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On a puzzle about bremsstrahlung as described by coaccelerated observers
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We consider anew some puzzling aspects of the equivalence of the quantum field theoretical description
of bremsstrahlung from the inertial and accelerated observer’s perspectives. More concretely, we focus on
the seemingly paradoxical situation that arises when noting that the radiating source is in thermal
equilibrium with the thermal state of the quantum field in the wedge in which it is located, and thus
its presence does not change there the state of the field, while it clearly does not affect the state of the field
on the opposite wedge. How then is the state of the quantum field on the future wedge changed, as it must
in order to account for the changed energy-momentum tensor there? This and related issues are carefully
discussed.
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I. INTRODUCTION

The topic of radiation by uniformly accelerated charges
has often been the source of much puzzlement and con-
fusion, particularly when considered in the light of the
equivalence principle (EP). Much of the confusion has
been removed by the realization that for observers coac-
celerating with the charge there are regions of space-time
that are inaccessible. In effect, in the classical context, it
has been shown that for an electromagnetic charge in
uniform acceleration, the classical radiation field, as de-
scribed by accelerating observers, is zero at every point in
the region that is accessible to them (known as the Rindler
wedge, R, see Fig. 1) [1]. This would then remove any
apparent contradiction between the EP and the known
bremsstrahlung. For both the inertial and accelerated ob-
servers there is radiation but, for the accelerated ones, such
radiation lies beyond the regime where the static descrip-
tion is valid.

In the quantum version of this situation the question is
posed in terms of emission of photons rather than the
evaluation of radiation fields. In fact, it was shown that
the standard bremsstrahlung when viewed from the point of
view of the accelerated observers—a point of view called
Rindler quantization— acquires a very particular interpre-
tation. Actually, as will be explained in more detail below,
the coincidence for the prediction of photon emission rates
between the inertial and accelerated descriptions makes
fundamental use of the Unruh effect [2], which states that
from an accelerated frame comoving with the charge, the
standard Minkowskian vacuum state corresponds to a ther-
mal state. Moreover, it is well known that for a detector
uniformly accelerating in the inertial vacuum the process
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for which the detector absorbs a particle from the bath (a
Rindler particle) as seen by a comoving (accelerating)
observer is equivalent to the emission from the detector
of a Minkowski particle as seen by an inertial observer [3].
Then from the point of view of an inertial observer the
accelerating charge emits particles while, from an accel-
erated viewpoint, the charge—which is static—will emit
and absorb Rindler particles to and from the bath.
However, we want to point out that there are articles in
the literature which disagree with this analysis [4–7].

The restriction of this effect to wedge R has been ana-
lyzed in Ref. [8], where it is shown that the emission rate of
photons with fixed transverse momentum in the inertial
frame coincides with the combined rate of emission and
absorption of zero-energy Rindler photons with the same
transverse momentum in the accelerated frame. Thus, this
result gives a clear notion of the physical equivalence
between inertial and accelerated descriptions of brems-
strahlung. However, and as is often the case in this field,
P
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FIG. 1 (color online). The geometry of Rindler space.
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the answer to one question brings in further puzzlement,
and the need to answer a further one.

The calculation mentioned above makes fundamental
use of the so-called zero-energy Rindler modes. The reason
is that for accelerated observers the charge is static and
thus it can only couple to modes of zero frequency with
respect to Rindler time. In fact, due to the expression of the
form 0�1 that appears in calculations involving zero-
energy particles in the analysis of Ref. [8], an introduction
is required, for the purpose of regularization, of a small
frequency of oscillation � for the source, which allows one
to work with finite energy modes and which at the end is
taken to 0. In that work the authors considered also the
question of whether or not an accelerated observer sees any
difference in the thermal bath due to the emission and
absorption of Rindler photons. They note that in the limit
of zero energy the transition rate from an n-photon state to
an �n� 1�-photon state and the rate of the inverse process
became equal, thus the accelerated charge leaves the ther-
mal bath undisrupted. From this one can conclude that the
source is in thermal equilibrium with the quantum field.
Then, from the point of view of an accelerated observer, in
R, there will be no difference between the initial state of the
field (the initial thermal state) and the state generated by
the interaction with the accelerating charge (note the anal-
ogy with the description of the situation in the classical
context that we explained above). Similarly, the state of the
field in the second Rindler wedge will remain the initial
thermal state, as that region could not possibly be, in any
way, influenced by what is going on in a causally discon-
nected region of space-time. We could think that this
conflicts with the fact that EPR influences are allowed
but this is misleading: when talking about the state in the
L Rindler wedge we mean the corresponding density ma-
trix and this could not change due to actions taken on the
right wedge for otherwise there would be operators per-
taining to the left wedge whose expectation values could be
used to determine what has occurred in the right Rindler
wedge. Nevertheless, it is clear that in wedge F (see Fig. 1)
there would be a detectable change in the state of the
field and, in particular, the expectation of the energy-
momentum tensor in this region should be different from
what it would have been if there were no interaction with
the charge. In effect, this change could be computed in an
inertial quantization of the field and would correspond to
the final state containing the Minkowski photons emitted
by the accelerated charge. On the other hand, the quantum
description of the state of the field as seen by the accel-
erated observer is given by the Unruh quantization scheme
[2,9]. In this description, the restriction to the L and R
wedges of both the Minkowski vacuum state and the state
resulting from the interaction with the charge is, in both
cases, a thermal bath, and thus it seems neither could
contain the information regarding what has changed in F.
The issue is then whether this situation can be analyzed in
the language appropriate to accelerated observers and how
084018
would, in that case, the information about the changed
situation in F be codified?

The fact that Unruh modes can be expressed by super-
positions of specific modes that extend distributionally to
the whole space-time (known as boost modes, see
Refs. [10,11]), opens the door to the analysis of issues
related to physical questions outside the double wedge,
and, in particular, in wedge F, carried out in the language
appropriate for accelerated observers. In this work, we
embark on such analysis for the case of a scalar field and
an accelerated scalar source, and analyze from the new
perspective the change in the expectation value of the
energy-momentum tensor operator when evaluated at
points in wedge F.

States in the Unruh quantization can be seen as states of
a composite system where each of the components is the
quantum field restricted to either wedges L or R. Then,
having the density matrix �̂ for a state, one can describe the
physics, for example, in wedge L (R) by tracing out in �̂
the right (left) degrees of freedom. From this procedure we
obtain a density matrix �̂L (�̂R) describing a state in wedge
L (R). It is well known that when a field observable Â is
localized in either L or R, then the expectation value of Â is
determined completely by �̂L or �̂R respectively. On the
other hand, when Â is localized out of the double wedge, it
is clear that its expectation value would not, in general, be
determined solely by information encoded in �̂L or �̂R.

There should exist some object containing this extra
information carried by the state which controls how left
and right parts combine which is the extra element
necessary for describing completely the state in all of
Minkowski space-time (MS). We identify this object as the
entanglement matrix. In the case of interest we were con-
cerned about the expectation value of the energy-
momentum tensor in the future wedge and it seemed
natural to expect its change to be encoded in the change
of the entanglement matrix. This was our initial assump-
tion, and the work was intended to see how exactly is such
information encoded in this case. As we will see this
expectation was mistaken and the answer in our case lies,
surprisingly, in �̂R. Precisely how this matrix codifies this
information will be elucidated through the rest of the
manuscript.

We want to stress that the main goal in our work is to
elucidate how the structure of the field state carries the
aforementioned information. However, from our consider-
ations we found that for the accelerated pointlike source
the change in hT̂��i between the initial Minkowski vacuum
state and the final state generated by the interaction is, after
taking the correspondent limit in the regulator, zero in
wedge R. Thus, for a comoving observer there is no
radiation flowing from the source. Similar analyses have
been done for accelerating detectors which conclude analo-
gous results [5–7] (see also [12,13]). Other more recent
works related to this issue are [14–17].
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Regarding the foundational basis of this work we must
point out that the issue of extending the Unruh quantization
outside the double wedge is somewhat subtle. What is very
well established in the literature is the restriction of global
states to the double wedge—for example, the restriction of
states to the wedge R is interpreted as the state seen by
accelerated observers which have available only the wedge
R—but, as far as we know, the extension of a state in the
Unruh quantization to the whole MS does not seem to be, at
this time, fully investigated. One important point concern-
ing this question is that Unruh modes are highly singular at
the asymptotes which are taken to coincide with the hori-
zon of the particular construction. Thus, the initial data
from which one builds up the (one particle) Hilbert space
in the Unruh quantization have restrictions at these asymp-
totes which can influence the solutions of the field equation
in wedges F and P (this possibility has been pointed out in
Refs. [10,11]). As we explained above, in this paper we
extend the usage of the Unruh description of the field to
address questions related to the physics in the wedge F. We
do this in the way that we consider is the most natural and
we find results that are physically consistent and which
coincide with what one would obtain working in the stan-
dard Minkowski quantization of the field as we show
explicitly in Appendix C.

The paper is organized as follows. In Sec. II we review
the main ideas of the Unruh quantization and specify our
notation. In Sec. III we explain our strategy for analyzing
the encoding of the information in the final state of the
field. We propose a particular decomposition of the density
operator of the state and use it to write an expression for the
change in the expectation value of T̂��. Nevertheless, the
particular form of the source representing an accelerating
particle is needed in order to obtain an explicit expression
for the final state and its density operator. In Sec. IV we
work out these ideas introducing a scalar accelerating
pointlike source with a particular regulator and build up
the S-matrix operator. In Sec. V we make the final calcu-
lations in order to obtain the change in hT̂��i and we
evaluate it in wedges R and F. From these results one
can see how the information of the physical change in F
is encoded. In Sec. VI we analyze the case of two different
sources accelerating in wedges L and R in order to get
more insight of the behavior of the density operator of the
respective final state. Finally, we end with some discus-
sions and the interpretation of the results in Sec. VII. In
order to carry out these steps it is important to have explicit
expressions of the space-time behavior of the Unruh
modes, which we present in Appendix A. The calculations
leading to our final results are, though straightforward,
very long. In Appendix B we give an explicit derivation
of the main formula in this work. In Appendix C we make
the same calculations as in Sec. V for the change in wedge
F but using, instead, the standard plane wave representa-
tion of the field and show that both results coincide.
084018
To eliminate unnecessary notation we shall work in two
dimensional Minkowski space; this will allow us to be
clearer without losing physical insight. As a matter of
fact, working with a scalar field in 2D with m � 0 is
operationally equivalent to working with the same field
in 4D and fixed traverse momentum k2

? � k2
x � k2

y, with
the identification m2 ! k2

? �m
2. In all this work we shall

work in units in which c � @ � 1 and signature � � .
II. UNRUH QUANTIZATION

Here we give the main ideas of the Unruh quantization
for the benefit of the reader (for a thorough exposition see
[9]). All the comoving observers to a particle moving with
uniform proper acceleration a � �a�a��1=2 have world
lines of the form

t � � sinh�a�� z � � cosh�a��; (2.1)

where 0< � <1 and � is the proper time of the observer,
�1< �<1. Equation (2.1) can be used to give coordi-
nates �, � to wedge R, which is known as Rindler space-
time. In these coordinates, the Minkowski metric becomes
ds2 � ��2d�2 � d�2.

The Unruh quantization consists in applying standard
methods of frequency splitting quantization using as
Killing field the time translation generator associated to
the accelerated time � [2,9]. For the particular case of a
scalar field one takes a pair of families of solutions of the
Klein-Gordon (KG) equation ���m2�� � 0, which have
positive frequency with respect to (w.r.t.) the Rindler time
� in wedges L and R while being zero in the opposite
wedge, respectively. These are called Unruh modes. One
possible way to construct this set of modes is by introduc-
ing boost modes [10,18], which are defined as a superpo-
sition of plane waves

B!�x� �
1

23=2�

Z 1
�1

e�im�t cosh��z sinh��e�i!�d�; (2.2)

where �1<!<1. The modes B! have positive (nega-
tive) frequency w.r.t. the boost parameter � in wedges L
and R whenever !> 0 (!< 0). Note that in dividing the
modes into positive and negative frequency modes one is
dropping out the! � 0 mode which could, in principle, be
a source of trouble [10].

Unruh’s idea [2] for giving a field quantization associ-
ated to accelerated observers consists in constructing a set
of modes R! and L! from combinations of boost modes
and their conjugates such that they are positive frequency
w.r.t. accelerated time � in wedges R and L respectively
and zero on the opposite wedge. These modes are defined
by
-3
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R!�x� �
1�����������������������

2 sinh��!�
p �e�!=2B!�x� � e��!=2B��!�x�	;

(2.3a)

L!�x� �
1�����������������������

2 sinh��!�
p �e�!=2B�!�x� � e

��!=2B�!�x�	;

(2.3b)

where !> 0. Note that, since they are defined in terms of
boost modes, these definitions are global. These equations
can be inverted:

B!�x� �
1�����������������������

2 sinh��!�
p �e�!=2R!�x� � e��!=2L�!�x�	;

(2.4a)

B�!�x� �
1�����������������������

2 sinh��!�
p �e�!=2L!�x� � e

��!=2R�!�x�	:

(2.4b)

Note that in general, Eq. (2.2) cannot be interpreted as
the definition of a function. In particular, it is divergent at
the origin, �t � 0; z � 0� and thus, cannot stand as a global
solution to the KG equation if it is considered as a function.
However, one can avoid these problems if one considers
these quantities as distributions, thus requiring the smear-
ing with suitable test functions. Therefore, we will consider
this set of modes, as well as Unruh modes [cf. Eqs. (2.3)],
as distributions when constructing the quantum field. Note
that this is a consistent procedure as the field �̂�x� has, by
itself, a distributional character. For the purposes of this
work, we will consider only test functions of compact
support in M.

Unruh modes, Eqs. (2.3), and their conjugates form a
complete set in the Klein-Gordon inner product of the
space of solutions to the Klein-Gordon equation in
Minkowski space-time. A one particle Hilbert space of
the quantization of the scalar field restricted to wedge R,
H R, can be constructed by Cauchy completing the space
of R! modes. Analogously, for the L! modes one obtains a
one particle Hilbert space H L. The one particle Hilbert
space of the Unruh quantization is given by H U �H L 

H R [9] and the space of states by F �H U� � F �H R� �
F �H L�, where F �H � represents the Fock space associ-
ated to the Hilbert space H .

The field operator in the Unruh quantization takes the
form

�̂�x� �
Z 1

0
d!�R!�x�1̂L � r̂! � L!�x�l̂! � 1̂R � H:c:�;

(2.5)

where r̂! and l̂! are annihilation operators in F �H R� and
F �H L� respectively. It can be written in the more compact
form �̂�x� � �̂L�x� � 1̂R � 1̂L � �̂R�x� where
084018
�̂ L�x� �
Z 1

0
d!�L!�x�l̂! � H:c:	;

�̂R�x� �
Z 1

0
d!�R!�x�r̂! � H:c:	

(2.6)

are the field operators in the partial quantizations on L and
R respectively. Whenever there is no confusion, we shall
denote by �̂L�x� the operator �̂L�x� � 1̂R and the analo-
gous for �̂R. Clearly, these operators commute,
��̂L�x�; �̂R�x

0�	 � 0, reflecting the fact that the regions L
and R are causally disconnected.

We choose an orthonormal basis for F �H R� whose
elements are R states jJiR which have a definite number
of Rindler particles nJ. Let J!m

be the number of particles
in this state whose frequencies are centered in the particu-
lar mode !m, m � 0; 1; . . . . Then, the state jJiR is defined
by the set

J � fJ!0
; J!1

; . . . ; J!m
; . . .g;

X1
m�0

J!m
� nJ: (2.7)

Note that only a finite number of the J!m
are � 0. State

jJiR has Rindler energy E�J� �
P
1
m�0 !mJ!m

; this is the
state’s energy associated with the boost Killing field. The
set of all jJiL � jKiR where J and K are of the form of
Eq. (2.7) is a basis of F �H U�. Any state jgi 2 F �H U�
can be cast in terms of this basis, and it is defined by a
particular function G�J; K�:

jgi �
X
J;K

G�J; K�jJiLjKiR: (2.8)

Here, the sums run over the space of all possible particle
distributions J and K, that is, they are of the form

P
J �Q

1
m�0

P
1
K!m�0 . Entangled states in the Unruh quantization

(those which cannot be expressed in the form jg1iL �
jg2iR) have nontrivial correlations between left and right
states. The inertial Minkowski vacuum, j0Mi, is an en-
tangled state in the Unruh quantization:

j0Mi �
X
K

e��E�K�jKiLjKiR

�
X
J;K

e��E�K�	�J; K�jJiLjKiR: (2.9)

Given that j0Mi is an entangled state, when restricted to the
Rwedge, it fails to be a pure state [19] and its description is
in terms of a density matrix. The norm of the Minkowski
vacuum is now given by

h0M j 0Mi �
Y1
m�0

1

1� e�2�!m
: (2.10)

The fact that this well-behaved state in the plane wave
quantization has an infinite norm in the Unruh quantization
is a consequence of the nonunitarily equivalence between
these quantizations. Recall that different, even not unitarily
-4
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equivalent, representations of the field algebra are ‘‘physi-
cally equivalent’’ in the sense of Fell’s theorem (see
Ref. [9]) and thus one expects to obtain the same physical
information from the computation of expectation values in
either the inertial or the Unruh scheme, provided that the
Unruh quantization is a faithful representation of the field
algebra.1 We can say that our results point in this direction
since, as we shall see in Sec. Vand Appendix C, we obtain,
in both quantization schemes, the same physical result.

We note that recently there has been some controversy
about the Unruh quantization. Narozhny et al. [10] claim
that the ‘‘Unruh quantization is not a valid quantization
scheme for all of MS.’’ To support this they argue, in
particular, that the expansion of �̂ in Unruh modes,
Eq. (2.5), does not exhaust all the degrees of freedom of
the quantum field in Minkowski space. This is so, they say,
because when ‘‘evaluating at the origin,’’ boost modes have
a singularity when ! � 0 and thus this mode has to be
excluded. They assert that without this mode, the remain-
ing set of boost modes loses the property of being complete
and then lacks the possibility of spanning every (one
particle) state of the field. (Ref. [10]). On the other hand,
Fulling and Unruh [11] have argued against this claim.
They state that since the mode expansion is an integral
(Lebesgue measure) and thus one mode is of zero measure,
the omission of the ! � 0 mode is quite harmless in the
mode expansion of the field and the Unruh quantization is
valid for expressing the restrictions to L [ R of global MS
states. In this work we adhere to the position of Fulling and
Unruh for the following reasons. As we have said above,
boost modes should be considered as distributions and
thus, evaluating them at one single point has no meaning.
Moreover, we recall that the field itself evaluated at one
point has no meaning either; the quantum field is a distri-
butional object and only its convolution with a test function
is defined.

In their reply, Fulling and Unruh forcefully argue that
the Unruh quantization scheme is valid on the double
wedge L [ R but, however, they indicated that they are
not fully confident of the possibility of extending an Unruh
state to all of MS ([11]). Let us be more precise on this
issue. The initial data for the Unruh quantization consist
of smooth functions of compact support on both
Cauchy surfaces �R and �L. For definiteness, take �R �
f�0; z� j z > 0g and �L � f�0; z� j z < 0g. For these Cauchy
surfaces, functions of compact support would be zero at the
origin (0,0). Nevertheless, a full MS quantization should
consider the set of all C10 initial data over the Cauchy
surface

�M � �L [ �R [ f0g; (2.11)

which includes, of course, functions which are not zero at
the origin. In this respect, Fulling and Unruh [11] note that
1We thank Hanno Sahlmann for pointing this out.
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‘‘The treatment of initial data at the origin is mathemati-
cally subtle, and data at that point may influence the
solution of the field equation in regions F and P.’’ This
issue is quite relevant for our work. Although we are not
giving any formal proof of the fact that the Unruh quanti-
zation can be extended to all of MS, we show that at least
for the particular case we study, the Unruh quantization
provides the same physical results as the standard flat space
quantization. This we take as an indication that both quan-
tum descriptions are generally equivalent.
III. POSING THE PROBLEM: THE MATRIX OF
ENTANGLEMENT

In this work we shall be concerned with the difference
between the initial vacuum state and the final state which
results from the initial state and the interaction of the
classical scalar source in uniform acceleration. At the
same time we are interested with the restriction of these
sates to the different regions and thus we shall employ the
language of density matrices as indicated by the posing of
the questions raised in the introduction.

The trajectory of this source is a branch of a hyperbola
lying in one Rindler wedge of space-time which we choose
to be R. The final state of such interaction can be obtained
perturbatively by the application of the respective S-matrix
operator to the inertial vacuum state (this operator will be
constructed in detail in Sec. IV):

jfi � Ŝj0Mi: (3.1)

Recall from Sec. II that the L! modes of the field are zero
when evaluated in wedge R and thus the scalar source can
only excite R modes of the field. Then, for this case the Ŝ
operator takes the form

Ŝ � 1̂L � ŜR: (3.2)

On the other hand, expressed in the Unruh quantization
scheme, state jfi takes the form

jfi �
X
J;K

F�J; K�jJiLjKiR: (3.3)

All the information of the state jfi is encoded in the
function F�J; K�, and hence one should be able to read
from the change in this function, �F � F�J; K� �
Fvac�J; K�, the change in the energy-momentum tensor
due to the effects of the source. In particular, this change
should, at the same time, codify the fact that no change is
produced inside the wedge R and that a dramatic change
occurs in wedge F. Nevertheless, this information is more
clearly encoded in the change in the density matrix of the
state, ��̂ � �̂f � �̂vac since it can be split directly into
left, right and entangled contributions as we will explain in
the following. This is a second reason for using the lan-
guage of density matrices.
-5
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We already know that, when considered as a state of the
composite system F L �F R, the inertial vacuum state is an
entangled state (see [19] for an intuitive explanation of
this), and thus one expects that also state jfi will be
entangled. In this sense, since both states are pure, their
density operators cannot be written in the form [20]

�̂ 0 � �̂0L � �̂0R; (3.4)

where �̂0L and �̂0R represent the respective partial density
matrices defined by

�̂ L;R � TrL;R�̂: (3.5)

Nevertheless, one can introduce a traceless operator �̂e

which encodes all the information of the entanglement of
the state. We propose that the density operators for these
states can be written as

�̂ � �̂L � �̂R � �̂e: (3.6)

In the Unruh quantization, the �̂e operator, which we will
call the matrix of entanglement, encodes the information of
the correlation between left and right components of the
state. When computing expectations of operators localized
in either wedges L or R the matrix of entanglement plays
no role, in fact, it can be shown that for any operator of the
form ÂL � 1̂R and a state described by Eq. (3.6) one has
that

Tr �ÂL � 1̂R�̂� � Tr�ÂL�̂
L�; (3.7)

and thus Tr�ÂL � 1̂R�̂e� � 0 (and the analogous if the
operator has the form 1̂L � ÂR). The information encoded
in �̂e can only be retrieved when computing expectations
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of operators with L and R components and thus, for the
case of observables (made up of field operators) this infor-
mation is only present when one evaluates the expectation
values in wedge F. For example, in the computations of [8]
the information encoded in �̂e does not enter in the results,
which in principle are incompatible with the change in
hT̂��i in wedge F. It is therefore that we expected the
information about this change would be encoded in �̂e.

We can write the inertial vacuum j0Mi in the fashion of
Eq. (3.6):

�̂ vac � �̂Lvac � �̂
R
vac � �̂

e
vac: (3.8)

From Eq. (2.9) it follows that

�̂ vac � j0Mih0Mj � Z
X
JK

EJEKjKiLjKiRLhJjRhJj; (3.9)

where we have defined

EJ � e��E�J�; (3.10)

and we have introduced the normalization factor Z defined
by

Z�1 �
X
J

E2
J (3.11)

in order to have Tr��̂vac� � 1. Taking the partial R and L
traces in Eq. (3.9) we obtain respectively

�̂ L
vac � Z

X
J

E2
JjJiLLhJj; �̂Rvac � Z

X
J

E2
JjJiRRhJj:

(3.12)

Using Eqs. (3.9) and (3.12) we can write
�̂evac� �̂vac� �̂
L
vac� �̂

R
vac

�Z
X
J;K

EJEK�jJiLjJiRLhKjRhKj�ZEJEKjJiLjKiRLhJjRhKj�: (3.13)
For the density matrix for state jfi we have

�̂ f � �̂Lf � �̂
R
f � �̂

e
f: (3.14)

Now we turn back to our own specific case and concentrate
particularly on the change in the density matrices induced
by the interaction of the field with the source. Exploiting
the fact that for the accelerated source the Ŝ matrix is an R
operator one finds directly from Eqs. (3.1) and (3.2) that

�̂ f � �̂Lvac � ŜR�̂
R
vacŜ

y
R � Ŝ�̂

e
vacŜ

y: (3.15)

From this last equation we can identify

�̂ L
f � �̂Lvac; �̂Rf � ŜR�̂RvacŜ

y
R (3.16)

and

�̂ e
f � Ŝ�̂evacŜ

y: (3.17)
We want now to express the change in the state of the field
induced by the interaction in terms of the change of the
density matrix. Note that when restricted to L this change
is 	�̂Lf � �̂Lf � �̂

L
vac � 0. The changes 	�̂Rf � �̂Rf � �̂

R
vac

and 	�̂ef � �̂ef � �̂
e
vac deserve special attention since they

depend on the operator Ŝ; note that they are traceless.
The total change in the density matrix can be written as

	�̂ � �̂Lvac � 	�̂
R
f � 	�̂

L
f � �̂

R
vac � 	�̂

L
f � 	�̂

R
f � 	�̂

e

� �̂Lvac � 	�̂
R
f � 	�̂

e; (3.18)

where 	�̂e � �̂ef � �̂
e
vac and we have used 	�̂Lf � 0.

Equation (3.18) thus reflects in a clear language what we
know about the change in the quantum field. As we men-
tioned in Sec. I, there is theoretical evidence that when one
restricts state jfi to wedge R one would obtain the same
thermal bath as that of the inertial vacuum [8]; that is, in
-6
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this wedge there is no effective change in the state. A priori
one may think that this means that 	�̂Rf � 0. However, the
state should have changed in order to account for the
radiation emitted by the source, which should be measur-
able in F. Thus one might conclude that all the information
of the physical change in the state is encoded in the change
in the matrix of entanglement, 	�̂e, which can only be
retrieved in wedge F. To be more specific, consider an
operator of the form Â � 1̂L � ÂR on F L �F R. From
Eq. (3.18) one has that the change in its expectation is
given by

	Tr�Â �̂� � Tr�Â�̂f� � Tr�Â�̂vac� � Tr�ÂR	�̂Rf �: (3.19)

Note that the operator ÂR can be localized anywhere in
Minkowski space-time as, for example, the operator 1̂ �
�̂R�x�, which is not identically zero outside wedge L.
However, if the operator Â has nontrivial L and R compo-
nents then the change is given by

	Tr�Â �̂� � Tr�Â�̂Lvac � 	�̂
R
f � � Tr�Â	�̂e�; (3.20)

that is, in this case the change in the expectation may come
from both 	�̂Rf and 	�̂e contributions.

In order to understand the physical change in the state
we shall evaluate the change in the expectation of the
energy-momentum tensor operator T̂��. Recall that in
Minkowski space-time hT̂���x�i is defined in the point-
splitting description as a coincidence limit [9]:

hT̂���x�if � lim
x0!x

t��0F�x; x
0�; (3.21)

where

F�x; x0� � hfj�̂�x��̂�x0�jfi � h0Mj�̂�x��̂�x0�j0Mi (3.22)

and t��0 is the differential operator

t��0 � r�r�0 �
1
2g���r
r


0 �m2�: (3.23)

Thus, all one needs to compute the expectation of T̂�� is
the change in the two point function h�̂�x��̂�x0�i. We have
from Eq. (2.5) that

�̂�x��̂�x0� � �̂L�x��̂L�x
0� � �̂L�x��̂R�x

0�

� �̂R�x��̂L�x
0� � �̂R�x��̂R�x

0�: (3.24)

To simplify the notation, let us define

�̂ � �̂�x�; �̂0 � �̂�x0�: (3.27)

From Eqs. (3.18) and (3.24) we have that the total change in
the expectation of the two point operator is
084018
Tr��̂�̂0	�̂� � Tr��̂L�̂
0
L�̂

L
vac �	�̂

R�

�Tr��̂R�̂
0
R�̂

L
vac �	�̂

R��Tr��̂L�̂
0
R	�̂

e�

�Tr��̂R�̂
0
L	�̂e�

� TrL��̂L�̂
0
L�̂Lvac�TrR�	�̂R��TrR��̂R�̂

0
R	�̂R�

�Tr��̂L�̂
0
R	�̂e��Tr��̂R�̂

0
L	�̂e�: (3.26)

To get Eq. (3.26) we have used that Tr�ÂL;R�̂
e� � 0 [see

Eq. (3.7)] and that

Tr L��̂L�̂Lvac� �
X
J

E2
JLhJj�̂LjJiL � 0; (3.27)

since states with different numbers of particles are
orthogonal.

Equation (3.26) is the farthest that we can get to reduce
Tr��̂�̂0	�̂� using only the fact that we are considering a
source with support totally contained in R and the proper-
ties of the matrix of entanglement. Note that the last two
terms in the right-hand side (r.h.s.) of Eq. (3.26) are zero
when evaluating both x, x0 2 L or R since in these wedges
the modes L! and R! cannot be different from zero
simultaneously. To go further in our calculation we shall
introduce the explicit form of the operator Ŝ, which we do
in the next section.
IV. AN ACCELERATED SCALAR SOURCE AND ITS
INTERACTION

We are going to use a scalar source j�x� to model a scalar
particle with uniform acceleration. Let this scalar current
j�x� interact with the field with an interaction Hamiltonian
density given by

Ĥ I�x� �
�������
�g
p

j�x��̂�x�; (4.1)

where g is the determinant of the metric. The final state jfi
of the field after this interaction is given by the application
of the S matrix to the inertial vacuum state:

jfi � Ŝj0Mi; Ŝ � T̂ exp
�
�i

Z �out

�in

ĤI�x�d2x
�
; (4.2)

where �in, �out are Cauchy hypersurfaces where the inter-
action begins and ends, respectively, and T̂ is the time order
operator.

The interaction occurs inside wedge R and thus the ‘‘in’’
and ‘‘out’’ Cauchy hypersurfaces should bound this region
and, at the same time, in order to define states in the Unruh
quantization scheme, they have to be Cauchy hypersurfa-
ces of the double wedge L [ R. We define �in as the
surface constructed by the union of ft � 0; z  0g and a
spatial surface inside wedge R which begins in the bifur-
cation point of the horizons and deviates slightly from the
� � 0, � � �1 horizon (see Fig. 1). �out is defined anal-
ogously but its restriction to R is a spatial surface which
deviates slightly from the � � 0, � � 1 horizon. The
-7
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initial vacuum state is defined over �in and the final state of
the field jfi is defined over �out. Therefore, although the
interaction is present inside wedge R, the state jfi is
defined after the interaction and one can evaluate expecta-
tions in this state of operators localized in wedges R and F.

Our calculation of jfi (and its density matrix) will be in
terms of Rindler coordinates for which T̂ orders up opera-
tors with respect to the time coordinate �. Using Eq. (4.1)
one can put the final state of the interaction in the form

jfi � T
�
1̂� i

Z
d4x

�������
�g
p

j�x��̂�x�

�
1

2

ZZ
d4xd4x0

�������
�g
p ���������

�g0
q

j�x0�j�x0��̂�x��̂�x0�
�
j0Mi

� Ô�q3�; (4.3)

where the integrations are over the same region as in
Eq. (4.2). It is useful to define the (formal) operator

�̂ I �
Z
d2x

�������
�g
p

j�x��̂�x�: (4.4)

Note that �̂I is of order q. We are going to apply the Wick
theorem to the r.h.s. of Eq. (4.3):

T��̂�x��̂�x0�� � N��̂�x��̂�x0�� � h0jT��̂�x��̂�x0��j0i;

(4.5)

where the normal ordering, N, and the vacuum, j0i, are
with respect to the quantization scheme we are dealing
with. Using Eq. (4.5) we expand Eq. (4.3) to get

jfi � Ŝj0Mi

� �1� G�j0Mi � i�̂Ij0Mi �
1

2
N��̂I�̂I�j0Mi

�O�q3�; (4.6)

where

G �
1

2

Z 1
�1

d2x
Z 1
�1

d2yj�x�j�y�h0MjT��̂�x��̂�y��j0Mi

(4.7)

is of second order in q.
A uniformly accelerating scalar particle follows a tra-

jectory which in Rindler coordinates corresponds to the
locus of � � �0. From the point of view of Rindler observ-
ers, this scalar source corresponds to a static scalar current:

j0�x� � q	�� � �0�: (4.8)

This source transforms as a scalar; using Eq. (2.1) it can be
transformed to inertial coordinates

j0�x� � q
	�z�

������������������
t2 � a�2
p

�

a
������������������
t2 � a�2
p ; (4.9)

where �0 � 1=a and a is the proper acceleration of the
source. In order to avoid expressions of the form 0�1
084018
one has to introduce some regularization factor to Eq. (4.8).
Inspired in Higuchi et al. [8], who regularize an electric
charge and show the consistency of their regulator (we
have explained their results in Sec. I), we introduce an
oscillating factor to Eq. (4.8):

j�x� � q cos����	�� � �0� (4.10)

and at the end of our calculations we shall take the limit
�! 0. In fact, for slow oscillations (�� a) the source is
expected to interact with the field as if it were a constant
charge q at each �.

The current j�x� has support totally contained in R, and
thus one can see from Eqs. (2.5) and (4.4) that only
R modes of the field will get excited by the accelerated
source. The operator �̂I takes the form

�̂ I �
Z
R
d2x

�������
�g
p

j�x��̂R�x� �
Z 1

0
d!��!r̂! ���!r̂

y
!�;

(4.11)

where

�! �
Z
R
d2x

�������
�g
p

j�x�R!�x� � ��	�!� ��;

�� � q
�������������������
sinh����

p
�0Ki��m�0�:

(4.12)

To get Eq. (4.12) we have used Eq. (A11), !> 0, and we
have chosen to work with � > 0 (note that the regulator is
an even function of �). Note that Ki!�z� is real for real !
and z. Finally, Eq. (4.11) takes the form

�̂ I � q
�������������������
sinh����

p
�0Ki��m�0��r̂� � r̂

y
� 	: (4.13)

The role of the regulator we have chosen is to couple the
source to an Rmode of the field with frequency � instead of
the mode with frequency zero which is somehow
pathological.
V. THE CHANGE OF hT̂��iAT WEDGES R AND F

Now we are in a position to compute explicitly 	�̂R and
	�̂e in order to evaluate Eq. (3.26). We will work out this
calculation perturbatively up to second order in q, which
turns out to be the first relevant contribution. From
Eq. (4.6) we have

Ŝ � �1� G� � i�̂I �
1

2
N��̂I�̂I� �O�q

3�; (5.1)

and from this equation we can write the density matrix for
the final state as

�̂ f � �̂�0�f � �̂
�1�
f � �̂

�2�
f �O�q

3�; (5.2)

where �̂�0�f corresponds to the (second order) renormalized
inertial vacuum density matrix given by

�̂ �0�f � Q�̂vac; Q � �1� 2 Re�G��: (5.3)
-8
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We shall compute the change in the density matrix with
respect to the renormalized vacuum density operator:

	�̂ren � �̂f � �̂
�0�
f : (5.4)

Tracing out the left degrees of freedom in Eq. (5.2) we have

�̂ R
f � �̂R�0�f � �̂R�1�f � �̂R�2�f �O�q3�; (5.5)

where

�̂ R�1�
f � �i��̂I; �̂Rvac	; (5.6)

�̂ R�2�
f �

1

2
��̂RvacN��̂I�̂I�

y � 2�̂I�̂Rvac�̂I � N��̂I�̂I��̂Rvac�:

(5.7)

Note that �̂R�1�f is traceless. For the entanglement matrix we
have

	�̂e � �̂e�1�f � �̂e�2�f �O�q3�; (5.8)

where �̂e�1�f and �̂e�2�f are defined as Eqs. (5.6) and (5.7)
changing R! e.

The first order contribution to Eq. (3.26) is

Tr��̂�̂0	�̂�1�� � TrL��̂L�̂
0
L�̂

L
vac�Tr��̂R�1�f �

� Tr��̂R�̂
0
R�̂

R�1�
f �

� Tr���̂L�̂
0
R � �̂

0
L�̂R��̂

e�1�
f �: (5.9)

The first term in the r.h.s. of Eq. (5.9) is zero since �̂R�1�f is

traceless. From the expression for �̂R�1�f , Eq. (5.6), it can be
proved that

Tr ��̂R�̂
0
R�̂
�1�
f � � Tr��̂L�̂

0
R�̂
�1�
f � � Tr��̂R�̂

0
L�̂
�1�
f � � 0:

(5.10)

This can be understood heuristically from the fact that
these traces represent a sum of brackets in the
Minkowski vacuum of three field operators, which are
necessarily null. From Eq. (5.10) and the definition of �̂ef
we have

Tr��̂L�̂
0
R�̂

e�1�
f � � Tr��̂L�̂

0
R�̂
�1�
f � � Tr��̂L�̂

0
R�̂Lvac � �̂

R�1�
f �

� Tr��̂L�̂
0
R�̂
�1�
f � � 0: (5.11)

To get the second equality in Eq. (5.11) we have used
Eq. (3.27) to conclude that

Tr ��̂L�̂
0
R�̂Lvac � �̂

R�1�
f � � TrL��̂L�̂Lvac�TrR��̂

0
R�̂

R�1�
f � � 0:

(5.12)

Note that this last equation is valid for any order. We have
then proved that Tr��̂�̂0	�̂�1�� � 0.
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Now we turn to the second order contribution,

Tr��̂�̂0	�̂�2�� � TrL��̂L�̂
0
L�̂Lvac�Tr��̂R�2�f �

� Tr��̂R�̂
0
R�̂

R�2�
f �

� Tr���̂L�̂
0
R � �̂

0
L�̂R��̂

e�2�
f �: (5.13)

For the mixed LR terms, we have that, similarly to
Eq. (5.11)

Tr��̂L�̂
0
R�̂

e�2�
f � � Tr��̂L�̂

0
R�̂
�2�
f � � Tr��̂L�̂

0
R�̂

L
vac � �̂

R�2�
f �

� Tr��̂L�̂
0
R�̂
�2�
f �: (5.14)

Using Eq. (5.7) it can be proven directly that (see
Appendix B)

Tr ��̂L�̂
0
R�̂

e�2�
f � � Z�2

� Tr��̂L�̂
0
R�̂vac�; (5.15)

Tr ��̂R�̂
0
L�̂

e�2�
f � � Z�2

� Tr��̂R�̂
0
L�̂vac�: (5.16)

Also from Eq. (5.7) [see its basis expansion in Eq. (B10)]
we have that Tr��̂R�2�f � � �2

� and thus

Tr L��̂L�̂
0
L�̂

L
vac�Tr��̂R�2�f � � Z�2

� TrL��̂L�̂
0
L�̂

L
vac�:

(5.17)

These terms, proportional to the corresponding LR and LL
parts of the two point function in the vacuum, are going to
be absorbed in the renormalization of the final result. We
have then obtained, in principle, the unexpected result that
at least for the change in the expectation of the T̂��
operator there is no contribution from the change in the
entanglement matrix, although as one can see from
Eq. (3.17) there is actually a change in this operator. All
the information of this change comes from the change in
the R density matrix of the state, 	�̂Rf . As shown explicitly
in Appendix B we have that

Tr ��̂R�̂
0
R�̂

R�2�
f � � 4�2

� Im�R��x�	Im�R��x
0�	

� Z�2
� Tr��̂Rvac�̂R�x��̂R�x

0��: (5.18)

Finally, adding up Eqs. (5.15), (5.16), (5.17), and (5.18) we
have that the change in the two point function between the
inertial vacuum and the state generated by the interaction
of the scalar source is

Tr��̂�x��̂�x0�	�̂ren� � 4�2
� Im�R��x�	Im�R��x0�	

�
Z�2

�

Q
Tr��̂�x��̂�x0��̂�0�f � �O�q

3�;

(5.19)

which is valid for all x, x0 2 M and we have used Eq. (5.3)
to express �̂vac in terms of the renormalized vacuum den-
sity operator �̂�0�f . However, as we have said, we still have
to renormalize this change in the expectation value. We
-9
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define the renormalized field operator as

�̂ ren�x� �
�
1�

�2
�

Q

�
1=2
�̂�x�; (5.20)

and thus the renormalized change in the expectation of the
two point function is

C��x; x
0� � Tr��̂ren�x��̂ren�x

0�	�̂ren�

� 4�2
� Im�R��x�	Im�R��x0�	 �O�q3�: (5.21)

The second order term in this change reads

C�2�� �x; x
0� � 4�2

� Im�R��x�	Im�R��x0�	: (5.22)

We have arrived at a regular expression for the change in
the expectation value of the two point function and thus
now we can reconsider the source as static by taking out the
regulator taking the limit �! 0. In the following we are
going to evaluate explicitly Eq. (5.22) in wedges R and F.
First, note that from Eq. (4.12) and the fact that Bessel
functions Ki��m�0� are regular whenever �0 � 0 we have
that

lim
�!0

�� � 0: (5.23)

Note that �2
� is an overall factor in C�2�� �x; x

0�. When
computing the expectation of �̂�x��̂�x0� the correct proce-
dure is to take the limit �! 0 at the end of the calculation
since the field operators couple to the frequency � of
particles in jfi which are emitted and absorbed by the
source.

First we will work the case when x, x0 2 R, for we can
express these points in terms of Rindler coordinates: x �
��; ��, x0 � ��0; � 0�. Unruh modes R!, when restricted to
wedge R take the form of Eq. (A11). Using the fact that
functions Ki!�z� are real whenever ! is real and z > 0, we
have that

Im �R��x�� � �

�������������������
sinh����

p
�

sin����Ki��m�� x 2 R:

(5.24)

And thus, from Eqs. (4.12) and (5.22)

C�2�� �x; x
0� �

1

�2 q
2 sinh2�����2

0K
2
i��m�0� sin���� sin���0�

� Ki��m��Ki��m� 0� x; x0 2 R: (5.25)

Recall that R is an open set bounded by the horizons and
thus � , � 0 � 0, so the Bessel functions Ki��m��, Ki��m� 0�
are regular. Then we have that the second order change in
the two point function between the inertial vacuum and
state jfi in wedge R is

lim
�!0

C�2�� �x; x
0� � 0 x; x0 2 R: (5.26)

This result is consistent with the fact that, as pointed out in
Ref. [8], the source is in thermal equilibrium with the field
084018
inside wedge R. Any observer inside this wedge will not be
able to notice any change in the expected value of T̂�� due
to the presence of the accelerating source. Note that the
specific form of the two point operator has played a crucial
role to get to Eq. (5.22).

Now we proceed to evaluate Eq. (5.22) in wedge F.
Recall that in F, � is a spatial coordinate and � is timelike
[cf. Eq. (A2b)]. From Eq. (A12) we have that the mode
R��x� restricted to F takes the form

R��x� � �
i

23=2

e�i������������������������
2 sinh����

p �e��H�2�i� �m��

� e���H�1�i� �m��	 x 2 F; (5.27)

where coordinates ��; �� are defined in Eq. (A2b) and
H�1�;�2�i� are the first and second Hankel functions. Using
the definitions of H�1�;�2�i� in terms of Bessel functions,
Eqs. (A19) and (A20), it follows immediately that

Im�R��x�� � �
1

4
�������������������
sinh����

p �e�i��J�i��m��

� ei��Ji��m��� x 2 F: (5.28)

Now using Eqs. (4.12) and (5.28) we have that

lim
�!0

C�2�� �x; x
0� � q2�2

0K
2
0�m�0�J0�m��J0�m� 0� (5.29)

for all x, x0 2 F. Compare with Eq. (5.26). This expression
is the (nonzero) change in the two point function in wedge
F due to the interaction. It contains the information of the
field radiated away from the source into F. It should be
noted that Eq. (5.29) is not valid at the horizons. In
Appendix C we make the computation, in an inertial frame,
of the same change in the expectation of the two point
function, Tr��̂�x��̂�x0�	�̂�, for x, x0 2 F and obtain ex-
actly Eq. (5.29). Therefore, at least for the particular case
we are dealing with, both quantum descriptions produce
the same physical results.

Using Eq. (5.26) in Eq. (3.21) we have that 	hT̂��i � 0

in R, while 	hT̂��i � 0 in F. This result is partially analo-
gous to that obtained in [5,6], where it is concluded that a
uniformly accelerated harmonic oscillator does not radiate
in Minkowski space-time. Nevertheless, this analogy is
broken in wedge F where, in fact an inertial observer
would find that there is radiation due to the effects of the
pointlike source.
VI. AN EXAMPLE OF LEFT-RIGHT
INTERFERENCE: TWO SOURCES WITH

OPPOSITE ACCELERATION

As we have seen in the last section, the matrix of
entanglement plays no significant role in the change in
the expectation of T̂�� for the interaction of an accelerated
source with the inertial vacuum. However, the presence of
-10
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another (accelerating) source lying in L may affect the
entanglement of the final state and thus �̂e may play a
part in the change of the expectation of T̂��. In this section
we work out these calculations.

Suppose that additionally to the scalar particle consid-
ered in the latter sections we have an extra scalar particle in
uniform acceleration in wedge L with scalar charge ~q. The
perturbation of the field due to this pair of particles is given
by

j�x� �
�
jL�x� x 2 L;
jR�x� 2 R;

(6.1)

where

jL�x� � ~q cos�~��L�	��L � ~�0�

jR�x� � q cos���R�	��R � �0�:
(6.2)

Rindler coordinates in wedge L, ��L; �L� are given by
Eq. (A2a). To avoid confusion, all along this section we
will call Rindler coordinates in R: ��R; �R� [originally we
have used ��; ��]. Note that in order to have independent
sources we have introduced the cosine regulator with a
different parameter for the source in wedge L.

Using Eq. (4.1) for j�x� given by Eq. (6.1) we have that

Ŝ 0 � T̂ exp��i���̂L
I � 1̂R� � �1̂L � �̂

R
I �		

� T̂ exp��i�̂L
I 	 � exp��i�̂R

I 	 � ŜL � ŜR; (6.3)

where

�̂ L
I � �~��l̂~� � l̂

y
~�
�; �̂R

I � ���r̂� � r̂
y
� �; (6.4)

and T̂ is the time order operator. In this case we have two
different time parameters, �L and �R and thus T̂ will time
order L and R operators independently (recall that �̂L and
�̂R commute). The factor �� is given by Eq. (4.12) and �~�
is now

�~� � ~q
�������������������
sinh��~��

q
~�0Ki~��m~�0�: (6.5)

Let jgi be the final state of this interaction, analogously
to Eq. (3.15). Now we have that its density matrix takes the
form

�̂ g � �̂Lg � �̂
R
g � �̂

e
g; (6.6)

where

�̂ L
g � ŜL�̂

L
vacŜ

y
L; �̂Rg � ŜR�̂

R
vacŜ

y
R;

�̂eg � Ŝ0�̂evacŜ
0y:

(6.7)

Then we have that the change in the density operators is
given by

	�̂g � �̂Lvac � 	�̂
R
g � 	�̂

L
g � �̂

R
vac � 	�̂

L
g � 	�̂

R
g � 	�̂

e
g;

(6.8)

where 	�̂g � �̂g � �̂vac and all other differences are de-
fined analogously.
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Now we compute the change Tr��̂�̂0	�̂g�; analogously
to the case of the single accelerating particle the first
relevant term is of second order in q and ~q. Using
Eq. (3.24) and (6.8). It can be seen that

Tr��̂�̂0	�̂�2�g � � TrL��̂L�̂
0
L	�̂

L�2�
g � � TrR��̂R�̂

0
R	�̂

R�2�
g �

� Z�2
� TrL��̂L�̂

0
L�̂

L
vac�

� Z�2
~�

TrR��̂R�̂
0
R�̂

R
vac�

� Tr���̂L�̂
0
R � �̂R�̂

0
L�	�̂

L�1�
g � 	�̂R�1�g �

� Tr���̂L�̂
0
R � �̂R�̂

0
L�	�̂eg�: (6.9)

The first four terms in the r.h.s. of Eq. (6.9) are analogous to
Eqs. (5.17) and (5.18) for the single source case. In effect,
we have that

Tr ��̂R�̂
0
R	�̂

R�2�
g � � 4�2

� Im�R��x�	Im�R��x0�	

� Z�2
� Tr��̂Rvac�̂R�x��̂R�x

0��;

(6.10)

Tr ��̂L�̂
0
L	�̂

L�2�
g � � 4�2

~�
Im�L~��x�	Im�L~��x

0�	

� Z�2
~�

Tr��̂Lvac�̂L�x��̂L�x0��:

(6.11)

Similarly to Eq. (5.6), it can be seen that

	�̂L�1�g � �i��̂L
I �̂Lvac � �̂

L
vac�̂

L
I �; (6.12)

	�̂R�1�g � �i��̂R
I �̂Rvac � �̂

R
vac�̂

R
I �; (6.13)

and from these equations we have that

Tr ���̂L�̂
0
R � �̂R�̂

0
L�	�̂

L�1�
g � 	�̂R�1�g �

� 4�~����Im�L~��x��Im�R��x
0��

� Im�R~��x��Im�L��x
0���: (6.14)

On the other hand, it can be shown that the second order
contribution from the matrix of entanglement is

Tr���̂L�̂
0
R � �̂R�̂

0
L�	�̂

e�2�
g � � Z��2

~�
��2

��Tr���̂L�̂
0
R

� �̂R�̂
0
L��̂vac�; (6.15)

which, as in the case of a single source, also corresponds to
terms that will be absorbed in the renormalization of the
final change in the expectation value. Adding up all the
contributions, Eq. (6.9) takes the form

Tr ��̂�̂0	�̂�2�g � � 4��~� Im�L~��x�� ��� Im�R��x��	

� ��~� Im�L~��x
0�� ��� Im�R��x

0��	

� Z��2
~�
��2

��Tr��̂�x��̂�x0��̂vac�:

(6.16)

Thus, the renormalized change in the two point function
reads, up to second order,
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Tr��̂ren�̂
0
ren	�̂gren� � 4��~� Im�L~��x�� ��� Im�R��x��	

� ��~� Im�L~��x
0�� ��� Im�R��x

0��	

� � � � : (6.17)

After taking the limits ~�, �! 0 and evaluating at x �
��F; �F� and x0 � ��0F; �

0
F� we obtain

lim
~�;�!0

Tr��̂ren�x��̂ren�x
0�	�̂gren�

� �~q~�0K0�m~�0� � q�0K0�m�0��
2J0�m�F�J0�m� 0F�:

(6.18)

As expected, if we turn off the charge in wedge L (~q! 0)
we recover our previous result, Eq. (5.29). For the case of
the two accelerating sources it turns out that also all the
contribution to the change in the expectation value of the
two point function comes solely from the change in the
partial matrices, 	�̂Lg , 	�̂Rg . In particular, the interference
term, Eq. (6.14), is determined by the latter pair of matri-
ces; that is, for the case we have just analyzed all the
information of the change in the expectation of T̂�� is
only encoded in 	�̂Lg , 	�̂Rg .
VII. DISCUSSION

One of the main goals of our work was to reconcile the
fact that the final state of the field appears to remain an
undisrupted thermal state in both the left and the right
Rindler wedges, with the expected change induced by the
source on field observables, such as the energy momentum,
in the future wedge. This issue is recast in terms of the
codification in the state of the field of the pertinent infor-
mation that exhibits the change in the expectation value
of T̂��.

At the beginning it was our belief that, since there is no
change in the expectation of T̂�� in wedge R (neither in L)
the physical change in wedge F cannot be induced by the
particular behavior of the state when restricted to either
wedge. Hence, the information of this change should have
been encoded in some part of the state which is not
represented by any of the restricted density operators �̂Lf
and �̂Rf (or in their respective changes). It is in this sense
that we proposed the decomposition of �̂f given by
Eq. (3.6), with the particular introduction of the matrix of
entanglement �̂e. As we explained in Sec. III this operator
plays no role when computing expectations of observables
localized in wedges L and R and thus was a good candidate
to account for the change of hT̂��i in wedge F.
Nevertheless, we computed this change perturbatively
and found that it has contributions only from the change
in the density matrix describing the state in the wedge R
[see Eqs. (5.18) and (5.21)]. That is, when evaluating hT̂��i
in either wedges R and F, its change is determined solely
by the characterization of the state in wedge R. This result
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contrasts with our initial expectation that the information
about the change of hT̂��i would be encoded in the change
in the entanglement matrix, 	�̂e.

In order to obtain this result, we had to introduce by hand
a particular regularizing function, cos����, into the current
describing a uniformly accelerating scalar source with the
prescription to take the limit �! 0 at the end of the
calculation. As mentioned earlier, this regulator was in-
spired by a similar computation done in [8]. Despite the
seemingly artificial choice of this regulator, we have shown
that when making the regulator independent calculation of
the change in the same expectation h�̂�x��̂�x0�i, using a
plane wave quantization scheme, one obtains the same
results as in the Unruh scheme with such regulator (see
Appendix C). One can give a heuristic explanation to the
fact that this regulator is physically correct as follows. In
principle, if one is precise, one would like to describe the
radiation due to a real physical particle, which should be
described as a quantum object itself. However, this de-
scription has a serious drawback regarding our wish to
describe the source as a uniformly accelerating particle:
A quantum particle does not move in a definite trajectory
and thus assigning to it a particular acceleration is impos-
sible. On the other hand, the nature of the quantum field is
distributional and therefore the correct quantum descrip-
tion of the interacting source should be in terms of test
functions of compact support [note that Eq. (4.10) lacks
this property] and therefore, the source would correspond
to an extended object. To such object we cannot naturally
ascribe a uniform acceleration: if the object is to maintain
‘‘its shape’’ along its trajectory then different parts should
have different proper accelerations. However, we know
from [8] that a treatment using classical pointlike sources
(with definite proper acceleration) together with a certain
type of regulator produce physically correct results (in
particular, results that are fully consistent with the equiva-
lence principle).

The regulator used in [8] consisted in the introduction of
an artificial oscillation with frequency � in the strength of
the source, to identify therefore expressions of the form
0�1 occurring in the calculation and to proceed to carry
all calculations to the end before taking the limit �! 0.
We are thus assuming that the introduction of such regu-
lator, along with the prescription to take the limit �! 0 at
the end of the calculations reflects in an effective way the
description of a quantum source in uniform acceleration
interacting with the field. (Nevertheless, the robustness of
the result would be ensured if one confirms that the same
physical behavior is to be obtained for a wider class of
regularizing functions.) It is however worthy to emphasize
that in the inertial calculation of Appendix C there was no
need to introduce such a regulator.

From these considerations it follows that our calcula-
tions make sense only if the limit �! 0 is taken at the end
of the computation of the expectation values. Actually, one
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may be tempted to take this limit directly into the density
matrix �̂f of the state. Ignoring for a moment details
regarding the precise notion of the limit of an operator,
one can see that due to the overall factor ��, which goes to
zero as �! 0, every single term in the expansion of �̂f is
also zero except for those terms proportional to �̂vac. Thus,
one would conclude that there has been no change in the
state of the field in R due to the presence of the source. As
this was the only potential contribution to the change in the
expectation of T̂��, we would be led to the erroneous
conclusion that there is no change in this quantity.

From the calculations in Sec. V we concluded that the
information of the change in hT̂��i is encoded in 	�̂R. We
now want to consider how is it encoded. The answer to this
question relies on a subtle interplay of the field operator
�̂�x� and the density matrix in the present formalism. Let
us focus on the details of our specific calculation: The
overall factor �2

� in the second order contribution to �̂Rf
comes from the fact that the source is located in wedge
R. In this wedge Unruh modes R��x� ! 0 as �! 0
(whenever x is not at the horizon). When computing
Tr��̂R�̂

0
R�̂

R�2�
f � the field operators are sensitive to the

frequency �. In fact, they only excite modes with ! � �
as could be expected on Rindler energy conservation
grounds. The particular form of �̂Rf determines the struc-
ture of the contribution given by Eq. (5.22) which in turn,
due to the different behaviors of the Unruh modes in
wedges R and F, is zero in the former and not zero in the
latter.

We interpret these results by saying that the ‘‘0’’ Rindler
energy modes, which were of such concern in regard to the
definition of the theory (see discussion at the end of
Sec. II), are in effect, essential in order to obtain in the
accelerated frame description identical results as in the
inertial one. Physically we could think that these modes
are excited by the slightest quantum fluctuations of a
realistic quantum particle and that their excitation would
be directly felt in the future wedge. These results seem to
be in accordance with the spirit of those obtained in [21]
where it is argued that the zero-energy modes seemed to be
undetectable (with an appropriate definition of detectabil-
ity) when confining the detection to the right wedge.

Our results apply to the case of a pointlike source in
uniform accelerated motion and as we have said, are in
accordance with the classical results of [1]. The issue of
whether or not an accelerated detector radiates, although
similar, has its own puzzles. The main difference with our
work is that the detector is considered as a quantum object
which has internal degrees of freedom and a particular
energy scale associated to the energy gap between states,
thus the interaction process becomes dynamically different
to the case we have studied. Finally, it is our belief that this
work has helped in clarifying the questions raised at the
beginning. Furthermore, there is a technically analogous
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situation which indicates that a stationary particle just
outside of the horizon of a stationary black hole could be
‘‘emitting’’ towards its interior. This work shows a clear
path to studying the changes in the energy-momentum
tensor in that situation.
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APPENDIX A: UNRUH MODES AND
REPRESENTATIONS OF BOOST MODES

One can generalize Rindler coordinates to all Rindler
wedges assigning always the respective coordinate � to the
parameter associated to the generator of boosts about the
origin in the z direction:
b� � a
�
z
�
@
@t

�
�
� t

�
@
@z

�
�
�
: (A1)
In wedge L one should do an exception in order to guar-
antee that the future direction coincides with that of inertial
time, in this case, �� is �b�. In wedges F and P the
coordinate � is spacelike. We have [22]
z � �� cosh�a��; t � � sinh�a��; �t; z� 2 L;

(A2a)

z � � sinh�a��; t � � cosh�a��; �t; z� 2 F;

(A2b)

z � �� sinh�a��; t � �� cosh�a��; �t; z� 2 P;

(A2c)
where � > 0 in each region.
Boost modes, Eq. (2.2), should be thought of as distri-

butions and thus one cannot evaluate them in one particular
point. However, what we can do is to apply these distribu-
tions to test functions which have support defined on a
certain open region. The integral which defines the boost
modes can be expressed in terms of the accelerated coor-
dinates ��; �� given by Eqs. (2.1) and (A2). As Unruh
modes are defined by boost modes, from this operation
we can express Unruh modes in accelerated coordinates
too.

For example, let f be a test function in M with
supp�f� � R; the evaluation of B! at function f is given by
-13
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B!�f	 �
1

23=2�

�
Z 1
�1

d�e�i!�
Z
R
d2xeim�z sinh����t cosh����f�t; z�:

(A3)

Since the space-time integration is in wedge R we can
express the d2x integral in terms of Rindler coordinates
[cf. Eq. (2.1)]:

B!�f	 �
1

23=2�

Z 1
�1

d�e�i!�
Z
R
d2xeim� sinh�����f��; ��:

(A4)

Changing the integration order and using the following
relation for the Bessel functions [23]:

K��x� �
1

2
e�i=2���

Z 1
�1

d�e��e�ix sinh���; (A5)

it can be seen that

B!�f	 �
1

�
���
2
p e!�=2

Z
R
d2xe�i!�Ki!�m��f��; ��: (A6)

By analogous arguments it can be seen that in other wedges
boost modes take the following form [18] [coordinates in
the following equations are respective to each wedge de-
fined by Eqs. (2.1) and (A2)]:

B!jR��; �� �
1

�
���
2
p e!�=2e�i!�Ki!�m��; (A7)

B!jL��; �� �
1

�
���
2
p e�!�=2ei!�Ki!�m��; (A8)

B!jF��; �� � �
i

23=2
e!�=2e�i!�H�2�i! �m��; (A9)

B!jP��; �� �
i

23=2
e�!�=2e�i!�H�1�i! �m��; (A10)

where H�1�;�2�� are Hankel functions. Note that in wedge L,
B!��; �� has negative frequency w.r.t. � because we have
chosen the time translation generator in L to be �� �
�b�, where b� is the boost generator. Using Eqs. (A7)–
(A10) in Eqs. (2.3) one obtains directly the representations
of Unruh modes in each wedge. Modes R! are given by

R!jR��; �� �
1

�

����������������
sinh�!
p

e�i!�Ki!�m��; (A11)

R!jF��; �� � �
i

23=2

e�i!������������������������
2 sinh��!�

p �e!�H�2�i! �m��

� e�!�H�1�i! �m��	; (A12)

R!jL��; �� � 0; (A13)
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R!jP��; �� �
i

23=2

e�i!���������������������
2 sinh�!
p �H�1�i! �m�� �H

�2�
i! �m��	:

(A14)

And L! modes are

L!jR��; �� � 0; (A15)

L!jF��; �� � �
i

23=2

ei!������������������������
2 sinh��!�

p �e!�H�2�i! �m��

� e�!�H�1�i! �m��	; (A16)

L!jL��; �� �
1

�

����������������
sinh�!
p

e�i!�Ki!�m��; (A17)

L!jP��; �� �
i

23=2

ei!���������������������
2 sinh�!
p �H�1�i! �m�� �H

�2�
i! �m��	:

(A18)

Here we put some useful relations for the Hankel functions
[23] from which one can simplify the expressions for
Unruh modes

H�1�� �z� �
1

i sin����
�J���z� � e

�i��J��z�	; (A19)

H�2�� �z� �
1

i sin����
�ei��J��z� � J���z�	: (A20)

These latter equations are used to obtain Eq. (5.28).
APPENDIX B: SECOND ORDER CALCULATIONS

Along this work we do several second order calculations
of expectation values of �̂�x��̂�x0�. In this Appendix
we want to put the details of the calculus of
Tr��̂Rf �̂R�x��̂R�x

0�� which leads to Eq. (5.18); all the other
calculi are analogous to this one.

The state jfi takes the form of Eq. (2.8) in the Unruh
quantization, in effect, from Eq. (4.6) one can express jfi
as (from now on we will omit the � in the Unruh states)

jfi �
X
J;K

F�J; K�jJiLjKiR;

F�J; K� � F0�J; K� � F1�J; K� � F2�J; K� �O�q3�; (B1)

where the first term is F0�J;K� �QFvac�J; K� [Q is de-
fined above Eq. (4.7)], and Fvac�J; K� is the left-right
superposition function defining the inertial vacuum state
j0Mi [cf. Eq. (2.9)]:

Fvac�J;K� � Z1=2e��E�K�	�J; K�; (B2)

where Z is the normalization factor defined in Eq. (3.11). In
order to express the other terms in Eq. (B1), it is useful to
define the normalization factor N�

� �K� by
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N�
� �K� �

� ���������������
K� � 1
p

� � �;������
K�
p

� � �;
(B3)

where K� is the particle component of state jKiL;R in the
mode with frequency centered on ! � �. Using Eq. (4.13)
in Eq. (4.6) we find

F0�J; K� �QZ1=2e��E�K�	�J;K�; (B4)

F1�J; K� � �iZ
1=2��e

��E�J��N�� �J�	�K; J� 1��

� N�� �J�	�K; J� 1���; (B5)

F2�J; K� � �
1

2
Z1=2�2

�e
��E�J��N�� �J�N

�
� �J� 1��

� 	�K; J� 2�� � 2N�� �J�N
�
� �J� 1��

� 	�K; J� � N�� �J�N
�
� �J� 1��	�K; J� 2���:

(B6)

Equation (B4) is actually Eq. (2.9) with the extra Q factor.
The J� 1� which appears in the last term in the r.h.s. of
Eq. (B5) corresponds to a normalized state jJ� 1�iR de-
fined by

r̂ �jJiR � N�� �J�jJ� 1�iR (B7)

with particle content J� 1� � fJ!0
; . . . ; J� � 1; . . .g. The

other terms are defined analogously.
The density matrix of state jfi reads

�̂ f � jfihfj

�
X

J;K;J0;K0
F�J; K�F�J0; K0��jJiLjKiRLhJ

0jRhK
0j: (B8)

Let us write it in the following manner:
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�̂ f � �̂�0�f � �̂
�1�
f � �̂

�2�
f �O�q3�: (B9)

Taking the trace over the left degrees of freedom to this
expression we obtain that

�̂R�2�f � Z�2
�

�
�

1

2
�e�2�� � 1�2�̂a �

1

2
�e2�� � 1�2�̂b

� �̂c

�
; (B10)

where

�̂ a �
X
K

e�2�E�K�
���������������
K� � 2

p ���������������
K� � 1

p
jKiRRhK � 2�j;

(B11)

�̂ b �
X
K

e�2�E�K�
������
K�

p ���������������
K� � 1

p
jKiRRhK � 2�j; (B12)

�̂c �
X
K

e�2�E�K���2K� � e2��K�

� e�2���K� � 1��jKiRRhKj: (B13)

Writing the field operator as

�̂ R�x� �
X

���;�

X1
m�0

R�!m
�x�r̂�!m

(B14)

where

R�!m
�x� � R�!m

�x�; R�!m
�x� � R!m

�x�;

r̂�!m
� r̂y!m; r̂�!m

� r̂!m
;

(B15)

we have
Tr��̂a�̂R�x��̂R�x0���
X
K

X
�;�0

X1
m;n�0

e�2�E�K�
��������������
K��2

p ��������������
K��1

p
N�0
!n
�K�N�

!m
�K�1�

0

!n
�R�!m

�x�R�
0

!n
�x0�RhK�2�jK�1�!m

�1�
0

!n
iR;

(B16)
where jK � 1�!m
iR � jK � 1!m

iR. The expectation value
appearing in the r.h.s. of Eq. (B16) gives

RhK � 2�jK � 1�!m
� 1�

0

!n
iR � 	�;�	�0;�	!m;�	!n;�:

(B17)

From this one can read that there is only a contribution to
Eq. (B16) when the operator �̂R�x��̂R�x0� creates two
particles in the mode ! � � in the state defined by �̂a.
Using Eq. (B17) in Eq. (B16) we have that

Tr��̂a�̂R�x��̂R�x
0�� � R���x�R

�
��x
0�

�
X
K

e�2�E�K��K� � 2��K� � 1�:

(B18)

In order to evaluate the sum in the r.h.s. of Eq. (B18) we
have that
-15



˜ PHYSICAL REVIEW D 72, 084018 (2005)
X
K

e�2�E�K�f�K�� �
X1
K��0

e�2��K�f�K��

�
Y1
m�0
!m��

X1
K!m�0

e�2�!mK!m

� h0Mj0Mi�1� e�2���

�
X1
K��0

e�2��K�f�K��; (B19)

where f�K�� is any function of K� and h0M j 0Mi is given
by Eq. (2.10). For the latter use it is convenient to define

G��f�K��	 �
X1
K��0

e�2��K�f�K��: (B20)

Using Eq. (B19) then Eq. (B18) becomes

Tr ��̂a�̂R�x��̂R�x0�� � h0Mj0Mi
2

�1� e�2���2
R���x�R

�
��x
0�;

(B21)
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where we have used that

G���K� � 2��K� � 1�	 �
2

�1� e�2���3
: (B22)

Analogously we have

Tr ��̂b�̂R�x��̂R�x
0�� � h0Mj0Mi

2

�e2�� � 1�2
R��x�R��x

0�:

(B23)

Before computing Tr��̂c�̂�x��̂�x
0�� let us define

H!m
�K	�x; x0� � K!m

R�!m
�x�R!m

�x0�

� �K!m
� 1�R!m

�x�R�!m
�x0�: (B24)

It can be verified that

Tr ��̂Rvac�̂R�x��̂R�x
0�� �

X
K

e�2�E�K�
X1
m�0

H!m
�K	�x; x0�:

(B25)

Now we compute
Tr
�X
K

e�2�E�K��e2��K� � e�2���K� � 1�	jKiRRhKj�̂R�x��̂R�x0�
�

�
X
K

e�2�E�K���e2��K2
� � e

�2��K��K� � 1��R���x�R��x
0� � �e2��K��K� � 1� � e�2���K� � 1�2�R��x�R���x

0�	

�
X
K

e�2�E�K��e2��K� � e
�2���K� � 1��

X1
m�0
!m��

H!m
�K	�x; x0�: (B26)

From the definition of G��f�K��	, Eq. (B20), it can be shown that

e2��G��K
2
�	 � e

�2��G��K��K� � 1�	 � G��K��2K� � 1�	 �G��1	; (B27)

e2��G��K��K� � 1�	 � e�2��G���K� � 1�2	 � G���2K� � 1��K� � 1�	 �G��1	; (B28)

e2��G��K�	 � e�2��G���K� � 1�	 � G���2K� � 1�	: (B29)

Now we use Eq. (B19) to simplify the r.h.s. of Eq. (B26). From Eqs. (B27)–(B29) we have that

Tr
�X
K

e�2�E�K��e2��K� � e�2���K� � 1�	jKiRRhKj�̂R�x��̂R�x0�
�

� h0M j 0Mi�R
�
��x�R��x

0� � R��x�R
�
��x
0�� �

X
K

e�2�E�K��2K� � 1�
X1
m�0

H!m
�K	�x; x0�:

(B30)

Then, from Eq. (B30) we have at once that [see Eq. (B13)]

Tr ��̂c�̂R�x��̂R�x0�� � h0M j 0Mi�R���x�R��x
0� � R��x�R���x

0�� � Tr��̂Rvac�̂R�x��̂R�x0��; (B31)

where we have used Eq. (B25). Finally, from Eqs. (B10), (B21), (B23), and (B31) we have
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Tr ��̂R�2�f �̂R�x��̂R�x
0�� � �2

���R��x�R��x
0� � R���x�R

�
��x
0� � R���x�R��x

0� � R��x�R
�
��x
0�� � Z�2

�Tr��̂Rvac�̂R�x��̂R�x
0��;

(B32)
and Eq. (5.18) follows directly.

APPENDIX C: INERTIAL CALCULATION

In this Appendix we want to show that one obtains
exactly Eq. (5.29) when computing the change in
h�̂�x��̂�x0�i in the inertial scheme. For this case we are
going to use the scalar source given by Eq. (4.9) written in
the form

j�x� � q�0

	�z�
���������������
t2 � �2

0

q
����������������

t2 � �2
0

q ; (C1)

where �0 � 1=a and a is the acceleration of the source.
Using the inertial field operator

�̂�x� �
Z 1
�1

dp� p�x�âp �  
�
p�x�â

y
p�; (C2)

where  p�x� represents a plane wave with frequency!p �

�
������������������
p2 �m2

p
,

 p�x� �
1�������

2�
p ���������

2!p
p e�i!pt�ipz; (C3)

in Eqs. (4.1) and (4.2), it can be seen that the second order
renormalized change in h�̂�x��̂�x0�i between states jfi and
j0Mi is given by

C�2�in �x; x
0� � 4 Im�Q�x�	Im�Q�x0�	; (C4)

where

Q�x� �
Z
M
d2x0

Z 1
�1

dpj�x� �p�x0� p�x�: (C5)

Recall that for the quantized scalar field we are considering
the positive frequency function is given by

i�����x; x0� � h0Mj�̂�x��̂�x0�j0Mi �
Z 1
�1

dp �p�x0� p�x�

(C6)

and from [10] we have the following result:

�����x; 0� �
1

4
�

8>><
>>:
H�2�0 �m

���������������
t2 � z2

p
� t > jzj;

2i
� K0�m

���������������
z2 � t2

p
� jtj< jzj;

�H�1�0 �m
���������������
t2 � z2

p
� t <�jzj:

(C7)
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From now on we shall suppose that x 2 F. Using the fact
that �����x; x0� � �����x� x0; 0� and Eq. (C7) it can be
seen that

Im �Q�x�	 �
q�0

4

Z t�

�1

dt0����������������
t02 � �2

0

q J0�m
�����������������
�2
�t0�

p
�; (C8)

where


�t0� �
1

2
���t� t0�2 � �z�

����������������
t02 � �2

0

q
�2� (C9)

and 
�t�� � 0. To get Eq. (C8) we have used that
H�2�� �y� � J��y� � iY��y� and the fact that J0�y�, Y0�y�
are real for y � 0. Making the changes of variables t0 �
�0 sinh��=�0� and u �

�����������������
�2
���

p
we obtain

Im�Q�x�	 �
q�0

2

Z 1
0

uJ0�mu�����������������������������������������������������
4�2

0�
2 � �u2 � �2

0 � �
2�2

q du

�
q�0

2
K0�m�0�J0�m��; (C10)

were we have used x � �t; z� and t � � cosh��p=�0�, z �
� sinh��p=�0� [see Eq. (A2b)]. The derivation that leads to
the second equality in Eq. (C10) is analogous to that which
leads to Eq. 13.54(1) of [24]. Thus we have proved that

C�2�in �x; x
0� � q2�2

0K0�m�0�
2J0�m��J0�m�

0�; (C11)

which coincides functionally with Eq. (5.29). In this com-
putation one has to apply the Wick theorem with the notion
of time and normal ordering associated to the inertial time
parameter t. However, the effect of this choice of time does
not show up in the physical change of the two point
function but only in renormalization terms. Note that, in
contrast to the accelerated frame calculation, we did not
need to introduce any regulator into the current (neither
any cutoff as in the inertial frame calculation in [21]).
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