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The fields and self-force of a constantly

accelerating spherical shell

By Andrew M. Steane

Department of Atomic and Laser Physics, Clarendon Laboratory, Parks Road,

Oxford OX1 3PU, England.

We present a partial differential equation describing the electromagnetic potentials
around a charge distribution undergoing rigid motion at constant proper accelera-
tion, and obtain a set of solutions to this equation. These solutions are used to find
the self-force exactly in a chosen case. The electromagnetic self-force for a spherical
shell of charge of proper radius R undergoing rigid motion at constant proper accel-
eration a0 is, to high order approximation, (2e2a0/R)

∑∞

n=0(a0R)2n((2n− 1)(2n+
1)2(2n+ 3))−1, and this is conjectured to be exact.

Keywords: self-force, radiation reaction, hyperbolic motion

1. Introduction

The problem of self-force, and the related problem of radiation reaction, has a long
history; see Rohrlich (1997) for a brief review and Spohn (2004) for a longer survey.
It is currently studied both because it is important in the extreme physical condi-
tions now realised in experiments (Bulanov et al. (2011)) and because it continues
to raise questions about the consistency and correct treatment of electromagnetism
(Gralla et al. (2009); Cremaschini and Tessarotto (2011)).

Lorentz (1904, 1909), Abraham (1905), Poincaré (1905, 1906) and Schott (1912)
carried out pioneering work on the understanding of self-force and performed ap-
proximate calculations for a rigid spherical shell whose centre undergoes arbitrary
motion. They obtained the lowest order terms in a power series solution, expanded
in powers of the radius R of the sphere, its acceleration and derivatives thereof,
and combinations of all these. von Laue (1909) clarified and simplified the work
of earlier authors by expressing it in a manifestly Lorentz-covariant form, see eqn
(6.4). Dirac (1938) adopted a different strategy, starting from a manifestly covari-
ant Lagrangian, and reproduced this equation; it is now commonly known as the
Lorentz-Dirac or Abraham-Lorentz-Dirac (ALD) equation. To be precise, Dirac’s
version has a modified inertial term for reasons that we shall discuss below. The
ALD equation includes terms of order R−1 and R0, and neglects terms of order R
and above.

Nodvik (1964) brought arguably greater rigour to the derivation using the
Lagrangian formalism and presented the power series expansion to O(R2). Fur-
ther work has clarified the interpretation of the force and the associated energy-
momentum movements in the field, and has extended the calculation of the self-
force, such that the ‘linear’ contribution can be obtained exactly, in a beautifully
neat and well-behaved expression (eqn (6.5)). The word ‘linear’ here does not mean,
however, that all the contribution at order R1 is accounted for by this expression,
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since it neglects terms involving R multiplied by non-linear combinations of the ve-
locity or its derivatives (see Caldirola (1956), Yaghjian (1992) and Rohrlich (1999,
2000) for details).

Throughout this century-long period, the study of self-force has continued to
raise doubts and questions concerning the correct interpretation or application of
results. Many of these issues were helpfully clarified by Yaghjian (1992) and Rohrlich
(1965, 1990). For example, Yaghjian showed that there is no ‘preacceleration’ in
the classical electromagnetic theory of small charged bodies; its supposed existence
(discussed by authors too numerous to list) was based on a misunderstanding of the
approximations involved in the ALD equation. Numerous authors and textbooks
continue to assert that the ALD equation has pathalogical runaway solutions, but
this too is an artifact of its incorrect application, as we discuss in section 6, and
as Gralla et al. (2009) and Rohrlich (2001), among others, have commented. A
further, and different, source of confusion is the effect of Poincaré stresses in a
body undergoing acceleration.

To have a concrete result with no approximation, for a non-trivial case, remains
very helpful both for pedagogy and as a test case for more general but approximate
formulae. Most previous work has been devoted to the case of arbitrary motion, en-
deavouring to extend the set of available approximate results and understand them
better. The present work takes the complimentary path of restricting the motion
to a simple case, and solving it exactly. We find the electromagnetic self-force for a
spherical charged shell undergoing constant proper acceleration while maintaining
constant proper size and shape. To our knowledge this has not previously been
done. The method of calculation involves a useful general observation about the
electromagnetic potentials in the case of arbitrary bodies undergoing rigid hyper-
bolic motion.

2. Strategy

The classical electromagnetic contribution to the self-force for an arbitrary distri-
bution of charge, undergoing arbitrary motion, is

f self =

∫

(E+ v ∧B)ρ dV (2.1)

where ρ is the volume density of charge, the integral is taken over all space (though
of course it suffices to restrict it to the region where ρ 6= 0) at some instant of time t
in a chosen inertial reference frame, and the fields E(t, x, y, z), B(t, x, y, z) are those
produced at each point by the set of charges in question (owing to their previous
behaviour at some set of source events). Note that if ρ is everywhere finite, then
the fields are also finite and continuous, and furthermore the contribution to the
field at a given point (x, y, z) made by the charge within a distance d of that point
vanishes in the limit d → 0 (because the quantity of charge scales as ρd3 but the
fields of a point charge scale as 1/d2). Hence no ambiguity arises about whether the
integral above correctly excludes the non-physical idea of a source interacting with
itself: only pairwise interactions should be included, and only pairwise interactions
contribute to the integral.

In the case of a distribution of charge that is rigid, there must be further forces
acting (for example, the Poincaré stresses) and these further forces may be deemed
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‘internal’ and yet have a non-vanishing sum over the body. Hence the total self-force
includes both the electromagnetic part that is the main subject of this paper, and
a further part that we shall discuss in section 6. The non-vanishing contribution
from the ‘internal’ forces does not break Newton’s third law but rather is required
by it, since there is a continous transfer of momentum between the shell and the
surrounding electromagnetic field, mediated via the electric charge.

In the case of a spherical shell of charge, we treat a shell of finite thickness w, so
that the volume density of charge is finite, and then explore the limit w → 0, such
that the surface charge density σ = ρw remains finite. We shall consider a shell
which moves such that there exists a frame in which the whole shell is at rest at
some moment, so the v∧B term vanishes from the force. Let R be the inner radius
of the shell in such a frame (the shell being spherical in that frame), and assume
the charge density ρ is uniform between the inner and outer surfaces at r = R and
r = R + w. For a sufficiently thin shell, the field within the material of the shell
(where ρ 6= 0) can be approximated by the linear form

E(r) = E(R) +
s

w
(E(R + w)−E(R)) (2.2)

where E(r, θ, φ) is the field at radius r from the centre of the sphere, s = r−R is the
distance through the shell, and we suppressed explicit indication of the dependence
of the fields on polar angles θ, φ. Hence

fself =

∫ ∫

ρ
1

w
((w − s)E(R) + sE(R+ w))dsdS (2.3)

where dS is an element of surface. Carrying out the integration over s gives, in the
limit w → 0,

fself =

∫

σ
E− +E+

2
dS (2.4)

where E− = limǫ→0 E(R − |ǫ|) is the field on the interior surface of the shell, and
E+ = limǫ→0 E(R + |ǫ|) is the field on the exterior surface of the shell. In other
words, to calculate the self-force it suffices to use the average of these two fields.
This deals with the discontinuity in E in the limit w → 0. Now, we know from
Gauss’ law what the size and direction of this discontinuity is: its size is σ/ǫ0 and
its direction is normal to the surface. For a spherically symmetric case, σ is the
same everywhere over the shell and we have

E+ = E− +
σ

ǫ0
r̂. (2.5)

Since the contribution from σr̂ is radial and spherically symmetric, its integral gives
zero contribution to the self-force. Therefore we can also write

fself = σ

∫

E−dS = σ

∫

E+dS. (2.6)

In other words, one can use either the field on the interior surface or the field on
the exterior surface to calculate the self-force. For convenience, we will use the field
on the interior surface.
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4 Andrew M. Steane

3. Simple calculation of the lowest order approximation

Consider a particle undergoing hyperbolic motion in the x direction, so that relative
to some frame its position as a function of time is ys = zs = 0 and

xs(t) =
√

L2 + t2 (3.1)

where

L = 1/a0 (3.2)

is a natural distance scale set by the proper acceleration a0. The potentials and
fields of a point charge q undergoing such motion are easily calculated, see for
example Fulton & Rohrlich (1960), Eriksen & Gron (2000), Steane (2012). Adopt-
ing rectangular coordinates and c = 1, one finds the scalar and vector potentials
(Liénard-Wiechart potentials)

φ = Q
xδ − tζ

ζ(x2 − t2)
, Ax = Q

tδ − xζ

ζ(x2 − t2)
, Ay = Az = 0, (3.3)

where Q = q/4πǫ0 and

δ = L2 + x2 + y2 + z2 − t2, ζ =
√

δ2 − 4L2(x2 − t2). (3.4)

In the following we will only need the solution at t = 0, which is the moment
when the particle is at rest in the frame under consideration. At this moment one
finds the magnetic field is B = 0 and the electric field is (adopting now cylindrical
coordinates)

Ex = −4QL2(L2 + ρ2 − x2)/ζ3, Eρ = 8QL2ρx/ζ3. (3.5)

Now consider a spherical shell of charge undergoing rigid hyperbolic motion.
By rigid motion we mean motion such that, at any moment, there is an instan-
taneous rest frame in which all parts of the body are at rest, and the physical
dimensions of the body in each such frame are constant (i.e. the same in all succes-
sive instantaneous rest frames), see for example Steane (2012). Such rigid motion
has the property that once the initial conditions and the worldline of one particle
in the body are given, the worldlines of all other particles are fixed. For the case
of constant proper acceleration (i.e. hyperbolic motion) of one part of a body, the
resulting constraint takes a particularly simple form: every part of the body un-
dergoes constant proper acceleration, but with a proper acceleration varying with
distance from a plane normal to the acceleration. Such a body is at rest relative
to the well-known “constantly accelerating reference frame”; the special plane is a
horizon which can conveniently be placed at x = 0 by a suitable choice of origin.
The worldline of each part of the shell is given again by (3.1), but now we must
allow L to be chosen for each part such that that part comes to rest at the correct
position at t = 0. This is easily done: one sets L equal to the location of the part
at t = 0. For example, for a spherical shell of proper radius R centred at (L0, 0, 0)
one must use L = L0+R cos θ where θ is the azimuthal angle relative to the centre
of the shell and the x axis.
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Figure 1. Electric field lines in the xy plane, in the instantaneous rest frame, for a spherical
charged shell of radius R = 1/2 undergoing rigid hyperbolic motion along the x axis with
proper acceleration a0 = 1/L0 = 1.

The observation of the previous paragraph makes it possible to write down an
integral expression for the field at the centre of the shell. A moment’s thought about
the geometry leads one to conclude that the integrand is obtained from Eq. (3.5)
with the replacements L → xs, ρ

2 → R2 − (xs − L0)
2, x → L0, leading to

Ex(L0, 0, 0) =
Q

4πR

∫ L0+R

L0−R

∫ 2π

0

dφdxs

4xs
2
(

2L2
0 −R2 − 2L0xs

)

R3 (R2 + 4L0xs)
3/2

(3.6)

and Ey = Ez = 0. The integration is straightforward. One obtains

Ex(L0, 0, 0) =
Q

L2
0

(

−2

3

L0

R
+

2

15

R

L0

)

. (3.7)

To find the self-force of such a shell, to lowest order approximation, is now
extremely easy. One simply multiplies this expression by q:

fself = −2

3

e2

L0R
+

1

L2
0

O(R/L0) = −2

3

e2a0
R

+ O(a30R) (3.8)

where to reduce clutter we introduced e2 ≡ q2/(4πǫ0). To see that this expression
is accurate to lowest order, as claimed, argue as follows. The self-force is in fact
given by the either of the integrals in (2.6), of which we choose the first. The field
at the interior surface, E−, may be obtained from a Taylor expansion of the field
throughout the empty space in the interior of the shell, expanded about the point
(L0, 0, 0). One finds thatE− is given by Eq. (3.7) plus further terms forming a power
series in (xs − L0)/L0. Using the symmetry of the charge distribution, the linear
terms cancel in the calculation of the self-force, and the next contribution is at order
(R/L0)

2 compared to the first. In summary, the field is, to good approximation,
uniform throughout the interior (c.f. figure 1), and to find the self-force one simply
multiplies this uniform field by the total charge of the shell. Thus we obtain Eq.
(3.8). This is the simplest derivation of it of which I am aware.

4. The potentials

We now turn to the task of calculating the electric field, and hence the self-force,
exactly. We will obtain the field from the potentials via E = −∇φ − ∂A/∂t. In
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6 Andrew M. Steane

empty space ∇ ·E = 0, hence

∇2φ = − ∂

∂t
∇ ·A = −∂2Ax

∂x∂t
(4.1)

where we used (3.3) in the final step. This result is valid for the potentials of a
single constantly accelerating point charge, and since for a distribution of charge
the potentials simply add and the equation is linear, it remains valid for an arbitrary
distribution of point charges, each undergoing constant proper acceleration in the
x direction (not necessarily all having the same acceleration). Evaluating ∂Ax/∂t
for a single point charge using (3.3), one finds at t = 0,

∂Ax

∂t

∣

∣

∣

∣

t=0

=
Qδ

ζx2
=

φ

x
. (4.2)

It follows that the electric field can be obtained from

E = −∇φ− φ

x
x̂ (4.3)

and Eq (4.1) can be written

x2∇2φ+ x
∂φ

∂x
− φ = 0. (4.4)

This is a linear homogeneous second order differential equation for the potential
in free space. It may be regarded as a replacement for the Laplace equation; it
applies in the free space around a point charge undergoing hyperbolic motion in
the x direction.

Using the same argument concerning rigid motion as we presented after Eq
(3.5), we will now show that Eq (4.4) has a wider range of validity. Consider a
distribution of charge undergoing rigid hyperbolic motion in the x direction. Then
in the instantaneous rest frame, the total scalar potential at any field point (x, y, z)
is given by

φ(x, y, z) =

∫ ∫ ∫

dxsdysdzsρ(xs, ys, zs)φ̃(xs; x, y − yx, z − zs) (4.5)

where ρ is the charge density and φ̃ is the potential per unit charge obtained from
Eqn (3.3):

φ̃(L; x, y, z) =
L2 + x2 + y2 + z2

x[(L2 + x2 + y2 + z2)2 − 4L2x2]1/2
. (4.6)

Note that we are evaluating the potential quite correctly using the distribution of
charge at its ‘present’ location (t = 0), not the location it had at the source events,
because we can take advantage of the fact that we already know how to calculate
what contribution each source event makes to the potential ‘now’ (at t = 0) for the
simple type of motion under consideration.

The important property of Eq (4.5) for our purposes is that every source charge
presents a contribution that is calculated by substituting the same value for x into
the formula for φ̃, and therefore every contribution satisfies (4.4) with a common
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value of x, and therefore (4.4) applies to the net resulting φ (the one given by (4.5)).
Hence Eq (4.4) describes the potential in the free space around, or in cavities within,
any distribution of charge that is undergoing rigid hyperbolic motion. (In obtaining
it we have made a gauge choice that makes φ → 0 at positions far from any finite
charge contained in a finite region.)

The problem of finding the potential inside an accelerating spherical shell can
now be addressed by seeking a potential function φ that satisfies (4.4) and that
agrees with a suitable boundary condition.

(a) Solution of the differential equation

In order to solve (4.4), introduce another function V (x, y, z) ≡ φ/x. Then one
finds that V satisfies

x∇2V + 3
∂V

∂x
= 0 (4.7)

If V = V (x) (i.e. a solution with no dependence on y and z) this leads to a Cauchy-
type equation with general solution

V (x) = a0 + a1
1

x2
(4.8)

More generally, the equation is not readily separable, but we can look for solutions
of a form suitable to the type of problem we are treating. We would like solutions
which are non-singular at ρ = 0 and which have axial symmetry, so we try the
ansatz

V (x, ρ) =

N
∑

n=0

fn(x)ρ
2(N−n) (4.9)

where ρ = (y2 + z2)1/2 is the radial coordinate in a cylindrical coordinate system.
Substituting this ansatz into (4.7) and using ∇2ρn = n2ρn−2, one finds

N
∑

n=0

(xf ′′

n + 3f ′

n) ρ
2(N−n) + 4(N − n)2xρ2(N−n−1)fn = 0. (4.10)

Since this is to be satisfied at all ρ, we can set the coefficient of ρ2(N−k−1) equal to
zero:

xf ′′

k+1 + 3f ′

k+1 + 4(N − k)2xfk = 0. (4.11)

Integrating, we have

xf ′

k+1 + 2fk+1 = −4(N − k)2
∫

xfkdx (4.12)

which applies for values of k between 0 and N − 1. The coefficient of ρ2N in (4.10)
gives

xf ′′

0 + 3f ′

0 = 0. (4.13)
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1, 1/x2,

2ρ2 − x2, ρ2/x2
− 2 log x,

3ρ4 − 6ρ2x2 + x4, ρ4/x2
− 3x2

− 4(2ρ2 − x2) log x,

4ρ6 − 18ρ4x2 + 12ρ2x4
− x6, ρ6/x2

− 27ρ2x2 + 7x4
− 6(3ρ4 − 6ρ2x2 + x4) log x

Table 1. The first few solutions of Eq (4.7) having the form (4.9).

This has the general solution f0 = a0 + a1/x
2, which can be substituted into the

right hand side of (4.12) in order to find f1, and hence f2 and so on. Table 1 shows
the first few solutions found this way.

In the rest of this paper we will restrict attention to solutions having the form

fk(x) =
k
∑

m=0

ckmx2m (4.14)

where the ckm are constants and k ≥ 0. This restriction is merely for convenience:
one can expand V (x, ρ) for any given charge distribution in terms of any sufficiently
complete set of basis solutions, and this is one such set for our problem. Substituting
(4.14) into (4.12) we obtain

k+1
∑

m=0

2(m+ 1)ck+1
m x2m = −4(N − k)2

k
∑

m=0

ckm
x2(m+1)

2(m+ 1)
(4.15)

Hence

ck+1
m+1 =

−(N − k)2

(m+ 1)(m+ 2)
ckm (4.16)

and ck0 are undetermined constants to be found from boundary conditions. For
example, with N = 2 one finds c00 is undetermined, then c11 = −2c00 and c10 is
undetermined. These are in turn used to find c22 = (−1/6)c11 = c00/3 and c21 =
(−1/2)c10. Finally, c

2
0 is undetermined. For any given value of N we thus find a

solution involving a set of N + 1 undetermined constants, each of which multiplies
a polynomial function of x and ρ. The polynomial function which appears with the
factor cn0 is the one involving {cn0 , cn+1

1 , cn+2
2 , . . . , cNN−n}. To be precise, it is

∑N−n
m=0 c

(n+m)
m x2mρ2(N−n−m). By using the above recurrence relation, the terms in

the sum are easily found, and one obtains

Vn(x, ρ) =
n
∑

m=0

(−1)m

m+ 1

(

n

m

)2

x2mρ2(n−m) = ρ2n2F1

(

−n,−n, 2,−x2/ρ2
)

. (4.17)

where (
n
m) = n!/n!(n−m)! is a binomial coefficient and 2F1 is the hypergeometric

function. For n = 0 . . .∞ we thus obtain an infinite set of linearly independent
solutions of Eqn (4.7). The first few of these functions are shown in the left hand
column of table 1, in each case multiplied by (n + 1) to make the coefficients all
integer.
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The electric field given by these solutions is (using Eqn (4.3) and φ = xVn)

Ex,n = −x
∂Vn

∂x
− 2Vn = 2

n
∑

m=0

(−1)m+1

(

n

m

)2

x2mρ2(n−m) (4.18)

= −2ρ2n2F1

(

−n,−n, 1,−x2/ρ2
)

, (4.19)

and

Eρ,n = −x
∂Vn

∂ρ
= 2

n−1
∑

m=0

(−1)m+1n−m

m+ 1

(

n

m

)2

x2m+1ρ2(n−m−1/2) (4.20)

= −2nxρ2n−1
2F1

(

1− n,−n, 2,−x2/ρ2
)

. (4.21)

5. Interior field and self-force of the accelerating spherical

shell

We now apply the ideas of the previous section to the case of the spherical shell
of charge undergoing rigid hyperbolic motion. Without loss of generality, choose
distance units such that the centre of the shell comes to rest at x = 1 (this amounts
to setting L0 = 1 in Eqn (3.8)). Then the surface of the shell is at ρ2 = R2−(x−1)2.
By substituting this into (4.19) one finds the contribution to the electric field at
the (interior surface of the) shell for each of the potential solutions identified in the
previous section. For a uniformly charged spherical shell with unit total charge, the
contribution to the self-force is then given by

fself,n =
1

2R

∫ 1+R

1−R

Ex,n(x, ρ(x))dx = 2

n
∑

m=0

(−1)m+n+1

2m+ 1
R2m

(

n

m

)

(5.1)

= 2(−1)n+1
2F1

(

1/2,−n, 3/2, R2
)

. (5.2)

For example, the first few values of this expression are given by

1

2
fself,n = −1,

(

1− R2

3

)

,

(

−1 +
2R2

3
− R4

5

)

,

(

1− 3R2

3
+

3R2

5
− R6

7

)

, . . .(5.3)

To find the self-force of the shell, it remains to identify what linear combination
of these solutions matches the potential, and hence the field, in the interior of a
uniformly charged shell undergoing rigid hyperbolic motion. To find this we first
evaluate the potential on the axis of the shell, by performing the integral in (4.5)
for y = z = 0:

φ(x, 0, 0) =
1

2R

∫ 1+R

1−R

R2 + 2xs + x2 − 1

x
√

(R2 + 2xs + x2 − 1)2 − 4x2
sx

2
dxs (5.4)

=
|β−| − |β+|

4Rs2x
+

ix(R2 + s2)

4Rs3
log

[

s|β+|+ i(β+ − 2Rx2)

s|β−|+ i(β− + 2Rx2)

]

(5.5)

where s =
√
x2 − 1 and β± = (1 ± R)2 − x2. This function is plotted in figure 2

(note, the function is real since the argument of the log has unit modulus when s
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Figure 2. Electric field E (thick line) and potential φ (thin line) on the x axis for a sphere
of radius R = 1/2 with unit charge accelerating in the x direction with proper acceleration
a0 = 1/L0 = 1.

is real). For 1 − R < x < 1 + R (that is, for points inside the sphere), it takes the
form

φ(x, 0, 0) =
−R2 + x2 − 1

2Rx(x2 − 1)
+

x(R2 + x2 − 1)

4R(x2 − 1)3/2
tan−1

[

2
√
x2 − 1

2− x2

]

(5.6)

We will now find the potential throughout the interior of the spherical shell by
finding a function that satisfies (4.7) and that matches the known potential and
all its derivatives with respect to x at the point (x, y, z) = (1, 0, 0) (the centre of
the sphere). This may be compared with matching a boundary condition along
an infinite line, since for an analytic function, the value of the function and all
its derivatives at a point suffice to define the function along a line by Taylor ex-
pansion. Of course the potential given by the shell actually has a discontinuous
change in slope at x = 1±R, but this is irrelevant to the method. By using φ and
all its derivatives at one point we gain sufficient information to fix the potential
throughout the interior of the shell.

We employ the solution

V (x, ρ) =

N
∑

n=0

anVn(x, ρ) (5.7)

where Vn(x, ρ) is given by (4.17), the constants an are to be determined, and the
solution becomes exact in the limit N → ∞. We find the constants by writing down
the Taylor expansion of both V (x, 0) and φ(x, 0, 0) about the point x = 1, and
equating coefficients of powers of (x − 1). This gives a set of N + 1 simultaneous
equations for the an which can be solved by matrix inversion. For example, for
N = 2 one finds

a0 =
34

15R
+

122

105
R, a1 =

56

15R
+

88

35
R, a2 =

9

5R
+

9

7
R. (5.8)

The self-force is then given by

fself ≃
N
∑

n=0

anfself,n (5.9)
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where the expression becomes exact in the limit N → ∞ and for given finite N one
obtains an exact expression for the terms up to order R2N−3 (see appendix). The
above values for a0, a1, a2 when N = 2 yield, for example,

fself ≃ − 2

3R
+

2

45
R− 358

525
R3 − 18

35
R5 (5.10)

in which the first two terms are exact. Further details of the Taylor expansions and
the solution coefficients are given in the appendix. The end result is that the self-
force on the uniformly charged spherical shell undergoing rigid hyperbolic motion
is

fself =
2e2

RL0

∞
∑

n=0

(R/L0)
2n

(2n− 1)(2n+ 1)2(2n+ 3)
, (5.11)

where I have calculated this result for terms up to order R101, and I conjecture its
validity at all orders. This is the main result of this paper. At L0 = 1 and e2 = 1
the first few terms in this series are

fself ≃ − 2

3R
+

2

45
R+

2

525
R3 +

2

2205
R5 +

2

6237
R7 + · · · . (5.12)

It is remarkable that the result takes such a simple form. One expects a power
series in odd powers of R, but it is striking that the coefficients have such a simple
expression. The coefficients in the Taylor series for φ(x, 0, 0) are, by contrast, much
more complicated.

The lowest order terms in the expression (5.12) for fself can be found by hand.
The series expansion and matrix inversion method described above is essentially
simple if laborious; it can easily be executed in a computer algebra system such as
Mathematica. This is how the series up to order R101 was calculated. The problem
of finding the expression for an arbitrary coefficient in the series, and thus confirm-
ing the (eminently reasonable) conjecture that the result is valid at all orders, is
more difficult and remains open. As a further check, the field inside the shell was
calculated by direct numerical integration of the fields of a point charge given in
Eqn (3.5), and compared with the one obtained from equations (4.19) and (4.21),
multiplied by the coefficients an and summed. This confirms, to within numerical
precision, that one obtains the field correctly at points away from the x axis (as
well as on it).

Numerical integration was also used to check the overall result (5.11). The field
at the interior surface of the shell was obtained by calculating the field (numerically)
at four points near the surface and then extrapolating to the surface using a cubic
fit; this enables the singular behaviour to be avoided. The numerically-calculated
self-force is compared with the prediction (5.11) in figure 3. By fitting a polynomial
in R2 to the numerical calculation of Rfself , the first few coefficients in (5.11) were
confirmed to good approximation (one part in 109,6,3 for the term of order R−1,1,3

respectively). However the numerical calculation rapidly runs out of precision in
obtaining the higher order terms by this ‘brute force’ method, whereas the analytical
result is easy to obtain for many more orders.
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Figure 3. Top: self-force as a function of R, for L0 = 1, as calculated by numerical inte-
gration (points) and by eqn (5.11) (line). Bottom: the difference between the numerical
and analytical results.

6. Discussion

Equation (5.11) is the result of a fully relativistic calculation, and is believed to be
exact. It gives the spatial part of the self-four-force in the instantaneous rest frame.
The temporal part is zero in that frame. Since the resulting four-vector is parallel
to the four-acceleration, it may be written

Fself =
2e2

R
v̇

∞
∑

n=0

(Ra0)
2n

(2n− 1)(2n+ 1)2(2n+ 3)
(6.1)

where v is the four-velocity (in an index-free notation) and the dot signifies the
derivative with respect to proper time. The equation of motion of the spherical
shell of charge is

Fother + Fself = m0v̇ (6.2)

where Fother is the four-force applied to the shell by some other influence, which
must, in this case, take such a form that, when combined with Fself , it gives to the
shell the motion that has been assumed.m0 is the ‘bare’ rest mass of the shell—that
is, the rest mass which enters on the right hand side of the equation of motion of the

material of the shell itself. This does not include a contribution from the energy-
momentum density of the electromagnetic field sourced by the charge of this shell,
which is quite correct. To find out about the dynamics of the field sourced by the
shell, one can appeal to the conservation of energy-momentum which is perfectly
obeyed in classical electromagnetism. The force from the field on the charge (i.e.
the electromagnetic self-force fself) implies the presence of an equal and opposite
‘force on’ (i.e. rate of injection of momentum into) the electromagnetic field. Hence
the field sourced by the spherical shell must be acquiring energy-momentum at the
rate −Fself .

Now, we assumed that the motion of the shell was rigid. Therefore, the 4-force
Fother must both oppose the tendency of the electromagnetic force to explode or
otherwise deform the proper shape of the shell, and it must also provide the correct
amount of force to result in the assumed net acceleration of the shell. It makes

Article submitted to Royal Society



Fields and self-force of spherical shell 13

sense, therefore, to write

Fother = Fext + FP (6.3)

where Fext is provided by an external force-producing entity such as a rod pushing
on the sphere, and FP is deemed ‘internal’, it may be regarded as the integral of
the Poincaré stresses.

To clarify the separation into Fext, FP and Fself it helps to imagine a deliber-
ately artificial scenario. Consider a non-rigid latex balloon with a uniform coating
of charge attached to it by glue, and suppose that inside the balloon there is a
programable device which can push out or pull in the interior surface of the balloon
(the latex itself having negligible tension). We plan to push this balloon from the
outside using a wooden rod, so as to cause hyperbolic motion of its centre. Before
doing so, we first program the device to produce, starting from some preset starting
time, whatever forces are calculated to maintain rigid motion of the balloon, given
that it is going to be pushed externally by our rod. The internal device cannot,
of course, produce any arbitrary combination of forces but must respect Newton’s
third law. Therefore we shall have to plan for the external force to have a suitable
form in order to obtain a self-consistent solution. Once this is done, we can launch
the experiment. Then the three terms Fext, FP, Fself are provided by the rod, the
internal device and the electromagnetic field sourced by the balloon, respectively.

In this separation of forces, FP may or may not be called a self-force. From the
point of view of the surface of the balloon, FP is an ‘external’ force, i.e. one not
sourced by the rubber of the balloon’s surface, nor by the charge and its associated
electromagnetic field. However, from the point of view of an outside observer ob-
serving the sphere has a whole, FP is a self-force, because it contributes something
in addition to the force Fext that ‘the rest of the world’ is providing.

The assumed motion can also be obtained to good approximation in a less arti-
ficial scenario. For a very stiff sphere, for example one made of diamond and given
a uniform coating of charge, Fext could, for example, be the force from a uniform
external electric field applied in the x direction. Such an applied field will tend to
stretch the sphere (since it gives to all parts of the sphere the same acceleration
in the instantaneous rest frame, whereas we want the part momentarily at rest
at given x to have acceleration proportional to 1/x). The self-force is somewhat
larger at the back of the sphere, and therefore also tends to stretch the sphere. If
the stiffness of the sphere is sufficient to make this stretching negligible, then rigid
hyperbolic motion will result in a uniform applied electric field. Another way to
realize the conditions approximately is to hold the sphere fixed in a nearly-uniform
gravitational field.

In the limit of a small sphere, one expects to obtain the ALD equation

Fself ≃
2

3
e2
(

− v̇

R
+ v̈ − v̇

2
v

)

(6.4)

where we use the metric signature Tr(g) = +2 so v̇
2 = a20. The three terms on

the right hand side are called the inertial, Schott and loss (or radiation) terms,
associated respectively with the provision of four-momentum to the field bound
to the charge, its redistribution within the bound field, and the provision of four-
momentum to the radiated field. Hyperbolic motion is characterized by v̈ = v̇

2
v
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14 Andrew M. Steane

so exhibits a well-known balance between the last two terms. Hence we expect
Fself ≃ −(2/3)e2v̇/R, which is the first term (the one given by n = 0) in our series
(5.11). The next term in the series is of order Ra30 and is not accounted for in the
approximations leading to Eqn (6.4).

An aside on point-like particles. For the avoidance of all confusion, it should be
emphasized that the ALD equation is quite correct, and when used in the equation
of motion (6.2) it gives correct solutions with no pathalogical behaviour, within the
approximations it assumes. Those approximations include that the applied force
should not vary significantly on the timescale 2R (the time for light to cross the
sphere)—this gets rid of the ‘pre-acceleration’ phenomenon (see Yaghjian (1992)).
One must also insist that m0 ≥ 0, of course—this gets rid of the runaway solutions.
The introduction of negative mass into classical physics would produce pathalogical
predictions in all sorts of scenarios; the fact that it would do so here has nothing
particularly to do with electromagnetism. However, what one can correctly infer is
that the ALD equation only describes a small spherical shell if the ‘observed mass’,
defined bym = m0+2e2/3R, is larger than 2e2/3R. One cannot by this route obtain
an equation of motion for a pointlike particle with finite charge and finite observed
mass. In classical physics such an entity is simply impossible (it has infinite field
energy and infinitely negative bare mass); in quantum physics it is also impossible,
in the sense that a delta-function-like wavefunction is never achieved in practice.
Gralle et al. (2009) have shown how to obtain the equation of motion, in classical
electromagnetism, for a small object whose total mass and charge tend to zero in
a suitably smooth way as the size of the object tends to zero. They achieve this by
asserting energy-momentum conservation for the total stress tensor, thus making
the Lorentz force equation a derived not an axiomatic part of the theory (c.f. Steane
(2012) section 16.4). The ALD equation then emerges as the lowest-order correction
to the force on a finite-sized body; see their paper for details. The connection to the
present work is twofold. First, both here and in Gralle et al. the calculation avoids
unphysical (and mathematically dubious) properties such as infinite field energy.
Secondly, their method should reproduce our result to all orders; this would be a
useful further check (to all orders in R if possible, or failing that then to a few
orders).

Another important approximate expression for the self-force of a spherical shell
undergoing arbitrary rigid motion, (that is, relativistically rigid motion in which
the proper acceleration may vary) is (Caldirola (1956), Yaghjian (1992))

Fself ≃
2

3

e2

R

(

v(τ − τR)

τR
+

v(τ) · v(τ − τR)

τR
v(τ)

)

(6.5)

where v(τ) is the four-velocity at proper time τ and τR = 2R is the time taken for
light to cross the sphere. This result is more accurate than (6.4) in that it evaluates
a Taylor expansion for the field to all orders in the derivatives of v, but it still
makes a linear approximation in which all nonlinear powers of the acceleration and
its derivatives are neglected. In the instantaneous rest frame, the spatial part of
this equation gives the three-force

fself ≃
2

3

e2

2R2
v(τ − τR). (6.6)
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which for hyperbolic motion (v(τ) = tanh(a0τ)) leads to

fself ≃ e2
(

−2

3

a0
R

+
8

9
Ra30 + · · ·

)

. (6.7)

Comparing this with (5.11), we find that for hyperbolic motion Eqn (6.5) correctly
gives the inertial term but it should not be expected to, and does not, correctly give
the term of order Ra30, which is the leading term after the inertial term is accounted
for (in the special case of hyperbolic motion).

In an important and extensive paper, Nodvik (1964) gave a treatment of self-
force in electromagnetism using the calculus of variations to obtain covariant Euler-
Lagrange equations for a body undergoing relativistically rigid motion. He then
obtains a perturbative expansion for the self-force up to orderR2 in our terminology.
His general expression (eqns (7.21)-(7.24) of Nodvik (1964)) allows for rotation and
an arbitrary distribution of charge. In the case of a non-rotating spherical shell it
yields

F
Nodvik
self =

2

3
e2
{

−3

4

v̇

R
+ v̈ − v̇

2
v +R

[

2(v̇ · v̈)v + v̇
2
v̇ − 2

3

...
v

]

+
R2

3

[

v
(4) + (v · v(4))v − 2v̇2(v̈ − v̇

2
v)− 6(v̇ · v̈)v̇

]

}

+O(R3) (6.8)

where v
(n) = dnv/dτn. Applied to the case of constant proper acceleration, and

setting e2 = a0 = 1, this yields

F
Nodvik
self = − 1

2R
+

2

9
R+O(R3), (6.9)

which should be compared to our eqn (5.12). The two results are in agreement
for the even powers of R, but not for the odd powers. This is because eqn (5.12)
gives the contribution purely from the electromagnetic field sourced by the shell,
whereas (6.9) is the sum of this and the contribution from Poincaré stresses. This
fact is, however, less than clear in Nodvik’s presentation which lumps the self-
electromagnetic and the other part together. The same issue was already noted by
Dirac (1938) and is exhibited, for example, in the lowest order term (the inertial
term). Since the inertial term can be lumped together with the mass term in the
equation of motion and called ‘renormalisation’, this difference has no easily ob-
servable consequence. However, this should not be taken to mean that there is any
doubt about the calculation. The electric field predicted by Maxwell’s equations is
certainly the one we have calculated, and there is no need to abandon the Lorentz
force equation when calculating the force on a continuous distribution of charge;
it is the simplest equation consistent with energy-momentum conservation. There-
fore eqn (3.8) is also correct. In the method adopted first by Dirac and then by
Nodvik and many later workers, the rigidity of the charge distribution is accounted
for by including it as a constraint in the variational procedure, while insisting that
all equations are manifestly covariant. This means that when the electromagnetic
forces in the physical scenario do not on their own give the assumed motion (such
as rigid motion), the application of the constraint automatically gives rise to a fur-
ther force which, although it may have some other physical origin, such as a strong
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nuclear force, or the programmable device inside our imagined balloon, appears in
the equations as a modification of the force called ‘electromagnetic’. Having said
that, it is appropriate to remark that what one usually wants to know in practice
is the total self-force for a given rigid body, i.e. the sum Fself + FP in our notation,
and this is what Nodvik has provided.

Finally, in view of the fact that for hyperbolic motion v̈ = a20v and using v2 = −1,
we have v̈ · v = −a20. By repeatedly differentiating v̈ = a20v one finds

a2n0 = −v · v(2n) (6.10)

Hence another way to write Eqn (6.1) is

Fself =
2e2

R
v̇

∞
∑

n=0

−R2n
v · v(2n)

(2n− 1)(2n+ 1)2(2n+ 3)
. (6.11)

Appendix A. Series solution for the field

We would like to find the derivatives of φ(x, 0, 0) with respect to x at x = 1. This
amounts to finding the Taylor expansion of φ(x, 0, 0) about x = 1. To this end,
introduce h ≡ x− 1, then eqn. (5.6) can be written

φ(x, 0, 0) = φ−(h)R
−1 + φ+(h)R (A 1)

where

φ−(h) =
1

2(1 + h)
+ T (h), φ+(h) =

1

h(2 + h)

( −1

2(1 + h)
+ T (h)

)

(A 2)

with

T (h) =
h(1 + h)(2 + h)

4(h(2 + h))3/2
tan−1

(

2
√

h(2 + h)

1− h(2 + h)

)

. (A 3)

The first eleven terms in the Taylor expansions of φ− and φ+ are

φ
−
≃ 1−

h

3
+
2h2

5
−

46h3

105
+
29h4

63
−

547h5

1155
+
620h6

1287
−

21932h7

45045
+
5959h8

12155
−

204739h9

415701
+
72614h10

146965

φ+ ≃

1

3
−

7h

15
+
18h2

35
−

166h3

315
+
365h4

693
−

523h5

1001
+
3332h6

6435
−

56204h7

109395
+
117927h8

230945
−

164335h9

323323
+
342430h10

676039

To find the self-force, we use the form (5.7), choosing a finite value for N and
finding the coefficients an by matching the above Taylor series. To illustrate, we
display the working for the case N = 3. One finds the set of equations









1 −1/2 1/3 −1/4

1 −3/2 5/3 −7/4

0 −3/2 10/3 −21/4

0 −1/2 10/3 −35/4

















a0
a1
a2
a3









=
1

R









1

−1/3

2/5

−46/105









+R









1/3

−7/15

18/35

−166/315









.

The solution is

a0 =
298

105R
+

506R

315
, a1 =

752

105R
+

544R

105
, a(2) =

243

35R
+

37R

7
, a(3) =

16

7R
+

16R

9
.
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One can now find an approximation to fself by using these values in (5.9). One finds

fself ≃ − 2

3R
+

2R

45
+

2R3

525
− 466R5

735
− 32R7

63
. (A 4)

It is straightforward to perform a similar calculation at higher values of N . One
thus obtains both an increasingly accurate estimate of the self force, and also a
power series approximation to the electric field inside the spherical shell. The terms
in the power series for V (h, ρ) are correct up to order hkρp with k + p = N , and
consequently the terms in the power series for the electric field are correct up to
order hkρp with k + p = N − 1. Therefore the series for fself is guaranteed to be
correct up to order RN−2 (not N − 1 because each an coefficient involves a 1/R
term).

Comparing (A 4) with the expression (5.12) which was obtained using a higher
value of N so as to obtain a higher order approximation to the potential, we observe
that the solution with N = 3 has correctly reproduced the O(1/R) term and the
O(R) term as expected, and it has also given the O(R3) term correctly. Is this just
a coincidence? Perhaps not, because a similar observation can be made about the
O(R) term in eqn (5.10). By examining the results for values of N in the range 2 to
20, we found that the method at given N yields the self force correctly up to order
R2N−3. In other words it is surprisingly effective, converging more rapidly than was
expected. However I have not been able to discover why. This question might be
explored by expanding the potential directly in terms of the Vn functions, rather
than going via the polynomial series. That is one possible direction for future work.

We will finish by illustrating this point in its simplest form, which is found when
N = 2. The case N = 2, calculated as above by matching the Taylor series on the x
axis, leads to the following approximation for the x-component of the electric field:

Ex ≃
(

−2

3
+

8

15
h− 212

15
h2 +

104

15
ρ2
)

R−1 +
2

15
R (A 5)

whereas the correct power series expansion to this order is

Ex ≃
(

−2

3
+

8

15
h− 44

105
h2 +

8

105
ρ2
)

R−1 +
2

15
R. (A 6)

TheN = 2 approximation does not give the terms of order h2/R and ρ2/R correctly.
However, to find the self force we evaluate the field at ρ2 + h2 = R2 and then
integrate over h between −R and +R. The calculation using the correct expression
for Ex yields, for the coefficient of the term of order R in fself :

− 44

105
× 1

3
+

8

105
× 2

3
+

2

15
=

2

45
.

and the calculation using the N = 2 approximation to Ex yields

−212

15
× 1

3
+

104

15
× 2

3
+

2

15
=

2

45
.
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