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1 Problem

Deduce the lab-frame potentials, electromagnetic fields and Poynting vector of an electric
charge q with rest mass m that moves parallel to a uniform external electric field Eext = E0 x̂.
Comment on the physical character of these fields in the idealized case of an infinite time
domain for the motion.

2 Solution

This problem has a long history, in which everyone admires the mathematical elegance of
the formal solution, but opinions differ as to the physical significance of the idealization that
the motion began infinitely far in the past and will continue indefinitely. And, the notion of
a static electric field of infinite spatial extent is also somewhat problematic.

2.1 The Motion

The force on the charge in the (inertial) lab frame is constant, F = qE0 x̂, which suggests
that the motion is that for uniform acceleration. However, “uniform acceleration” cannot
mean constant acceleration in the (inertial) lab frame, as this would eventually lead to
faster-than-light motion. Rather, (following Born [1]) we note that for motion parallel to
the electric field, the acceleration is uniform with respect to the instantaneous rest frame of
the accelerated object, since the component of the electric field parallel to the motion is the
same in this frame as in the lab frame.

Quantities in this frame will be designated with the superscript �.
From sec. 10 of Einstein’s first paper on relativity [2] we have that for acceleration

parallel to the velocity v of an object, the acceleration in the lab frame is related to that in
the instantaneous rest frame according to,

dv

dt
= (1 − v2/c2)3/2dv

�

dt�
, (1)

where c is the speed of light in vacuum. In this, two powers of
√

1 − v2/c2 ≡ 1/γ come from
the transformation of relative velocity, and another comes from time dilation.

For uniform acceleration a� = dv�/dt� = qE�/m = qE0/m (in Gaussian units), eq. (1)
can be integrated to find the velocity v. Thus, the acceleration in the lab frame is related
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to that in the instantaneous rest frame according to,

dv

(1 − v2/c2)3/2
= a� dt,

v√
1 − v2/c2

= γv = a�t, and
dx

dt
= v =

a�t√
1 + a� 2t2/c2

. (2)

supposing that v = 0 when t = 0. Integrating eq. (2), we obtain,

x = x0 +
c2

a�

(√
1 + a� 2t2/c2 − 1

)
= x0 − c2

a�
+

√(
c2

a�

)2

+ c2t2, (3)

where x0 is the x-coordinate of the object at time t = 0.
We take x0 = c2/a� ≡ b, and write the motion as,

x(t) ≡ xb =
√
b2 + c2t2, y = 0 = z. (4)

The (proper) time t� on a clock carried by the accelerating object is related by,

dt� = dt
√

1 − v2/c2 =
dt√

1 + a� 2t2/c2
, (5)

and hence,

t� =
c

a
sinh−1 a

�t

c
, t =

c

a�
sinh

a�t�

c
. (6)

Using this, eqs. (2) and (4) can be rewritten as,

v = c tanh
a�t�

c
=
c2t

xb
, and xb = b

(
cosh

a�t�

c
− 1

)
. (7)

As such, uniformly accelerated motion is often called “hyperbolic motion”.1,2,3

2.2 The Potentials

The rest of this note largely follows the book of Schott (1912) [6].
We compute the electromagnetic potentials V and A of the uniformly accelerated charge

via the prescription of Liénard [7] and Wiechert [8],

V (x, t) =

∫
qδ(t′ − tr)

R(t, tr)
dt′ =

q

R− βr · R
, A(x, t) = βrV, (9)

1Hyperbolic motion appears to have been first discussed briefly by Minkowski [3], and then more fully
by Born [1] and Sommerfeld [4].

2An extended object that is subject to the same uniform acceleration at all of its point is observed to
have the same length in the lab frame at all times; there is no Lorentz contraction observed in the lab frame
in the case of uniform acceleration of an extended object. See, for example, the Appendices of [5].

3For times such that |at| � c, the position is well approximated by the Newtonian form,

x ≈ b +
at2

2
(|at| � c). (8)
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where4

R = x(t)− xb(tr) =
(
x−

√
b2 + c2t2r

)
x̂ + ρ ρ̂, (12)

is the position vector from the charge at the retarded time (called τ by Schott [6]),

tr = t− R(t, tr)

c
, (13)

to the observer at position x at the present time t, ρ =
√
y2 + z2,

βr =
v(tr)

c
=

ctr
xb(tr)

x̂. (14)

Equations (12) and (13) combine to give a quadratic equation in tr with solution,

ctr =
ct(x2 + b2 + ρ2 − c2t2) − xs

2(x2 − c2t2)
, (15)

where,

s =
√

(x2 + ρ2 + b2 − c2t2)2 − 4b2(x2 − c2t2) =
√

(x2 + ρ2 − x2
b)

2 + 4b2ρ2, (16)

and the minus sign has been chosen for the term xs so that tr < 0 when t = 0. Then,

R = ct− ctr =
ct(x2 − b2 − ρ2 − c2t2) + xs

2(x2 − c2t2)
, (17)

xb(tr) =
√
b2 + c2t2r =

x(x2 + b2 + ρ2 − c2t2) − cts

2(x2 − c2t2)
, (18)

βr =
ctr
xb(tr)

=
ct(x2 + b2 + ρ2 − c2t2) − xs

x(x2 + b2 + ρ2 − c2t2) − cts
, (19)

R − βr · R = R− βr[x− xb(tr)] = ct− ctr − ctr
xb(tr)

[x− xb(tr)] = ct− βrx

=
s(x2 − c2t2)

x(x2 + b2 + ρ2 − c2t2) − cts
, (20)

4The usual integration over the delta function is based on,∫
qδ[f(t′)]

R
dt′ =

∫
qδ(f)

R

df

df/dt′
=

q

R df/dt′|f=0
, where f = t′ − t +

R(t, t′)
c

, (10)

so that f = 0 for t′ = t − R/c = tr, and using eqs. (12) and (14) we find,

R
df

dt′
= R +

R

c

dR

dt′
= R +

R · vr

c
= R − x(t) − xb(t′)

c
· dxb(t′)

dt′
= R −R · βr. (11)
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and the potentials (9) can be written as5

VSchott = q
x(x2 + b2 + ρ2 − c2t2) − cts

s(x2 − c2t2)
, ASchott,x = q

ct(x2 + b2 + ρ2 − c2t2) − xs

s(x2 − c2t2)
. (21)

The potentials (and fields) are zero for x < −ct.6
These potentials appear to be singular at the planes x = ±ct.7 To see that the singularity

occurs only for x = −ct we follow Schott in multiplying and dividing eq. (21) by x(x2 + ρ2 +
b2 − c2t2) + cts (or by ct(x2 + ρ2 + b2 − c2t2) + xs) to find,

VSchott = q
(x2 + ρ2 + b2 − c2t2)2 + 4b2c2t2

s[x(x2 + ρ2 + b2 − c2t2) + cts]
, ASchott,x = q

4b2c2t2 − (x2 + ρ2 + b2 − c2t2)2

s[ct(x2 + ρ2 + b2 − c2t2) + xs]
,(23)

Then, for x = ±ct where s = b2 + ρ2 these become,

VSchott(x = ±ct) = q
(ρ2 + b2)2 + 4b2c2t2

(x+ ct)(ρ2 + b2)2
, ASchott,x(x = ±ct) = q

4b2c2t2 − (ρ2 + b2)2

(x+ ct)(ρ2 + b2)2
,(24)

which are singular only for the plane x = −ct.
However, the potentials found above suffer from a defect apparently first noticed only in

1955 by Bondi and Gold [9],8 that the corresponding electromagnetic fields do not satisfy
Maxwell’s equations in the plane x+ ct = 0. This can be attributed to the creation of the
charged particle at t = −∞ with speed vx = −c and with singular fields and potentials,
while the Liénard-Wiechert forms (9) tacitly assume there is no singular behavior at early
times. The defect can be remedied by expressing the singular behavior for x = −ct in terms

5These results are given on pp. 64-65 of [6].
6An “amusing” result holds for the special case that the retarded time is zero, tr = 0, when the retarded

position of the charge is (b, 0, 0), and the retarded velocity is zero, βr = 0.
Then, R = ct according to eq. (20), and according to eq. (9) the potentials at tr = 0 are

V (tr = 0) = q/R , A(tr = 0) = 0. (22)

That is, the scalar potential has the apparent form of the static Coulomb potential.
However, the form (22) holds, for the present time t > 0, only on a sphere of radius R = ct about (b, 0, 0)

(= the location of the accelerated charge when it is instantaneously at rest), and not at other locations.
That is, the potential VSchott of eq. (21) is not the Coulomb potential in general, although it happens to be
so at any time t > 0 on a sphere of radius ct about (b, 0, 0).

7The potentials are also singular at the location of the charge, x = xb, ρ = 0. Close to the charge, the
potentials are approximately those of a uniformly moving charge, as discussed further in sec. 2.4.

8See also [10, 11, 12].
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of delta functions,9,10

V (x = −ct) = −q ln
b2 + ρ2

b2
δ(x+ ct), Ax(x = −ct) = q ln

b2 + ρ2

b2
δ(x+ ct). (30)

2.3 The Electromagnetic Fields

The electromagnetic fields follow from the potentials (21) according to,

E = −∇V − 1

c

∂A

∂t
, B = ∇ ×A, (31)

such that the nonzero field components for x > −ct are,

Ex = q
4b2(x2 − ρ2 − x2

b)

s3
, Eρ = q

8b2xρ

s3
, Bφ = q

8b2ctρ

s3
(x > −ct), (32)

in cylindrical coordinates (ρ, φ, x) with φ̂ = x̂× ρ̂.
The electric field lines E for times t = ∓b/c, when the charge is at x =

√
2b are shown as

solid lines in the figures below (from paper I of [10]), with the dashed lines being the Poynting
vector S (sec. 2.5). The plane x = −ct, on which the field lines appear to terminate, has
moved to the left between figures (a) and (b).

9As discussed in eqs. (15)-(16) of [12], the retarded time associated with the plane x = −ct is tr = −∞,
and the retarded distance (12) can be (delicately) approximated for tr = t′ → −∞ as,

R(t, t′) =
[(

x −
√

b2 + c2t′2
)2

+ ρ2

]1/2

≈ [(x + ct′)2 + b2 + ρ2]1/2 ≈ −(x + ct′) − b2 + ρ2

2ct′
, (25)

so that the first form of eq. (9) gives the potential for x = −ct, due to the contribution at t′ = −∞, as,

V (x = −ct) = q

∫
t′=−∞

δ(ct − R − ct′)
R/c

dt′ ≈ −q

∫
δ

(
x + ct +

b2 + ρ2

2ct′

)
dt′

t′
= q

∫
δ(ξ − η)

dη

η
, (26)

where ξ = x + ct, η = −(b2 + ρ2)/2ct′ > 0 with dt′/t′ = −dη/η and t′ → −∞ corresponding to the lower
limit of the η integration. For fixed t we have dx = dξ, such that,∫

V (x = −ct) dx ≈ q

∫ ∫
δ(ξ − η)dξ

dη

η
= q

∫
t′→−∞

dη

η
= −q ln η = −q ln

b2 + ρ2

b2
+ q ln

−2ct′

b2
. (27)

10Since the retarded velocity associated with x = −ct is −c x̂, Ax(x = −ct) = −V (x = −ct). Hence, the
singular potentials at x = −ct can be written as,

V (x = −ct) = −q ln
b2 + ρ2

b2
δ(x + ct) + q ln

−2ct′

b2
δ(x + ct), (28)

Ax(x = −ct) = q ln
b2 + ρ2

b2
δ(x + ct) − q ln

−2ct′

b2
δ(x + ct). (29)

The awkward terms in ln(−2ct′/b2) have no effect on the fields E and B, and can be removed by the gauge
transformation V → V − ∂Λ/∂ct, Ax → Ax − ∂Λ/∂x with Λ = q ln(−2ct′/b2)δ(x + ct), leading at last to the
forms (30). While the full potential (28) is positive (for positive q), the first, physical term is negative.
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The figures suggest that the fields close to the charge resemble those of a uniformly moving
charge, while away from the charge they curve towards the image charge at x = −xb. This
will be verified in sec. 2.4.

Note that the pattern of field lines is as if there were a (negative) image charge at
x = −xb = −√

b2 + c2t2 (beyond the “event horizon”), as also shown in the left figure below
(from p. 68 of [6], with ct = 4b/3). Section 2.3.1 below will continue this theme.

In the plane x = −ct, where the potentials (30) are singular, the fields are those of a
singular wavefront,

Ex = −q 4b2

(b2 + ρ2)2
, Eρ = 2q

ρ

b2 + ρ2
δ(x+ ct) = −Bφ (x = −ct), (33)

where the form for Ex is the limit of that in eq. (32) as x→ −ct.
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An electric field line of the accelerated charge for x > −ct does not “end” where it
intercepts the plane x = −ct, but has a kink there, and heads off within this plane to
ρ = ∞. The fields in this plane are essentially transverse, in contrast to those for x > −ct,
as emphasized in [11] from which the figure on the right above is taken.

The fields are zero for x < −ct, and the (moving) plane x = −ct is a kind of “event
horizon” in the limited sense that observers at x < −ct cannot be aware of the accelerated
charge prior to time t = −x/c. This contrasts with the case of a charge in uniform motion,
whose field lines fill all space at all times.

The premise of uniformly accelerated motion for all times is that somehow the charge
is brought into existence at (x, y, z, t) = (∞, 0, 0,−∞) with initial velocity v = −c x̂. The
“initial” field lines are largely a “pancake” of transverse lines as in eq. (33), with E = B and
E · B = 0, as for “radiation” fields.11

As time increases (from t = −∞), these transverse “radiation” fields, in the plane x =
−ct, slowly pull away from the charge (which is at xb =

√
b2 + c2t2), and the fields are

nonzero in the region x ≥ −ct. For x > −ct the electric field lines are approximately those
associated with a uniformly moving charge at xb plus an image charge at −xb, while these
lines bend into the plane x = −ct and the field is zero for x < −ct.

2.3.1 Electric Field in Bipolar Coordinates

The electric field lines (but not the scalar potential) for x > −ct lie on surfaces of constant
coordinate in a bipolar coordinate system with foci at x = ±xb(t), illustrated in the figure

11Following an earlier discussion by Fermi [15], Weizsäcker [16] and Williams [17] noted that the electro-
magnetic fields of an electron in uniform relativistic motion are predominantly transverse, with E ≈ B (in
Gaussian units). This is very much like the fields of a plane wave, so one is led to regard a fast electron as
carrying with it a cloud of virtual photons that it can shed (radiate) if perturbed. See also [18].

7



above.12 Following pp. 66-67 of [6], we define,

x =
xb sinhψ

coshψ − cosχ
, ρ =

xb sinχ

coshψ − cosχ
. (34)

For use below we note that,

β2 =
v2

c2
=
c2t2

x2
b

=
c2t2

b2 + c2t2
, so that

1

γ2
= 1 − β2 =

b2

x2
b

, (35)

and,

s =
√

(x2 + ρ2 − x2
b)

2 + 4b2ρ2

=
x2
b

(coshψ − cosχ)2

√
[sinh2 ψ + sin2 χ− (coshψ − cosχ)2]2 + 4(1 − β2) sin2 χ(coshψ − cosχ)2

=
x2
b

(coshψ − cosχ)2

√
4 cos2 χ(coshψ − cosχ)2 + 4(1 − β2) sin2 χ(coshψ − cosχ)2

=
2x2

b

coshψ − cosχ

√
1 − β2 sin2 χ. (36)

The so-called scale factors for bipolar coordinates are,

hψ = hχ =
xb

coshψ − cosχ
, (37)

and the unit vectors (with directions shown in the figure on the previous page) are,

ψ̂ =
1

hψ

∂r

∂ψ
=

1 − coshψ cosχ

coshψ − cosχ
x̂− sinhψ sinχ

coshψ − cosχ
ρ̂, (38)

χ̂ =
1

hχ

∂r

∂χ
= − sinhψ sinχ

coshψ − cosχ
x̂ − 1 − coshψ cosχ

coshψ − cosχ
ρ̂, (39)

where r = x x̂ + ρ ρ̂.
Then, from,

E = Ex x̂ + Eρ ρ̂ = Eψ ψ̂ + Eχ χ̂, (40)

we have that,

Eψ = Ex x̂ · ψ̂ + Eρ ρ̂ · ψ̂ = q
4b2(x2 − ρ2 − x2

b)

s3

1 − coshψ cosχ

coshψ − cosχ
− q

8b2xρ

s3

sinhψ sinχ

coshψ − cosχ

=
4qb2x2

b

s3

(sinh2 ψ − sin2 χ− (coshψ − cosχ)2)(1 − coshψ cosχ)

(coshψ − cosχ)3
− 8qb2x2

b

s3

sinh2 ψ sin2 χ

(coshψ − cosχ)3

= −8qb2x2
b

s3

(1 − coshψ cosχ)2 + sinh2 ψ sin2 χ

(coshψ − cosχ)3
= − 8qb2x2

b

s3(coshψ − cosχ)

12The 3-dimensional coordinate system obtained by rotating the 2-dimensional bipolar coordinate system
about the x-axis is called a bispherical coordinate system.
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= −qb
2(coshψ − cosχ)2

x4
b(1 − β2 sin2 χ)3/2

= −q (coshψ − cosχ)2

γ2x2
b(1 − β2 sin2 χ)3/2

, (41)

Eχ = Ex x̂ · χ̂+ Eρ ρ̂ · χ̂ = −q 4b2(x2 − ρ2 − x2
b)

s3

sinhψ sinχ

coshψ − cosχ
− q

8b2xρ

s3

1 − coshψ cosχ

coshψ − cosχ

= −4qb2x2
b

s3

[sinh2 ψ − sin2 χ− (coshψ − cosχ)2] sinhψ sinχ

(coshψ − cosχ)3

−8qb2x2
b

s3

sinhψ sinχ(1 − coshψ cosχ)

(coshψ − cosχ)3
= 0. (42)

This confirms that the electric field lines follow lines of constant χ, which are circles that
pass through x = ±xb, as if an image charge −q were at x = −xb in addition to the actual
charge q at x = xb. Of course, the physical electric field exists only for x ≥ −ct > −xb, and
only the field for x > −ct is described by eqs. (41)-(42).

The magnetic field (32) for x > −ct, written in bipolar coordinates, is,

Bφ = q
8b2ctρ

s3
= q

β sinχ(coshψ − cosχ)2

γ2x2
b(1 − β2 sin2 χ)3/2

= β sinχEψ . (43)

2.4 Potentials and Field Close to the Charge

To discuss the potentials (and fields) close to the charge we introduce the distance r from
the present position of the charge to the observation point, and the angle θ between r and
the positive x-axis,

r =
√

(x− xb)2 + ρ2, x = xb + r cos θ, ρ = r sin θ. (44)

Then, from eq. (16), for small r we have,

s =
√

(−2xbr cos θ + r2 cos2 θ)2 + 4b2r2 sin2 θ ≈ 2r
√
x2
b cos2 θ + x2

b(1 − β2) sin2 θ

= 2rxb

√
1 − β2 sin2 θ, (45)

noting that β2 = v2/c2 = c2t2/x2
b = c2t2/(b2 + c2t2), so that 1/γ2 = 1 − β2 = b2/x2

b . Then,
eq. (21) becomes (for small r where x2 − c2t2 ≈ x2

b − c2t2 = b2),

V ≈ 2xbb
2

sb2
=

1

r
√

1 − β2 sin2 θ
, Ax ≈ 2ctb2

sb2
= βV, (46)

which are the potentials of a uniformly moving charge with velocity β = β x̂. Similarly, from
eq. (32),

Ex ≈ q
4b2(x2 − x2

b)

s3
≈ q

8b2xb(x− xb)

8r3x2
b(1 − β2 sin2 θ)3/2

= q
x− xb

γ2r3(1 − β2 sin2 θ)3/2
, (47)

Eρ ≈ q
8b2xbρ

s3
= q

ρ

γ2r3(1 − β2 sin2 θ)3/2
, E ≈ q

r

γ2r3(1 − β2 sin2 θ)3/2
, (48)

Bφ ≈ q
8b2ctρ

s3
= q

βρ

γ2r3(1 − β2 sin2 θ)3/2
= βEρ, B ≈ β × E, (49)
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which are the electromagnetic fields of a uniformly moving charge.13

2.5 Poynting Vector

The Poynting vector for x > −ct is, using the fields (41) and (43),

Sx>−ct =
cE × B

4π
=
cEψ ψ̂ × Bφ φ̂

4π
=
cEψBφ

4π
χ̂ = −cq

2β

4π

(coshψ − cosχ)4 sinχ

γ4x4
b(1 − β2 sin2 χ)3

χ̂. (52)

Lines of the Poynting vector for x > −ct point along χ̂, following circular paths (which
are orthogonal to the circular lines of the electric field), as shown in the figures on p. 5.
The Poynting vector does not emanate from either the present or the retarded position of
the charge! Furthermore, the Poynting vector is proportional to β = v/c = ct/xb, and so
vanishes for all x > 0 at the time t = 0 when the charge is instantaneously at rest.14

13We can also consider the case when the observer is on the x-axis, along which the charge moves. Then,
coordinate ρ of the observer is zero, and the (positive) quantity s of eq. (16) simplifies to s(ρ = 0) =∣∣x2 − b2 − c2t2

∣∣, where xb =
√

b2 + c2t2 is the position of the charge q at time t. The potentials (21) for
ρ = 0 become,

V = q
x(x2 + b2 − c2t2) − cts

s(x2 − c2t2)
, Ax =

vr

c
V = q

ct(x2 + b2 − c2t2) − xs

s(x2 − c2t2)
, (ρ = 0). (50)

We now take the additional limit that x, c |t| 
 b, for which v ≈ ±c, and s = ±(x2 − c2t2) for x >
<

c |t|,

V ≈ ±q

(
x ∓ ct

x2 − c2t2

)
=

±q

x ± ct
, Ax = −q

(
x ∓ ct

x2 − c2t2

)
=

−q

x ± ct
(ρ = 0, x, c |t| 
 b). (51)

The interpretation of these results requires care.
For t ≈ −∞ the charge is at x ≈ −ct 
 0 and has velocity v ≈ −c (in the −x direction). As discussed

in sec. 2.2, the potentials are zero for x < −ct, i.e., for x ∼ xb when t ≈ −∞. At such early times, the
potentials are nonzero only for x > −ct ≈ xb, so only the upper sign in the last of eq. (51) is physically
meaningful. Then, the potentials along the axis (for x > xb 
 0 are V ≈ q/(x + ct) ≈ q/(x− xb) ≈ −Ax, as
expected for a charge in uniform motion (where in this case v ≈ −c along the x-axis).

For t ≈ +∞, the charge has velocity v ≈ +c along the x-axis, and its position is xb ≈ ct(1+b2/3c2t2) > ct.
Since the charge is moving at close to lightspeed, the potential for x > xb > ct is little affected by the
recent location of the charge, and rather is a “memory” of the charge at times much earlier than t, since
the retarded time of eq. (14) goes to zero for x > xb ≈ ct. Indeed, the potentials for x >∼ xb ≈ ct according
to eq. (51) are V ≈ q/(ct + x) ≈ q/2x ≈ −Ax, which are the (tiny) retarded potentials for a charge with
uniform velocity from times t <∼ 0, when the charge was near x = b but its velocity was still large (v ≈ −c).
On the other hand, for x < ct ≈ xb, the potentials is V ≈ q/(ct− x) ≈ q/(xb − x) ≈ Ax, which has the form
of the potentials of charge position xb ≈ ct with uniform velocity v ≈ c, according to an observer at position
x. There remains the case where ct < x < xb, which is a very small region for which the observer is close to
the charge at time t. In this region, V ≈ q/(x − ct), which is very large, similar to the case of an observer
close to and “behind” a charge moving with uniform velocity v ≈ c, for which the potential is very large in
the plane x = xb.

Hence, the potentials are close to those of a uniformly moving charge with |v| ≈ c in the limit that ρ = 0
and |t| ≈ ∞, but only for observers “behind” the charge (x < xb for t > 0, and x > xb for t < 0). The
main argument of this section is perhaps to be preferred in this regard, with its results (46)-(49) that the
potentials and fields close to the charge are those of a charge in uniform motion with the instantaneous
velocity of the accelerated charge at any time t (and for nonzero ρ).

14The magnetic field also vanishes at time t = 0 according to eq. (32), as noted in eq. (250) of [25]. And,
the electric field E(x, ρ; t = 0) is along the line from the retarded position xb(tr) = (x2+ρ2+b2)/2x (recalling
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The Poynting vector for x = −ct is, using the fields eq. (32) extrapolated onto this plane
(as suggested by Schott [6]),

Sx=−ct,Schott =
c

4π
(Ex x̂ + Eρ ρ̂) × Bφ φ̂ =

c

4π
(EρBφ x̂ −ExBφ ρ̂)

= − c

4π

32q2b4xρ

(b2 + ρ2)5

(
2xρ

b2 + ρ2
x̂ + ρ̂

)
. (54)

The Poynting vector (54) vanishes at x = 0 at all times, such that no energy is transported
across this plane (which is not crossed by the accelerated charge), so it would be inconsistent
to have nonzero fields for x < 0 at t > 0. This defect is remedied by the forms (30) to the
potentials for x = −ct, for which the Poynting vector (55) has a nonzero component in the
−x direction at all times. Using eqs. (33) one finds [9, 12],

Sx=−ct =
c

4π
(Ex x̂ + Eρ ρ̂) × Bφ φ̂ =

c

4π
(EρBφ x̂ − ExBφ ρ̂)

= −cE
2
ρ

4π
x̂− c

4π

8q2b2ρ2

(b2 + ρ3)3
δ(x+ ct) ρ̂, (55)

where Sx = −E2
ρc/4π = −uc and u is the field energy density. That is, the flux of energy in

the −x direction in the plane x = −ct is just the product of the energy density in that plane
and its velocity. In eq. (55) the field energy density u in the plane is infinite, but as shown
in paper III of [10], the total field energy in the plane x = −ct can be written as,

Ux=−ct =

∫
ux=−ct dVol = U−∞ − 2q2a2t

3c3
, (56)

where U−∞ is the infinite field energy created along with the accelerated charge at t = −∞.
The field energy in the plane x = −ct decreases with time and approaches zero as t → ∞.
The energy lost by the plane x = −ct appears as an increase of the field energy in the region
x > −ct > 0 for t < 0, and in the region −ct < x < 0 for t > 0.

Energy flows radially inward on the plane x = −ct, according to eq. (55). This flow can
be said to exit the plane through its “bounding surface” x = −ct+, leading to the increase
of field energy in the region x > −ct noted above.

eq. (18)) of the accelerated charge. To see this, refer to the figure below and note that x̂ = θ̂ sin θ − r̂ cos θ

and ρ̂ = θ̂ cos θ + r̂ sin θ, such that E = Ex x̂ + Eρ ρ̂ = (Ex sin θ + Eρ cos θ) θ̂ − (Ex cos θ − Eρ sin θ) r̂ and,
since xb = b at t = 0,

Eθ(x, ρ; t = 0) = q
4b2(x2 − ρ2 − x2

b)
s3

b

R
+ q

8b2xρ

s3

xb(tr) − x

R
= 0. (53)
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2.6 Does a Uniformly Accelerated Charge “Radiate”?

That the Poynting vector (52) does not flow out from the charge is consistent with the fact
that the “radiation-reaction” force,15

Frad react =
2q2

3c3
v̈, (57)

vanishes for uniform acceleration.16 This has led many people to conclude that a uniformly
accelerated charge does not “radiate” [1, 25, 26, 27, 28].17 On the other hand, the flux of
energy associated with the Liénard-Wiechert fields (32) across a sphere of large radius R
at time t′ = t + R/c whose center is at the location of the charge at time t is 2q2a2/3c3

[29], which indicates that it is reasonable to say that the accelerated charge does “radiate”,
according to the so-called Sommerfeld criterion.18,19

The author considers that the term “radiation” should be used wherever the Poynting
vector is nonzero [14], and that a uniformly accelerated charge involves “radiation” even
though the Poynting vector does not emanate from the charge.20,21,22

15For commentary by the author on the “radiation reaction”, see [19, 20].
16Equation (57) was first deduced by Lorentz [21, 22] by arguments that did not mention radiation, but

strictly holds only for v � c. While the nonrelativistic radiation-reaction force, eq. (57), vanishes for uniform
acceleration, it is not immediately obvious that this also holds for large velocities. The relativistic version
of the radiation-reaction force was first deduced by Abraham [23, 20],

Frad react =
2q2γ2

3c3

(
v̈ +

γ2v(v · v̈)
c2

+
3γ2v̇(v · v̇)

c2
+

3γ4v(v · v̇)2

c4

)
, (58)

and verified by von Laue [24] to follow from the nonrelativistic result (57) via a Lorentz transformation.
From eq. (2) we have that v̇ = a�/γ3, v̈ = −3a�v/γ4c2, which imply that Frad react = 0 for any speed v in

case of uniform, linear acceleration.
Surprisingly, Schott did not realize this in [6], as inferred from his comments on pp. 63 and 245-246.
17Many of the opinions on this issue are reviewed in [10], particularly paper II.
18The fields of the electric dipole of charge q at xb(t) and −q at −xb(t) do not satisfy the Sommerfeld

radiation condition, as noted in [1, 13].
19As argued by Schott [30], p. 51, in the case of uniform acceleration “the energy radiated by the electron

is derived entirely from its acceleration energy; there is as it were internal compensation amongst the different
parts of its radiation pressure, which causes its resultant effect to vanish.” This view is somewhat easier
to follow if “acceleration energy” (now often called the Schott energy) means energy stored in the near and
induction zones of the electromagnetic field [10, 29, 31], as Schott was unaware of the transfer of energy from
the plane x = −ct into the region x > −ct. See also sec. 2.8.

20In the view that any nonzero Poynting vector is “radiation”, DC circuits with a battery and resistor
involve “radiation” which flows from the battery to the resistor. Also, a charge with uniform velocity involves
“radiation”, which is consistent of the virtual-photon concept advocated by Fermi [15] and developed further
by Weizsäcker [16] and Williams [17].

21Teitelboim [32] has developed a Lorentz-invariant partition of the field energy-momentum tensor (of a
single electric charge) into pieces he calls “bound” and “radiated”. In this view, a uniformly accelerated
charge is a sink of bound energy-momentum and a source of radiated energy-momentum, with the fluxes of
these two being equal and opposite close to the charge. See also paper II of [10].

22See sec. 4.2 of [19] for commentary as to how Hawking-Unruh radiation (a quantum effect) by an
accelerated charge supports the existence of “ordinary” radiation by that charge.
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2.7 Field Momentum and Electromagnetic Mass

If we suppose the charge q is a spherical shell of radius r0 when at rest, then when at velocity
v the shell is Lorentz contracted in the x-direction, and is an oblate spheroid of semiminor
axis r0/γ. On p. 69 of [6] Schott computes the electromagnetic field momentum outside that
oblate spheroid to be 2q2γv/3r0 to lowest order, and identifies the electromagnetic mass as
2q2/3r0, which value he attributes to Lorentz without reference.23

A more complete calculation of the field energy and momentum of the fields of the
accelerated charge is given in sec. IV, paper III of [10],

Ux>−ct =
q2γ

2r0

(
1 +

v2

3c2

)
+

2q2γa�v

3c3
, Px>−ct =

2q2γ

3r0
v − 2q2γa�

3c3
v. (59)

The field energy and momentum in the plane x = −ct are,24

Ux=−ct = U−∞ − 2q2γa�v

3c3
, Px=−ct = −U−∞c x̂ +

2q2γa�

3c3
v, (60)

and the total field energy and momentum are,

Utotal = U−∞ +
q2γ

2r0

(
1 +

v2

3c2

)
, Ptotal = −U−∞c x̂ +

2q2γ

3r0
v. (61)

The terms in 1/r0 can be interpreted (“renormalized”) as aspects of the energy and momen-
tum of the particle. In this view, the field energy and momentum not associated with the
energy/momentum of the particle are constant, ending up all in the region x > −ct “behind”
the wavefront for large positive times.

2.8 The Schott/Interaction Field Energy-Momentum

Examination of the total field energy and momentum of the accelerated charge in sec. III,
paper III of [10] led to the identifications of terms called the Schott energy and momentum,
where the Schott energy was first deduced by a different argument in [30].

The Liénard-Wiechert fields E and B [7, 8] of an accelerated charge each have two
terms, which we call the “Coulomb” and “radiation” fields. Only the latter depend on the
acceleration a.

23Probably the missing reference is to eq. (28) of [33], which considers the field momentum of a uniformly
moving shell of charge. This had been considered earlier by J.J. Thomson in [34] for v � c, and in sec. 16
of [35] for arbitrary but constant v.

On p. 61 of [6] Schott refers to the “relativistic mass” γm as the “Lorentz mass”. This is likely a reference
to the statement at the end of sec. 12 of [33], “the masses of all particles are influenced by a translation to
the same degree as the electromagnetic masses of the electrons.” However, Lorentz distinguished between
“longitudinal” and “transverse” masses, and the possible role of γm as “the” relativistic mass was not
emphasized until 1912 (the publication year of [6]) by Tolman [36]. That Schott does not mention Einstein
in this context is perhaps a precursor of the present trend [37] to deny the existence of “relativistic mass”,
or at least that Einstein had anything to do with this concept.

24Recall eq. (2) that γv = a�t.
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When computing the field energy and momentum, which are quadratic in the fields, one
gets three terms, which can be called “Coulomb only”, “radiation only”, and “Coulomb-
radiation interference”, as in E = ECoulomb + Erad,

UE =

∫
E2

8π
dVol =

∫
E2

Coulomb

8π
dVol +

∫
ECoulomb · Erad

4π
dVol +

∫
E2

rad

8π
dVol, etc. (62)

For a model of an electric charge being a spherical shell of radius r0 in its rest frame (assuming
no distortion of its shape even if accelerated), the field energy and momentum (at some time
t) are,

U =
q2γ

2r0

(
1 +

v2

3c2

)
− 2q2γ4a · v

3c3
+ Urad , P =

2q2γ

3r0
v − 2q2γ2

3c3

{
a +

γ2(a · v)v

c2

}
+ Prad.(63)

As discussed in sec. 2.7, the first terms of U and P are to be absorbed/“renormalized”
(along with the energy-momentum of the Poincaré stresses [38] that hold the shell of charge
together) into the “mechanical” energy-momentum of the charge.

The middle terms of eq. (63) form a 4-vector USchott (whose time component was first
identified in eq. (6) of [30] and is now often called the Schott energy),

USchott,μ = −2q2

3
aμ = (USchott, cPSchott) = −2q2

3c2

{
γ4a · v

c
, γ2a + γ4

(
a · v

c

) v

c

}
, (64)

where aμ is the acceleration 4-vector. That is, the Schott energy-momentum is associated
with the interference terms, between the “Coulomb” and the “radiation” fields, in the field
energy-momentum.25,26

2.8.1 A Charge Moving in a Uniform Magnetic Field

Another example in which the Schott energy-momentum plays a role is the motion of a charge
q in a uniform magnetic field B. The Lorentz force qv/c×B is always perpendicular to the
velocity v, so this force does not change the magnitude of v. In the absence of radiation,
the charge would move in a helical trajectory with constant radius about an axis parallel to
B.

The momentum radiated by the charge at time t in this helical motion is always parallel
to v(t), according to observers at distance R from the charge (at time t, such the this is
the retarded time with respect to the observation of the radiation at time tobs = t + R/c).
However, the radiation-reaction force, eq. (57) in the low-velocity limit, is along v̈, which is
not along v, but along v⊥, the component of the velocity perpendicular to B. Hence, the
change in momentum of the radiating charge is not the negative of the momentum radiated
(according to the distant observers); the “radiation reaction” is not necessarily a simple

25We find the above discussion in [10] more pertinent than subsequent attempts [39, 40] to “simplify” the
argument for the “student”.

26For other examples in which interference terms in the field energy play an important role, see [41].
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application of Newton’s third law, but can include more subtle effects of rearrangement of
the field energy-momentum of an accelerated charge.27

This led to various discussion in the 1960’s and early 1970’s [46, 47, 48, 49, 50, 51, 52,
54, 53, 55], the most dramatic of which was the claim in [47] that the charge could radiate
more energy than its initial kinetic energy. This incorrect result was traced to improper
treatment of the Schott field energy [48, 49, 55]. A more minor issue was that a photon,
emitted in the forward direction in the frame in which the trajectory is planar, is not in
the forward direction in the lab frame [50, 51, 52, 53], which illustrates the complexity of
Lorentz transformations of radiation patterns.28

2.9 Additional Remarks (Mar. 2019)

The electromagnetic fields of a uniformly accelerated electromagnetic multipole of any order
are discussed in [57].

It is demonstrated in [58, 59] that the exterior fields of a uniformly accelerated shell of
charge, which is spherical in its rest frame, are the same as those of a uniformly accelerated
charge. Series expansions of the fields of such a charged shell under any acceleration are
given in sec. 57 of [60], and in Appendix C of [61].
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[57] J. Bičak and R. Muschall, Electromagnetic fields and radiation patterns from multipoles
in hyperbolic motion, Wiss. Z. Friedrich-Schiller U. 29, 15 (1990),
http://physics.princeton.edu/~mcdonald/examples/EM/bicak_wsnr_29_15_90.pdf
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