Translation:On bodies that are to be
designated as "rigid"

On bodies that are to be designated as "rigid" from the standpoint of

the relativity principle;
by G. HErGLOTZ

In his paper "The theory of the rigid electron in the kinematics of the principle of
relativity"[X], Born has tried in an obvious way to give a definition of those types of
motion of a three-fold extended deformable continuum, that are to be designated as
"rigid" from the standpoint of the relativity principle. However, this was actually
formulated by him only in one special and easily executed case. In particular the
question remained untouched, whether six degrees of freedom can be ascribed to a
"rigid" body defined in this way, as it may be wished by us if we want to ascribe the
same fundamental meaning to this new 'rigid" body in the system of the
electromagnetic world-view, as it is ascribed to the ordinary rigid body in the system of
the mechanical world-view.

Exactly this question will find its answer in the following lines in so far, as it will be
proven that the motion of that "rigid" body is in general — i.e. neglecting special, more
specified exceptions — unequivocally defined by the arbitrarily specified motion of a
single of its points.

Particularly the fact may be mentioned for the purpose of illustration, that when one of
its points is fixed, the body of Born can only uniformly rotate around a fixed axis that
goes through that point.[]
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lll. The Lorentz transformation and hyperbolic geometry in R3.

IV. The one-parametric groups of motions in R; and the corresponding forms of
motion of "rigid" bodies.

I. Definition of the "rigid" body from the
standpoint of the relativity principle.

Following Mmkowskr'st3] lines of thought, the right angled coordinates x,y,z of a
material particle, in connection with time t when it is located at this point, should be
interpreted as the four coordinates of a point of the four-fold extended manifold
R4($,y, Z,t)

Furthermore, a measure-determination should be introduced in this R4 as well,
according to which the square of the distance ds of two infinitely adjacent points is (the
speed of light should from now on be set equal to 1)

(1) ds? = da? + dy? + d2® — dt®

The line elements of real length (ds2 > 0) are denoted as space-like, and such of purely

imaginary length (d32 < O) are denoted as time-like. The directions of the line

elements of length zero that emerge from one point constitute a real cone — the
minimal cone of the relevant point — whose two surfaces are separated by dt > 0 and
dt < 0, and shall be denoted as front-cone and back-cone.

Two directions (dz : dy : dz: dt) and (dz’ : dy : d2' : dt') are normal to each other
according to that measure-determination, if

(2) dz dz' +dydy +dzd? —dtdt' =0

The elements that are normal to the time-like elements are necessarily space-like, but
not vice versa.

The group of those co!® affine transformations (the functional determinant +1) of
x,y,z,t shall be denoted as motions in R4, which leave ds? unchanged and which don't
mutually permute the front- and back-cones. The Lorentz transformations are thus the
group of oo® motions, which leave the zero point £ =y=2=1t=0 fixed — the
rotations around the zero point, — and conversely the group of motions emerges from it
by addition of the co* translations.
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After these generally known definitions we think of any deformable continuum as in
motion in ordinary three-dimensional space Rg(z,y,2) — the coordinates at time t of

any material particle (individualized by three parameters &, i, ) may be:

T = w(é.a n, C’ t)a
(3) y= y(g’ n, Ca t)a
z = z(é‘a n, Ca t)
To achieve a greater symmetry, some kind of local time  may be introduced in some
way:
@ r=1(6n,6.8), o >0

by which it can be written in a more uniform way instead of (3):

T = z(ga 7, Cs t)7
(5) y= y(£, n, Ca t)a

z= z(ﬁ, n, Ca t)a

t=1t(m (1)

The successive values of x,y,z,t for a specified material particle (£, 7, () now correspond
in Ry to a certain curve Cg, o — the world-line of that particle — and its equations in (5)
are given for &, n, ¢ (regarded as fixed) and 7 (regarded as variable).

The motion of the entire continuum is thus represented in R4 by a three-parameter
family of curves C(£,n, (), which is exactly the co® world-lines of the particles of the
continuum.

If we additionally presuppose that no particle of the continuum can travel by the speed
of light or faster then the speed of light, then every line element of any curve is time-
like. The definition of the "rigid" body that was given by M. Born from the standpoint of
the relativity principle, can thus be formulated:

"The continuum is moving as a "rigid body", when in Ry the world-lines C(&,n, () of
its points are equidistant curves."4]

This means, the normal-distance of two infinitely adjacent curves should be constant
along themselves, or in other words, the strip that is formed by two infinitely adjacent
curves shall everywhere be of equal thickness.

To formulate this condition analytically, we calculate the line element ds by (5) in
curvilinear coordinates &, ), ¢, 7. If we write for uniformities sake:
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(6) 61:&62:77,63:(764:7-’

then it shall be
4

(7) ds® = Zij A;;dg;dg;
1

Since after general presupposition of subluminal velocities, the elements of the curves
C(&,n, ) are time-like, it is given:

(8) Ay <0

by introduction of the linear differential form

(9) dv = Ay4d&y + Agsd€s + Azeds + Agadéy

and the quadratic one that only contains d¢, dn, d¢:
3 1 ,
(10) do® = E i AgjdgdE; — Au (A14d€1 + Aoydés + Azqdés)
1 4

we can write:
2 2 1 2
(11) ds®* = do* + —(dv)
Au

If the element ds shall be normal to curve Cg, ¢, then it must be:

Ods?
12 — =0,%e.dv=0
(12) 84t t.e. dv

and the normal-distance of curves C¢ , - and Ce,.4¢ pydn ¢+da¢ are equal to do’.

The condition of rigidity thus reads:

(13) %daz =0

in other words, the six coefficients of the quadratic differential form do? must be
independent from 7.
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But also physically, that definition of rigidity can be formulated equally simple.

If the velocity of the particle (¢,7,() at time t is denoted by s, and its components by

Uu,v,Ww:
(14) 82 = u? 4+ % 4+ w?
then
6t 2
15 Ay=-(1-8) (=
(15) 4 (1-5%) <8T>
ot
(16) dl/=(udw—|—'vdy—|—'wdz—dt)a—
-

If we put dt = 0 and consider all particles of the continuum at the same time ¢, then

(a7 ds? = do® + dy? + d2? = do® — de +vdy +w dz)®
1-—s2
thus
(18) do? = dz? +dy?® + d2? + (udz + v dy + w dz)?
1— g2

Obviously do® = €* is now the equation of an infinitely small ellipsoid of revolution of

semi-axes ¢,€,€y/1 — s, with the particle (&,m,{) as its center and its velocity

direction as its figure-axis. The requirement (9/ 8’7’)d0’2 = 0 thus means, that the
volume elements (which are infinitely small spheres of radius € in the state of rest) are

transformed into an oblate ellipsoid of revolution, with a semi-minor axis e4/1 — s in
the direction of velocity and a semi-major axis € normally to it. In other words, the
definition of a "rigid" body given by Born can be brought into this extremely suggesting
form:

"If the velocity within the body is changing in space and time, then the LORENTz-FITZGERALD
contraction hypothesis shall be valid for every single volume element."(®!

By that, the single volume element possesses a six-fold freedom of motion, because the
ellipsoid additionally allows oo® linear homogeneous deformations in it. But is the
same true for a body continuously formed by such elements of finite extension
throughout? This question shall be dealt with in the following section.
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I1. Determination of the equidistant families of
curves of R,, that contain an arbitrary given
curve.

We imagine that within such a family of curves C(§,7,(), a certain curve Cp is
somehow chosen, and the parameter values (&, 10, (o) may be attributed to it.L®]

Then we use the quadratic differential form do® in d¢, dn, d¢, whose components only
depend on &, n, ¢, and which, as the square of the length of a space-like line element,
has a definite positive character, and we introduce in it the variables a,b,c instead of
&, n, ¢ in the following way:

In the three-fold extended manifold of (&,7,(), we imagine the drawing of the two-
parameter dependent family of curves of the extremal (propagating from point

(&0,m0,¢p)) of the integral / do — the geodesic lines of form do? —, and let b,c be the
values of both parameters for a line that goes through the point (£, 7, () of that family
of curves, and a is the integral / do taken along it from (&, 70,¢p) to (&,1,¢) — the

geodesic distance of both points. If (for that geodesic polar coordinate system a,b,c) it is

given:
6 = §(0'7 ba C),
(19) n = n(a,b,c),
C = C(a, ba C),

then the differences & — &, n — mo, ( — {p for a = 0 and all b,c will vanish, but when
divided by a (with convenient choice of b,c) then for a = 0 and all b,c it will remain
finite, and if do? is expressed by this variables, it will assume the form:[7!

(20) do? = da® + ¢(db, dc)

where (db, dc) also means a definite positive quadratic differential in db, dc alone,

whose components still contain a,b,c, but like the previous of do? don't contain 7. And
instead of T another magnitude J of the following kind shall be introduced as well:

We imagine as determined that solution of the differential equation:
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— =——(Ay—+Ay—+ A
da An 14 + Ay + A3y

(21) dr 1 ( 0¢ on % )
da Oa Oa
which assumes the value 7 = 9 for a = o:

(22) 7 =17(a,b,c,?)

and by this last equation, instead of 7 we have introduced the parameter ¢ which
becomes identical with 7 specifically along the curve Cj.

Expressed by a,b,c,t it will be:

4
1 ) i Audé; = Bdb+ Cdc+ O do

vV—Au 7

and da will vanish from the linear differential expression dv.

(23)

If we replace in this way the parameter (¢, 7, ¢) [which are constant along any curve] by
(a,b,c), and the parameter 1 [which is variable along any curve] by ¢, then it will be

(24) ds® = da® + ¢(db,dc) — (B db+ C dc+ © dd)?

From this form we can immediately concludel®], that the curves:

b = const., ¢ = const., J = const.

in Ry(z,y,2,t) are extremals of the integral / ds, which means that they are straight

lines. Those oo® straight lines G (b,c,¥) thus found, orthogonally intersect the
equidistant curves C(a,b,c), because of the missing term with da dd in ds?. If we
especially take from them the oo? straight line that belongs to the same ¢-value, and
imagine the point a = 0 as marked on any of them, then this point is nothing else than
the point 7 = 9 on the curve Cjy through which they all go, and because they must be
perpendicular to curve Cy at this point, they are exactly the co? perpendiculars of curve
Cy at point 7 = 4. They together form the normal plane of curve Cj at this point, with
which the surface ¢ = const. is consequently identical.

The magnitude a is the length / ds, calculated along the straight line G} .y beginning

at the intersection point with curve C, — being the distance of the corresponding space
point of curve Cj.
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The summary of that yields, that the expressions of x,y,z,t by a,b,c,J are necessarily of
the form:

T =g (19) +azy (b’ &) 19)7
Y =% (19) + ay (ba &) 19),
z=29(9F) + az (b, ¢, 9),
t =ty (19) + aty (b, c, ’19)

To simplify the notation, S shall be momentarily denoting a sum that is extended over
the four coordinates x,y,zt, in which, however, the term that is related to the t-
coordinate has to be considered as negative.

Since the straight lines G(b, ¢, 9}) are the normals of the curve Cy (a = 0), it follows

6:130

26
(26) Sz —— 59

=0

and from that by differentiation to b and c it must be:

3(120 3:81 . Sawo 6:01

27 = =
@7) 8819 ob oY Oc

If the form ds?® made by (25) will be identified with the expression (24), then the
equations follow:

¢(db,dc) — (B db+ C dc)* =

2
(28,0) — a2S (%db + %dc) = a2¢(db, dC),

ob Oc

3:171 6:1:1

287 _B == 2 _— 2

(28,B) © as@b 59 a” B,
8:1:1 6581

o8, _ _ 2 9T _ g2,

(28,Y) Co = aSBc 59 a’ry
6.’130 3:1:1

28,0

(28.5) _e? s(a19 &9)

in which the coefficients of the binary, quadratic differential form )(db, dc) and the
magnitudes  and y are evidently independent from a.

Especially we think of ¢ as the "proper time" along the curve Cy, thus
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6:130 2 .
(29) s(%) _

which can always be achieved by a convenient choice of 7, with which ¢ coincides along

Co.

From equations (28, 4, B3, 7) it follows for a = 0, one after the other:

a*/o a*Jo

and by recognizing, that

(.-,

in the same way from (28,a):
1

@) (retae,de)) = wiav,de)
a 0

and this eventually gives by (28,a):

(33) (B db+ C dc)? = p(db, dc) — a® (ich(db, dc))
0

a

However, as the coefficients of (db,dc) are free from ¢, then it follows that the
magnitudes B,C and thus S, y are independent from 4.

Now there are two possibilities:

A. We have B = 0, C = 0. Then
(34) ds® = da® + ¢(db,dc) — ©%d?,

from which we can see, that the areas ¢ = const. — i.e. the normal planes of curve Cj —
were orthogonally intersected by the curves C(a,b,c). Thus it can be said:

The equidistant curves are the orthogonal-trajectories of a family of planes.
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Conversely, also the orthogonal-trajectories of any family of planes form an equidistant
family of curves, since also with respect to the measure-determination ds® in Ry, the
theorem remains valid according to which the distance between two moving points is
constant when their velocities are always normal to the connecting line.

B. At least one of the magnitudes B,C is not zero. Then it follows from (28,5,y), that
also @ is independent from ¢, and thus in the expression:

(35) ds® = da® 4 ¢(db,dc) — (B db + C de + © dd)?

all coefficients are free from ¢ at all.

In this case, let us consider the one-parameter group of transformations of R4, in which
the point with parameter values (a,b,c,) goes over to those, to which the following
parameter values belong:

(36) d=ab=bcd=c,¥=09+h
According to the things recognized above, it is given for those transformations:
(37) ds? = ds?

therefore they are motions in R4, and since in those motions any single curve C(a,b,c)
is evidently moved in itself, then the following statement can be made:

The equidistant curves are the trajectories of a one-parametric group of motion.

Conversely, also the trajectories of a one-parameter motion group always form an
equidistant family of curves, since the sector that is limited by two infinitely adjacent
curves can be moved in itself, thus it must have the same extensions everywhere.[9!

Having noticed this, we think of the curve Cj as arbitrarily given, and we pose the
exercise to find out all equidistant families of curves that belong to that curve.

By (A) we have an unequivocally defined solution in the orthogonal trajectories of the
normal planes of Cj in all cases. Shall there be others besides those, then the related
families will necessarily be summarized under (B) and therefore curve Cy must form a
one-parameter group of motions in itself. Conversely, also the trajectories of any one-
parameter group of motions of curve Cy in itself (which don't fix Cj, pointwise) give a
solution of the exercise, and by all existing groups of this kind also all other solutions
are given.
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In order to move Cj in itself, it is necessary and sufficient, that the three curvatures°]
of that curve — that are invariants of motion and that let the curve remain fixed except
its position in space — are constant along the curve, so that the curve is, so to speak, a
helix. In addition, if Cy shall have more than one such group of motions in itself, then
there must be motions that let Cy pointwise remain fixed, and any single one of such
motion corresponds to another group of motions of the curve in itself. The fixpoints of
any motion in R4 now forms (here we can neglect the case of a single fixpoint) either a

straight line or a plane Rj3, and in reverse these formations remain fixed pointwise at

00® or co! motions.

Depending on whether curve Cy (with constant curvatures) exists in no space lower

than R3 or R, or eventually is a straight line, it has 1 or co! or co® one-parameter

motion groups in itself, and exactly that is the number of the additional solutions of the
exercise, that are given by the trajectories of that group.

If one takes into consideration, that Cj is the image of a point of a "rigid" body - its
world-line — then the answer can be given to the question after the freedom of motion
of a "rigid" body:

In Born's kinematics of rigid bodies, the motion of the whole body is generally
unequivocally determined by the arbitrarily defined motion of a single point of it.

An exception only takes place, when the world-line of that point in R4 has constant
curvatures, namely in this case — depending on the condition that it doesn't lie in a
lower space than (at the most) Rg or Ry, or eventually it is a straight line — there

additionally exist 1 or ool or co® possible motions.

However, although by this result the immediately given purpose — the determination of
the degrees of freedom of a "rigid" body — is achieved, it is apparently necessary to
particularly consider all the possible forms of motion, especially also in the special
cases. Although they cannot be used for a general definition of a "rigid" body, they have
a special meaning from the standpoint of the relativity principle. It is therefore
convenient to incorporate some simple facts of non-Euclidean geometry, which in any
case can be used with advantage for questions concerning the theory of relativity — for
example for the composition of velocities — as it will be shown at a specific place.

IT1. The Lorentz transformation and hyperbolic
geomelry in Rj3.
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The measure-determination introduced in Ry(, v, 2,t) coincides in the bundle of co®
— for example, the lines that emanate from the origin O(z =y =2 =t =0) - with
CavLEY's metric that is based on the real minimal cone of that point as absolute cone. By
projective representation of the line bundle at the points of Rg, it goes over into a real
plane of second order, the measure-determination therefore goes over into CAYLEY's
metric that is based on that real F5. The rotations around O in R4 — the Lorentz
transformations — correspond to the motions in Rg which are related to this hyperbolic
measure-determination. To give this obvious connection a certain form and take
advantage from it for the current purpose, we have to remind some known things of
hyperbolic geometry.[11

To project a line bundle of R4 through O upon Rj3 in a simple manner, one only has to
set x,y,z,t equal to the homogeneous right angled coordinates z;, 29, 23, 24 in R3:

(38) 2=y 2 =Y, 23 =2 24 =,
by which the minimal cone in R3 corresponds to the unit sphere around the origin:
(39) A+aA+22-22=0

so that it has to serve as absolute plane of the measure-determination that has to be
introduced in R3.

The one- two- and three-dimensional structures of R4 (which are plane and directed
through O), are corresponding to the points, straight lines and planes of R3. By their
orientation in relation to the sphere, they visualize the orientation of the corresponding
structures to the minimal cone (for example time-like lines = inner points, space-like
lines = outer points). Any such structure of R4 is normal to each other, if the
corresponding structures of Rg are conjugated to each other as regards the polar
connectivity at the sphere (for example, two lines perpendicular to each other = two
lines of which all are located at the polar plane of the other). The four edges of a polar
tetrahedron of the sphere are corresponding in R4 to four straight lines that pass
through O and that are mutually normal; if we choose them in a convenient order and
take the 2,4/, 7, t'-axis as direction (the corresponding edge in the interior of the
sphere, of course, as t'-axis) of a new coordinate system, then those new coordinates
z',y, 2t are connected with the old ones x,y,z,t by a Lorentz transformation.

If in addition
(40) Diks Pik + Pri = O) (’L, k= 17 27 3) 4)

are the components of a vector of second kind (Minkowskr), then its two invariants are:

https://en.wikisource.org/wiki/Translation:On_bodies_that_are_to_be_designated_as_%22rigid%22 4/5/20, 11:49 PM
Page 12 of 24



(1) { D =po3p14 + p31P24 + P12D34,

A =p§3 "‘pzzﬂ +p%2 + pf4 +P§4 +p§4

and if one puts, in accordance with the reality relations of p;; (where f;; are to be
understood as real magnitudes):

D23 1 P31 P12 : tP14 : IP24 : P34
(42) = fog : fa1: fi2 : fia @ foa : faa,
fit + fri =0,

then the vector of second kind can, regarding the relations of its components,
illustrated by the linear complex of R3:

4

(43) > ik fir (2 — Zz) =0
1

As long as D # 0, one has a general complex, and then!!2] there are two specified real
straight lines that are conjugated polars, either with respect to the sphere or with
respect to the complex. If one chooses a polar-tetrahedron of the sphere, from which
two opposite edges coincide with this straight line, then in the corresponding system
z',y,7,t all components p;,, of the vector of second kind will vanish, except of two

whose values can immediately expressed by D and A.

However, if D = 0 (singular vector according to Minkowski), then this complex becomes
a special one, consisting of all straight lines that intersect a specified straight line. This
intersects, or is tangent to, or misses the sphere, depending (ps3, p31,p12 considered as
real) on whether A > 0, A =0, A < 0. The corresponding two-dimensional plane of
R4 can be used for clarification of the vector with respect to the relations of its
components. Simultaneously, analogous to the preceding, by its aid the coordinate
systems of R4 can immediately be given in which as much as possible of the vector
components will vanish.

Especially any infinitely small Lorentz transformation can be illustrated by a vector of
second kind, the points of R4 are all moving through it perpendicularly to its complex
plane. Depending on whether D # 0 or = o, then in R4 only the origin or also the
points of the two-dimensional plane (used above) remain fixed. The latter intersects, or
is tangent to, or misses the minimal cone depending on whether A > 0,= 0, < 0.

If one eventually imagine an arbitrary Lorentz transformation that transforms
(', ,2,t) into (x,y,z1), then this obviously corresponds to a collineation of R3 that
transforms the unit sphere in itself - exactly a hyperbolic motion of R3.
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Conversely, all of such -collineations correspond to two linear homogeneous

transformations in x,y,z,t with determinant 1 which leave ds? unchanged. The identical

collineation of z; particularly corresponds to the two transformations:

(44) {wz w:, y= v, z= 2, t= t:
z= -2, y= -y, z= -2, t= —t

From these, only the first is a Lorentz transformation, since the second one replaces the
front- and back-cone of the point O against each other. The Lorentz transformations
correspond one-to-one to hyperbolic motions in Rg.

Now in addition, the sphere will be transformed in itself by any of such a motion, so
that the complex parameter (imagined as extended upon it):

(45) Z:zl—I—izz :a:-l-iy

24 — 23 t—=z

is subjected to a linear substitution with generally complex coefficients (the additionally
conjugated complex parameter, the conjugated complex substitution), and to all such
substitutions corresponds a specified hyperbolic motion in Rj3.

If z',9/,7,t are transformed into x,y,zt by a Lorentz transformation, then the
magnitudes:

z+ iy 1 _ z' + iy
2=

46 Z=
(46) t— 2z t— 2

are connected to each other by a linear substitution (with complex coefficients)

aZ' + 8
(47) = —
YZ' + 6

and all such substitutions are corresponding to a certain Lorentz transformation.3]

If one wants, as it is necessary for the following, to write the one-parameter group of
Lorentz transformations, then one only has to take the one-parameter group of linear
substitutions in Z, and to form the corresponding Lorentz transformation. The first
ones are now (by J we think of the [real] parameter, by A of an arbitrary real
magnitude):
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l. Z = 7' N9 loxodromic  group

. Z=2Z¢€" elliptical "
m. z=2z¢° hyperbolic "
\"A Z2=7+9 parabolic "

They correspond to the following groups of Lorentz transformation (for the sake of
convenience they shall be denoted by the same names):

1. Loxodromic group

z+iy =(z' +1iy)e?, t—z=({t —2)e’,
z—iy=(z' — iy')e‘”"’, t+z=(t + 2/)6_19,

I1. Elliptic group

x + iy =(z' +1iy))e?, z=2,
x — iy =(z' —iy)e *?, t=t.

I1I1. Hyperbolic group

r=z', t—z=(t —2)e
y=y, t+z=(t+2)e?

IV. Parabolic group

z =z’ + 9 —2), y =y
z=z’+19w'+%192(t'—z/), t—z=t' — 2.
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One notices at once, that these four groups are only different from each other by the
kind of vector of second kind that illustrates the corresponding infinitesimal
transformation.

IV. The one-parametric groups of motions in R4

and the corresponding forms of motion of "rigid"
bodies.

If one writes for the sake of symmetry:

“8) {a:l =z, Ty =Y, T3 =2, x4 =it,

! [ | A AT
o) =z, zh, =y, xh =7, =it

then any motion in R4 can be analytically expressed in the form of a linear substitution:
4

(49) X; = a; +Zjaijw;', (7’= 172’3,4)'
1

Then |a;;| is an orthogonal determinant of value +1, additionally a4q4 is real positive and
the remaining magnitudes a;, a;; are purely imaginary or real, depending on whether
they have the index 4 or not.

If one has by (49) a continuous family of motions that depend on parameter ¢, that is,
a; and a;; are functions of 4, then by differentiation with respect to ¢ while &; remains

constant:
dz’ 4
(50) %—I—q@'—l- 1 jpijac; =0(’i=1,2,3,4)

where it is put:

( 4 dai-
. J

q; = E :J Qij——»
1 dd

(51) ¢ (¢,7=1,2,3,4)

4 day.;
pij:zkakz‘—dﬂja pij +pji =0
\ 1
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therefore also the magnitudes g; and p;; are purely imaginary or real, depending on
whether they have the index 4 or not.

If we interpret (49) as equations of the coordinate transformation from system
S(x,y,z,t) into a system §' (z', 9, 2, ') moving against it, then consequently —g; would
be the components of the vector (first kind) of velocity of the origin O’ of 8’ and —Dij
would be the components of the vector (second kind) of the angular velocity of S’
around O’, both times taken by the axis of S'.

If the family of motions forms a group, then (by convenient choice of J) ¢; and p;; are

independent from ¢, and conversely the integration of equations (50) always gives a
group of motions for arbitrary values of p; and p;;.

The trajectories of the group — the trajectories of the points fixed at S’ according to the
interpretation above — which (as we know) form an equidistant family of curves, are
illustrated by (49) with constant z{ and variable &; they of course only apparently

depend on four parameters, but actually they depend only on three parameters.

Now, after these remarks, in order to write down the possible one-parameter groups of
motion of R4, and consequently in order to simultaneously write down the
corresponding equidistant family of curves, one has to note that when the motions (49)
form a group, then the same is true for the rotations:

4
(52) T = Zj aijz; (i = 1,2,3,4)
1

and this must be — in general only after performing a suitable Lorentz transformation to
z; and of the same to z - identical with one of the four groups of Lorentz

transformations specified in the preceding section; namely with the group I. II. III. IV.,
depending on whether it applies to the invariant D and A of the vector p;; :

. D II. D=0, A
- { £ 0, 0, A>0,

II. D=0, A<0, IV. D=0, A=0.

By that, the possible value systems of a;; can immediately be given, though the values
associated with a; in all cases follow from (51):

4
(54) a; = ZJ q;j /aijdﬁ (1, = 1,2, 3,4)
1
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and specifically we can chose arbitrary constants for g;, as long as:

(55)

4 dz; \ 2 4 4 2
> (%) = 3oi(ar Dm) <o
1 1 1

at least for a certain field of values of w; Now, furthermore the values of p;; for the four

groups are one after the other:

L
IL.
III.
IV.

Pa1=—Pi2=2A, Pu=—Pps3=1
P =—p12 =1,
D34 = — P43 =1,
g1 =—p13 =1, Py =—DPuu =1

the remaining p;; are always equal to zero

and in connection with (50) they teach us, that by a convenient change of system S’ (as
well as of the system S) we always can achieve to following more simple value systems

of g;:

L ¢ =0 g2 =0, g3 =0, a4 = 0,
I -0, 0, _0, — &,
10l —a, 0, _0, —0,
V. 0, B, _0, _ 5,

Now, all this gives the following groups of motion, named after the rotation groups that
are contained in them, together with the corresponding equidistant family of curves and
motion types of the "rigid" body:

1. Loxodromic group

x4 iy =(z' + 1y )e?, t—z=( —2)e’,
z—iy=(c' —ig))e™, t+z=(t+2)e”’,

T =20, Y= Yo, z =2, ¥ =1y,

then for the corresponding motion of a "rigid" body it follows:
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(
W[+t —t
iy

(57) T+ 1y =(il:0 + ’iyo) e, u=Ig

z — iy =(xg —iyo) e_”‘“,

2 2
pr— t .
\ z \/z0+

If one uses cylindrical coordinates p, ¢, z, (a: +iy = Qei‘P) , then these equations can
also be written:

0 =00,

1 % %

_ 2 2
t-,/z — 2p-

Thus the points of a "rigid" body are moving upon sphere cylinders around the Z-axis
along curves, and which, by unwinding of the cylinder on a plane, go over into
catenaries with the velocity:

A2 + ¢
(59) PN B I
z% + t2

The points on the Z-axis are moving in this plane by the law denoted by Born as

"hyperbolic motion": z = 4 /2(2) + t2

Their world-lines are lying in Ry, while those of all other points belong to a space not
lower than Ry.

I1. Elliptic group

z +iy =(2' + iy )e”, z=2,
x — iy =(z' —iy)e *?, t =t' + §9.

Ift=o0:

T =10, Y=Y, 2= 20, ¥ ="o,
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then for the corresponding motion of the "rigid" body it follows:

.t
x + iy =(zo +iyo) €',
x — iy =(zo — iyo) e '3,
2 =20.

(60)

Thus this body rotates like an ordinary rigid body uniformly around the Z-axis.

The world-line of the points on the Z-axis are straight lines, the world-lines of all other
points belong each to Rz, but not to a space lower than it.

III. Hyperbolic group.

r=z' +ad, t—z=(t—2)e,
y =y, t+z=(t+2)e?,

Ift=o0:
T =2, Y=Y, 2= 2, ¥ =1y,

then for the corresponding motion of the "rigid" body it follows:

(
24+t —t
z=ry+alg———,
20
(61) <
Y =Y,
\ z=w/z(2) + 2

Thus its points are moving in planes normal to the Y-axis along catenaries:

1 z—2( z—2(
(62) Z2=—=2zy|e ¢« Je e
2
with the velocity:
(63) e e
63 S =
22+ t?
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the world-lines of all points belong each to Rz, but not to a space lower than it.

IV. Parabolic group.

w=w'+19(t'—z’)+%6192, y =y + pY,
z:z’—l—ﬂw'—l—%ﬂz(t'—z’)—l—%(w?’, t—z=t' — 2 + 0.

Here:

2
(64) S (Z—z) =t —2) 4+ 82 —-6(2c +¢),

thus it is necessarily § = 0.
If we put 4 = 9
T =g, Y= Yo, 2= 20, t = 1o,

then the expressions above remain unchanged due to the group property, as long as one
replaces z', v/, 2, ¥, 9 by 2o, yo, 20, to, 9 — ¥y within them. If one particularly takes:

1
190 = _E(t, —Z’),

then ty = 2.

Since for the motion of a rigid body only the trajectories of the group are of importance,

instead of
1 /
I+ —=(t - 2),
)
one can again write ¢ and then formulate the equations for the motion of a "rigid" body
as follows:
1.0
T =x9 + —0v ) Y =Yo + :3797
2
(65) 1
z=2z + 2o+ 66193, t — 2z =060
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Thus all its points are moving along space curves of third order with the velocity:

Ve +28(z—xo) + B

(66)
N z+ 6

The world-lines of all points belong each to R3, but not to a space lower than it.

If one poses for clarities sake the question, which of the formed equidistant families of
curves of class (B) simultaneously also belong to class (A), i.e, which are orthogonal
trajectories of a family of planes, then for the magnitudes g; and p;; that belong to the

corresponding group, it is given:
4 4

(67) Z’L q;dx; + Z ij pijzida; = ¢ dip
1 1

and for that it is necessary and sufficient, that the 4x5 matrix which emerges from the
determinant |p;;| by addition of row g;, has the rank 1 or 2. The related discussion

teaches, that this only occurs for the hyperbolic group II. with a = 0, by which indeed
the trajectories are the orthogonal trajectories of the planes Az + Bt = 0. The
corresponding motion of the "rigid" body reads:

(68) & =20, Y= Yo, 2= /25 + 1

This most simple translational motion, which was also discussed by Borx and denoted
as "hyperbolic motion", it thus the only type of motion that simultaneously belong to
classes (A) and (B).

Of course, the four types of motion of class (B) formed at this place, can be transformed
by an arbitrary Lorentz transformation.

Anyway, due to the given composition it is easy (by a given motion of a point of the
"rigid" body) to immediately and explicitly give the possible types of motion of class (B)
in addition to the motion of class (A). If, for example, a point of the body is fixed, then
its world-line is a straight line, but such one arises as a trajectory only in group II —
which immediately gives the fact mentioned at the beginning, that a "rigid" body with a
fixed point only can rotate around an axis that goes through it, like an ordinary rigid
body.

It may be noticed at the end, that the determination of the always possible motion of a
"rigid" body from the motion of one of its points that belong to class (A) — i.e, the
determination in R4 of the orthogonal trajectories of the normal planes of that point's
world-line — can be traced back to the integration of a Riccatian equation.
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Leipzig, December 1, 1909.

Received December 7, 1909

—

. M. Born, Ann. d. Phys. 30. p. 1. 1909.

2. After writing this treatise | became aware of a note by P. EHReNFEST, published in the
issue of November 22, 1909 in Physik. Zeitschr., that directly points to this fact by
showing in a very simple way, that a body which is once at rest cannot be set into
uniform rotation.

3. H. Minkowski, Die Grundgleichungen der elektromagnetischen Vorgénge in
bewegten Korpern, Gétt. Nachr. 1908; Raum und Zeit, Vortrag, gehalten auf der 80.
Naturforscherversammlung zu Koln. Leipzig 1909.

4. By this formulation, the formulas calculated by Born for the case of uniform
translation can immediately be written, since the equidistant curves of the (z,f)-plane
of measure-determination ds?® = dz?> — dt® are of course (analogues to
ds® = d2? + dt?) the orthogonal trajectories of a family of lines, which is exactly the
meaning of Born's formulas.

5. The same remark was given by P. EHRENFEST, /.c. This is also immediately evident by
geometry, if we consider the space-time line that corresponds to a volume element.
If its perpendicular cross-section on one location is an infinitely small sphere, then
this is because the world-line is equidistant at any place. The cross-section that is
perpendicular to the t-axis is thus, of course, exactly the preceding ellipsoid.

6. The following (for clarities sake analytically formulated) considerations have a very
simple geometrical meaning and are thus transferable on the equidistant family of
curves of an arbitrary variational problem.

7. See. G. Darsoux, Théorie générale des surfaces 2. livre V. chap. VIILI.
8. See. G. DarBoux, l.c.

9. In three-dimensional space of ordinary euclidean measure-determination, the
equidistant curve systems are either orthogonal trajectories of a family of planes, or
coaxial helixes of same pitch.

10. Concerning the differential geometry of curves in higher spaces, see for example G.
LAanDsBERG, Crelles Journ. 114. One has, for achieving the expressions of the
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curvatures for the measure-determination used here, only to replace one of the
coordinates by it.

11. Compare for the complete section especially F. KLein, Nicht-Euklidische Geometrie,
Autogr. Vorl., Géttingen 1893, as well as the short introduction concerning projective
measure-determination in Fricke-KLEIN, Autormorphe Funktionen I. Primarily note
the imaginative description of hyperbolic motions, which especially make clear the
relations of Lorentz transformations.

12. CLeBscH-LINDEMANN, Vorles. Gber Geometrie 2, 1. p. 343 ff.; see also F. LINDEMANN,
Unendlich kleine Bewegungen und Kraftsysteme bei allgemeiner MaBbestimmung,
Diss. Erlangen 1873.

13. For the relevant formulas, see F. KLeN, I.c.. They can be written very compendious
by using quaternions.
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