer to an observer moving with constant veloci
in flat space–time as aMinkowski observerand refer to a
Rindler observer8 as one who travels with uniform acceler
tion in the positivez direction with respect to the former
Uniform acceleration is defined as a constant acceleratioa
in an instantaneous inertial frame in which the~Rindler! ob-
server is at rest. The accelerationdv/dt of the Rindler ob-
server as measured in the lab frame~that is, by the
Minkowski observer! is given in terms ofa by a Lorentz
transformation formula which relates the acceleration in
two frames9

dv
dt

5aS 12
v2

c2D 3/2

. ~2!
1524/ajp © 2004 American Association of Physics Teachers
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If we integrate Eq.~2! and takev50 at t50, we have
v(t)5at/A11a2t2/c2. The relationdt5dt/A12v2/c2 be-
tween the lab time,t, and the proper time,t, for the accel-
erated observer givest(t)5(c/a)sinh(at/c) if we take t(t
50)50. The velocityv of the accelerated observer as d
tected from the lab frame can be expressed in terms of
proper timet as

v~t!5c tanhS at

c D . ~3!

A straightforward integration of Eq.~3! using v(t(t))
5dz/dt5dz(t)/dt•dt/dt yields the well-known hyperbolic
orbit of the accelerated, Rindler observer in thez direction:8

t~t!5
c

a
sinhS at

c D , z~t!5
c2

a
coshS at

c D . ~4!

We will considera.0, that is, the observer accelerates in t
positivez direction.

III. INDICATION OF THERMAL EFFECT OF
ACCELERATION

Consider a plane wave field of frequencyvK and wave
vector K parallel or anti-parallel to thez direction along
which the observer is accelerated. In the instantaneous
frame of the observer, the frequencyvK8 of this field is given
by the Lorentz transformation

vK8 ~t!5
vK2Kv~t!

A12v2~t!/c2
5

vKF12tanhS at

c
D G

A12tanh2S at

c
D

5vKe2at/c ~5!

for K51vK /c, that is, for plane wave propagation alon
the z direction of the observer’s acceleration. For propa
tion in the2z direction,

vK8 ~t!5vKeat/c, ~6!

where K52vK /c. Note that for small values ofat, vK8
>vK(17at/c), the familiar Doppler shift. Equations~5!
and ~6! involve time-dependentDoppler shifts detected by
the accelerated observer.

Because of these Doppler shifts, the accelerated obse
sees waves with a time-dependent phasew(t)
[*tvK8 (t8)dt85(vKc/a)exp(at/c). We suppose therefor
that, for a wave propagating in the2z direction, for which
*tvK8 (t8)dt85(vKc/a)exp(at/c), the observer sees a fre
quency spectrumS(V) proportional to

U E
2`

`

dt eiVtei (vKc/a)eat/cU2

. ~7!

If we change variables toy5eat/c, we have
1525 Am. J. Phys., Vol. 72, No. 12, December 2004
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E
2`

`

dt eiVtei (vKc/a)eat/c
5

c

a E0

`

dy y( iVc/a21)ei (vKc/a)y

5
c

a
GS iVc

a D
3S vKc

a D 2 iVc/a

e2pVc/2a, ~8!

where G is the gamma function.10 Then, because
uG( iVc/a)u25p/@(Vc/a)sinh(pVc/a)#,11 we obtain

U E
2`

`

dt eiVtei (vKc/a)eat/cU2

5
2pc

Va

1

e2pVc/a21
. ~9!

The time-dependent Doppler shift detected by the acce
ated observer therefore leads to the Planck factor (e\V/kT

21)21 indicative of a Bose–Einstein distribution for scal
~boson! particles withT[\a/2pkc, which is just Eq.~1!.
We obtain the same result for a wave propagating in the1z
direction.

Note that the time-dependent phase can also be obta
directly by considering the standard nonaccelera
Minkowski plane wave exp@iw6#[exp@i(Kz6vKt)# and sub-
stituting Eq. ~4!: w6(t)5Kz(t)6vKt(t)5(vKc/a)
3exp(6at/c) with K5vK /c.12,13

IV. A MORE FORMAL DERIVATION

The derivation of the temperature in Eq.~1! leaves much
to be desired. We have restricted ourselves to a single fi
frequencyvK , whereas a quantum field in vacuum has co
ponents at all frequencies. Moreover, we have noted the
pearance of the Planck factor, but have not actually co
pared our result to that appropriate to an observer at rest
thermalfield ~that is, a field in which the average number
particles is given by a BE distribution for bosons or a Ferm
Dirac distribution for fermions at a fixed temperatureT).

To rectify these deficiencies, let us consider a mass
scalar field in one spatial dimension (z), quantized in a box
of volumeV:14

f̂5(
K

S 2p\c2

vKV D 1/2

@ âKe2 ivKt1âK
† eivKt#. ~10!

Here K56vK /c, and âK and âK
† are, respectively, the an

nihilation and creation operators for modeK (@ âK ,aK8
†

#

5dKK8 , @ âK ,aK8#50). We useˆ to denote quantum me

chanical operators. The expectation value^(df̂/dt)2&/4pc2

of the energy density of this field isV21(K\vK@^âK
† âK&

11/2#. For simplicity, we consider the field at a particul
point in space~say,z50), because spatial variations of th
field will be of no consequence for our purposes.

For a ~bosonic! thermal state the number operatorâK
† âK

has the expectation value (e\vK /kT21)21. Consider the
Fourier transform operator

ĝ~V!5
1

2p E
2`

`

dt f̂eiVt

5(
K

S 2p\c2

vKV D 1/2

âKd~vK2V! ~V.0!. ~11!
1525Paul M. Alsing and Peter W. Milonni



ox
m

th
p-
rv
q

ue

er

ob-
ver’s
the
ully

nck

of
i
hifts
irac

tain

ce-

nor
lar
be

me
inor

el-
n
me-
of

alar

q.

be-

us
The expectation valuêĝ†(V)ĝ(V8)& in thermal equilibrium
is therefore

^ĝ†~V!ĝ~V8!&5(
K

S 2p\c2

vKV D ^âK
† âK&d~V2V8!

3d~vK2V!

5(
K

S 2p\c2

vKV D 1

e\vK /kT21

3d~V2V8!d~vK2V!. ~12!

We go to the limit where the volume of the quantization b
becomes very large,V→`, so that we can replace the su
over K by an integral:(K→(V/2p)*dK.15 Thus

^ĝ†~V!ĝ~V8!&5\c2E
2`

`

dK
1

vK

1

e\V/kT21

3d~ uKuc2V!d~V2V8!

5
2\c/V

e\V/kT21
d~V2V8!. ~13!

Now consider an observer in uniform acceleration in
quantizedvacuumfield, that is, the particle free vacuum a
propriate for the accelerated Rindler observer. This obse
sees each field frequency Doppler-shifted according to E
~5! and ~6!, and so for him/her the operatorĝ(V) has the
form

ĝ~V!5
1

2p E
2`

`

dt eiVt(
K

S 2p\c2

vKV D 1/2

3@ âKe2 i Rtdt8vK8 (t8)1âK
† ei Rtdt8vK(t8)#

5
1

2p E
2`

`

dt eiVt(
K

S 2p\c2

vKV D 1/2

3@ âKei (eKvKc/a)e2eKat/c
1âK

† e2 i (eKvKc/a)e2eKvKt/c
#,

~14!

where eK5uKu/K. BecauseâKuvacuum&50, only the âK
†

terms in Eq.~14! contribute to the vacuum expectation val
^ĝ†(V)ĝ(V8)&. If we perform the integrals overt as before
and usê âKaK8

† &5dKK8 , we obtain

^ĝ†~V!ĝ~V8!&5S c

2paD 2S 2p\c2

V D UGS iVc

a D U2

3e2pcV/a(
K

1

vK
S vKc

a D i eK(V2V8)c/a

,

~15!

where we have used the fact that the sum overK vanishes
unlessV5V8. We show in the Appendix that the sum ov
K is (2Va/c2)d(V2V8), so that

^ĝ†~V!ĝ~V8!&5
\c2

pa UGS iVc

a D U2

e2pcV/ad~V2V8!

5
2\c/V

e2pVc/a21
d~V2V8!, ~16!
1526 Am. J. Phys., Vol. 72, No. 12, December 2004
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which is identical to the thermal result Eq.~13! if we define
the temperature by Eq.~1!.

Note that the expectation value^âKaK8
† &5dKK8 involves

the creation and annihilation operators of the accelerated
server and is taken with respect to the accelerated obser
vacuum, which is different from the vacuum detected by
nonaccelerated observer. This point is discussed more f
in Sec. VI.

V. FERMI –DIRAC STATISTICS FOR DIRAC
PARTICLES

We have considered a scalar field and derived the Pla
factor (e\V/kT21)21 indicative of Bose–Einstein~BE! sta-
tistics. We began with the standard plane-wave solutions
the form exp@i(Kz6vKt)# for the nonaccelerated Minkowsk
observer and considered the time-dependent Doppler s
as detected by the accelerated observer. For spin 1/2 D
particles we would expect an analogous derivation to ob
(e\V/kT11)21 indicative of Fermi–Dirac~FD! statistics.

Mathematically, the essential point involves the repla
ment iVc/a→ iVc/a11/2 in the integrals in Eqs.~7!–~9!,16

and the relation uG( iVc/a11/2)u25p/cosh(pVc/a).11

Physically, this replacment arises from the additional spi
nature of the Dirac wave function over that of the sca
plane wave. For a scalar field, only the phase had to
instantaneously Lorentz-transformed to the comoving fra
of the accelerated observer. For non-zero spin, the sp
structure of the particles must also be transformed,17 or
Fermi–Walker transported18 along a particle’s trajectory to
ensure that it does not ‘‘rotate’’ as it travels along the acc
erated trajectory. Ensuring this ‘‘nonrotating’’ condition i
the observer’s instantaneous rest frame leads to a ti
dependent Lorentz transformation of the Dirac bispinor
the form19 Ŝ(t)5exp(g0 g3 at/2c)5cosh(at/2c)
1g0 g3 sinh(at/2c), where the 434 constant Dirac matrices
are given by

g05S 1 0

0 21D , g35S 0 sz

2sz 0 D , ~17!

andsz5diagonal(1,21) is the usual 232 Pauli spin matrix

in the z direction. If Ŝ(t) acts on a spin up stateu↑&
5@1,0,1,0#T,20 Ŝ(t)u↑&5exp(at/2c)u↑&. Thus, for the spin
up Dirac particle we should replace the plane wave sc
wave function exp@iw(t)# used in Eq. ~7! by
exp(at/2c)exp@iw(t)#.21 This replacement leads toiVc/a
→ iVc/a11/2 in Eq.~8!, and therefore the result

U E
2`

`

dt eiVteat/2cei (vKc/a)eat/cU2

5
2pc

vKa

1

e2pVc/a11
.

~18!

If we compare Eq.~18! with Eq. ~9!, we note the crucial
change of sign in the denominator from21 for BE statistics
to 11 for FD statistics. We also note that the prefactor in E
~9! involves the dimensionless frequencyVc/a while in Eq.
~18! the prefactor involves the factorvKc/a ~the argument of
the exponential in the distribution function is still\V/kT
with the same Hawking–Unruh temperatureT5\a/2pkc).
This difference in the prefactor is no cause for concern,
cause in fact a single frequencyvK detectable by a
Minkowski observer is actually spread over a continuo
1526Paul M. Alsing and Peter W. Milonni
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range of frequenciesV detectable by the accelerated Rind
observer, with a peak centered atV5vK .22 This fact allows
us to replacevK by V in the final result.@This frequency
replacement is explicitly evidenced by the delta functi
d(vK2V) in Eqs.~11!–~16! in the comparison of the ther
mal and accelerated correlation functions.#

For the spin up Dirac particle, the more formal fiel
theoretic derivation of Sec. IV proceeds in exactly the sa
fashion, with the modification of the accelerated wave fu
tion from exp@iw(t)#→exp(at/2c)exp@iw(t)# and the use of
anti-commutators$âK ,aK8

† %5dKK8 for the quantum me-
chanical creation and annihilation operators instead of
commutators appropriate for scalar BE particles. For the
relation function we find

^ĝ†~V!ĝ~V8!&5
2\c/vK

e2pVc/a11
d~V2V8!, ~19!

the FD analogue of Eq.~16!.

VI. SUMMARY AND DISCUSSION

In the usual derivation of the Hawking-Unruh temperatu
Eq. ~1!,2–6 one solves the wave~or Dirac! equation for the
field mode functions in the Rindler coordinates Eq.~4!, and
then quantizes them. Because the hyperbolic orbit of the
celerated observer Eq.~4! is confined to the region o
Minkowski space–timez.0, z.utu bounded by the asymp
totest56z called theright Rindler wedge@with mirror or-
bits confined to theleft Rindler wedgedefined byz,0, uzu
.utu obtained from defining the accelerated observer’s co
dinates as t(t)52(c/a)sinh(at/c) and z(t)52(c2/
a)cosh(at/c)], it turns out that the vacuum detected by t
accelerated observer in say, the right Rindler wedge is
ferent than the usual Minkowski vacuum~defined for allz
andt) detected by the unaccelerated observer. The inequ
lence of these vacua~and hence the Minkowski versus Rin
dler quantization procedures23! is due to the fact that the
right and left Rindler wedges are causally disconnected fr
each other. Readers can easily convince themselves o
causal disconnectedness of the right and left Rindler wed
by drawing a Minkowski diagram in (z,t) coordinates and
observing that light rays at645° emanating from one wedg
do not penetrate the other wedge. Hence the Minkow
vacuum that the accelerated observer moves through app
to her/him as an excited state containing particles, and no
the particle free vacuum appropriate for the right Rind
wedge. The Bose–Einstein distribution with the Hawkin
Unruh temperatureT for scalar fields~Fermi–Dirac for Dirac
fields! is usually derived by considering the expectati
value of the number operatorâR

† âR for the accelerated ob
server ~in the right Rindler wedge! in the unaccelerated
Minkowski vacuum u0M&, that is, ^0MuâR

† âRu0M&
;@exp(\V/kT)61#21 ~with the upper sign for scalar field
and lower sign for Dirac fields!. The proportionality of the
particle number spectrum detected by the accelerated Rin
observer moving through the Minkowski vacuum to a th
mal spectrum is referred to as thethermalization theoremby
Takagi.5

In this work we have taken a slightly differen
viewpoint.24 For a scalar field, we first consider an unacc
erated Minkowski observer in a thermal state and find t
the expectation value of a field correlation function is p
1527 Am. J. Phys., Vol. 72, No. 12, December 2004
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portional to the Bose–Einstein distribution. We then consi
the calculation of this correlation function again, but th
time for an accelerated observer in his particle free Rind
vacuum25 state u0R&, such that for a single mode
^0RuâRâR

† u0R&51. The new feature is that from his local st
tionary perspective, the accelerated observer detects
Minkowski frequencies~arising from the the usual plan
waves associated with Minkowski states! as time-dependen
Doppler shifted frequencies.

The derivation presented here shows why quantum fi
fluctuations in the vacuum state are crucial for the therm
effect of acceleration:̂ ĝ†(V)ĝ(V8)& is nonvanishing be-
cause the vacuum expectation^âKâK

† &Þ0. But there is more
to it than that, becausêâKâK

† & also is nonvanishing for an
observer witha50. For such an observer, however,

E
2`

`

dt eiVtei Rtdt8vK(t8)5E
2`

`

dt ei (V1vK)t

52pd~V1vK!

50 ~20!

for scalar particles, because bothV andvK are positive. In
other words, the thermal effect of acceleration in our mo
arises because of the nontrivial nature of the quant
vacuum and the time-dependent Doppler shifts detected
the accelerated observer. For Dirac particles, the esse
new feature is the additional spinor structure of the wa
function over that of the scalar plane wave. To keep the s
nonrotating in the comoving frame of the accelerated
server, the Dirac bispinor must be Fermi–Walker transpor
along the accelerated trajectory, resulting in an additio
time-dependent Lorentz transformation. Formally, this tra
formation induces a shifting ofiVc/a→ iVc/a11/2 in the
calculation of relevant gamma function-like integrals, lea
ing to the FD Planck factor.

In the following we briefly discuss the relationship of o
correlation function to those used in the usual literature
this subject and point out a not widely appreciated subtl
relating details of the spatial Rindler mode functions~which
we have ignored in our model! to the statistics of the noise
spectrum detected by the accelerated observer.

In our model, we have not motivated the use of the cor
lation function ^ĝ†(V)ĝ(V8)& aside from the fact that we
could calculate it for a nonaccelerated observer in a ther
field and for a uniformly accelerated observer in vacuum a
compare the results. It is easy to show that a harmonic os
lator with frequencyv0 and dissipation coefficientg, lin-
early coupled to the field Eq.~10!, reaches a steady-sta
energy expectation value

^E&}E
0

`

dVE
0

`

dV8
^ĝ†~V!ĝ~V8!&

~V2v02 ig!~V82v01 ig!
, ~21!

which offers some motivation for considerin
^ĝ†(V)ĝ(V8)&. In fact, it can be shown that̂ E&
5@e\v0 /kT21#21, which shows again that our accelerat
observer acquires the characteristics appropriate to being
thermal field at the temperatureT5\a/2pkc.

In an extensive review of the Davies–Unruh effe
Takagi5 utilizes the quantum two-point correlation~Wight-
1527Paul M. Alsing and Peter W. Milonni
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s
tion
man! function gW(t,t8)[^0Muf̂(t)f̂†(t8)u0M& to deter-
mine the power spectrum of the vacuum noise detected
the accelerated observer for a scalar field,

S~V![ lim
s↓0

È`

e2 iVt2sutugW~t!, ~22!

which is very much in the spirit of our calculation in Sec. I
Here the field operatorf̂(t) is expanded in terms of th
Rindler mode functions and involves the creation and an
hilation operators for both the right and left Rindler wedg
Takagi shows the remarkable, although not widely kno
result, that for a scalar field in a Rindler space–time of
mensionn, Sn(V); f n(V)/@exp(\V/kT)2(21)n#. For even-
dimensional space–times~for example,n52 as considered
in this work or the usualn54) Sn(V) is proportional to the
Bose–Einstein distribution function@exp(\V/kT)21#21, and
essentially reproduces our Eq.~16! @up to powers ofVc/a,
contained in the functionf n(V)]. However, for oddn,
Sn(V) is proportional to the Fermi–Dirac distributio
@exp(\V/kT)11#21. For Dirac particles the opposite is tru
namely for even space–time dimensionsSn(V) is propor-
tional to the FD distribution and for odd space–time dime
sionsSn(V) is proportional to the BE distribution. This cu
rious fact arises from the dependence ofSn(V) on two
factors in its calculation. The first is the previously me
tioned thermalization theorem, that is, the number spect
of accelerated~Rindler! particles in the usual nonaccelerat
Minkowski vacuum is proportional to the BE distributio
function for scalar fields and is proportional to the FD d
tribution function for Dirac fields. The second factor th
switches the form ofSn(V) from BE to FD depends on th
detailed form of the Rindler mode functions.5 Although the
trajectory of the accelerated observer takes place in 111
dimensions@the (z,t) plane#, the quantum field exists in th
full n-dimensional space–time, and thusSn(V) ultimately
depends on the form of the mode functions in the full spac
time. In space–times of even dimensions the number s
trum of Rindler particles in the Minkowski vacuum and th
noise spectrum of the vacuum fluctuations~that is, the re-
sponse of the accelerated particle detector! both depend on
the same distribution function, and these two effects of
are incorrectly equated.

In our simplified derivation we have bypassed this tech
cality by performing our calculations in 111 dimensions
~that is,n52). We have concentrated on the power spectr
of vacuum fluctuations as seen by a particle detector car
by the accelerated observer. We have shown that in 111
dimensions the spectrum of fluctuations is proportional to
Bose–Einstein distribution function for scalar fields and
the Fermi–Dirac distribution for spin 1/2 fields, with th
Hawking–Unruh temperature defined by Eq.~1!. The depen-
dence of the noise spectrum on these distribution function
ultimately traced back to the time-dependent Doppler sh
as detected by the accelerated observer as he/she m
through the usual nonaccelerated Minkowski vacuum.

We hope that the calculations exhibited here are su
ciently straightforward to give an intuitive understanding
the essential physical origin of the Hawking–Unruh tempe
ture experienced by a uniformly accelerated observer.

Suggested Problem. Discuss when the Hawking–Unru
temperature from Eq.~1! would become physically detec
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able by utilizing the expressiona5GM/r 2 for the gravita-
tional acceleration of a test mass at a distancer from a mass
M , and determineT at the surface of the earth, the Sun, a
a Schwarzschild black hole.
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APPENDIX: MODE SUM CALCULATION IN EQ.
„15…

If we convert the sum overK to an integral, we have, fo
K.0,

(
K.0

1

vK
S vKc

a D i eK(V2V8)c/a

5
V

2p E
0

`

dK
1

vK

3S vKc

a D i (V2V8)c/a

. ~A1!

We let x5 log(vKc/a) and write Eq.~A1! as

V

2pc E2`

`

dx e2 ix(V2V8)c/a5
Va

c2 d~V2V8!. ~A2!

The same result is obtained for the sum overK,0, so that
the sum over allK is (2Va/c2)d(V2V8).

a!Electronic mail: alsing@hpc.unm.edu
b!Electronic mail: pwm@lanl.gov
1S. W. Hawking, ‘‘Black hole explosions,’’ Nature~London! 248, 30–31
~1974!; ‘‘Particle creation by black holes,’’ Commun. Math. Phys.43,
199–220~1975!.

2W. G. Unruh, ‘‘Notes on black hole evaporation,’’ Phys. Rev. D14, 870–
892 ~1976!.

3P. C. W. Davies, ‘‘Scalar production in Schwarzschild and Rindler m
rics,’’ J. Phys. A8, 609–616~1975!.

4The literature on this subject is vast. For some articles directly relevan
the work presented here see, for instance, P. Candelas and D. W. Sc
‘‘Irreversible thermodynamics of black holes,’’ Phys. Rev. Lett.38, 1372–
1375 ~1977!; T. H. Boyer, ‘‘Thermal effects of acceleration through ra
dom classical radiation,’’ Phys. Rev. D21, 2137–2148~1980! and ‘‘Ther-
mal effects of acceleration for a classical dipole oscillator in class
electromagnetic zero-point radiation,’’29, 1089–1095~1984!; D. W.
Sciama, P. Candelas, and D. Deutsch, ‘‘Quantum field theory, horiz
and thermodynamics,’’ Adv. Phys.30, 327–366~1981!.

5An extensive review is given by S. Takagi, ‘‘Vacuum noise and str
induced by uniform acceleration,’’ Prog. Theor. Phys.88, 1–142~1986!.
See Chap. 2 for a review of the Davies–Unruh effect.

6N. D. Birrell and P. C. W. Davies,Quantum Fields in Curved Space~Cam-
bridge U.P., New York, 1982!.

7Note that in order for a detector to remain at a fixed location outside
horizon of a black hole, it must undergo constant acceleration jus
remain in place.

8W. Rindler, ‘‘Kruskal space and the uniformly accelerated observer,’’ A
J. Phys.34, 1174–1178~1966!.

9P. W. Milonni, The Quantum Vacuum~Academic, New York, 1994!, pp.
60–64.

10I. S. Gradshteyn and I. M. Ryzhik,Table of Integrals, Series, and Product
~Academic, New York, 1980!. We have used integrals 3.761.4 and 3.761
*0

`xm21 sin(ax)dx5@G(m)/am#sin(mp/2) and *0
`xm21 cos(ax)dx

5@G(m)/am#cos(mp/2) respectively, in the combination of the second plui
times the first. Taken together, both integrals have a domain of defini
a.0, 0,Re(m),1. In Eq. ~8! we havem5 iVc/a with Re(m)50. The
integrals can be regularized and thus remain valid in the limit Re(m)→0 as
1528Paul M. Alsing and Peter W. Milonni



s

s

ain
.

ru
le

of

ed
in

an

o
rs,
so
-
ee
w
hy
r-

-

or

av

s

g at

ccel-

state

e
is

. See

.
,’’

.
ler-

tion

n-

ies

the
t

ft
rver
ht
on-

m-
s

can be seen by adding a small imaginary part2 i ea/c, e.0 to the fre-
quencyV so thatm→m8[m1e and 0,Re(m8)5e,1 is strictly in the
domain of definition of the integrals. In the limit ofe→0 we have@G(m
1e)/am1e#ei (m1e)p/2→@G(m)/am#eimp/2 and thus obtain the same value
for the integrals as if we had just set Re(m8)50 initially. The equivalence
of these two approaches to evaluate the integrals occurs because the
dard integral form of the gamma functionG(z)5*0

`dt e2ztz21, Re(z).0
can be analytically continued in the complex plane and in fact rem
well defined, in particular, for Re(z)→0, Im(z)Þ0, which is the case in Eq
~8!. See for for example, J. T. Cushing,Applied Analytical Mathematics
for Physical Scientists~Wiley, New York, 1975!, p. 343.

11Reference 10, Sec. 8.332.
12Related, although much more involved derivations of the Davies–Un

effect based on a similar substitution can be found in L. Pringle, ‘‘Rind
observers, correlated states, boundary conditions, and the meaning
thermal spectrum,’’ Phys. Rev. D39, 2178–2186~1989!; U. H. Gerlach,
‘‘Minkowski Bessel modes,’’ibid. 38, 514–521~1988!, gr-qc/9910097
and ‘‘Quantum states of a field partitioned by an accelerated frame,’’40,
1037–1047~1989!. We can justify this substitution from the formw
5*km(x)dxm of the phase of a quantum mechanical particle in curv
space–time. See L. Stodolsky ‘‘Matter and light wave interferometry
gravitational fields,’’ Gen. Relativ. Gravit.11, 391–405~1979! and P. M.
Alsing, J. C. Evans, and K. K. Nandi, ‘‘The phase of a quantum mech
cal particle in curved spacetime,’’ibid. 33, 1459–1487~2001!, gr-qc/
0010065.

13A similar derivation in terms of Doppler shifts appears in the appendix
H. Kolbenstvedt, ‘‘The principle of equivalence and quantum detecto
Eur. J. Phys.12, 119–121~1991!. T. Padmanabhan and coauthors al
have derived Eq.~9! by similarly considering the power spectrum of Dop
pler shifted plane waves as detected by the accelerated observer. S
Srinivasan, L. Sriramkumar, and T. Padmanabhan, ‘‘Plane waves vie
from an accelerated frame: Quantum physics in a classical setting,’’ P
Rev. D 56, 6692–6694~1997!; T. Padmanabhan, ‘‘Gravity and the the
modynamics of horizons,’’ gr-qc/0311036.

14When we later convert a sum overK to an integral, we obtain the Lorentz
invariant measuredK/vK as a consequence of the 1/AvK in Eq. ~10!. The
use of this invariant measure eliminates the need to explicitly transf
the frequency term 1/AvK in Eq. ~14!, for instance.

15Because we use a one-dimensional model, the factorV/2p appears instead
of the more familiarV/(2p)3. In other works, our volumeV here is really
just a length.

16If we use the same gamma function integrals as in Ref. 10, we will h
for the Dirac casem5 iVc/a11/2, with Re(m)51/2 clearly in their do-
main of definition 0,Re(m),1.

17S. Weinberg,Gravitation and Cosmology~Wiley, New York, 1972!, pp.
365–370.

18C. W. Misner, K. S. Thorne, and J. A. Wheeler,Gravitation ~Freeman, San
Francisco, 1973!, Chap. 6, pp. 163–176.

19Reference 5, p. 101, and P. Candelas and D. Deutsch, ‘‘Fermion field
accelerated states,’’ Proc. R. Soc. London, Ser. A362, 251–262~1978!.
1529 Am. J. Phys., Vol. 72, No. 12, December 2004
tan-

s

h
r
the

i-

f
’’

K.
ed
s.

m

e

in

This result can be understood as follows. If the observer was travelin
constant velocityv in the positivez direction, we would Lorentz transform

the spinor in the usual special relativistic way via the operatorŜ(v)
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† , âR and
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