ceed to use the most convenient gauge and coordinate sys-
tem alone with no fear of loss of generality.
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The meaning of spatial geometry in a reference frame is carefully analyzed. It is shown that in a
uniformly accelerating reference frame spatial geometry is Euclidean if distance is measured with
measuring rods and non-Euclidean if distance is measured with light signals. The distance
function and the square of the line element associated with each mode of measurement are

obtained.

I. INTRODUCTION

This article examines the nature of spatial geometry in a
uniformly accelerating reference frame in flat space-time.
Aside from its intrinsic interest, the subject provides an
excellent pedagogical vehicle for illustrating a variety of
geometrical concepts.

Spatial geometry in a reference frame depends on the
nature of the frame and the manner in which the distance
between two points in the frame is measured or defined.
Our interest in this article will be in distance as measured
using either measuring rods or clocks and light signals.
These distances will be referred to as the rod and radar
distances, respectively.

In an inertial frame, the rod and radar distances between
two points are equal and the associated geometry is Euclid-
ean. In a noninertial frame, the rod and radar distances
between two points are not in general equal and the asso-
ciated geometries are not in general Euclidean.

In an earlier article in this Journal,' we have discussed in
detail the nature of a uniformly accelerating reference
frame and demonstrated its utility in bridging the concep-
tual gap between special and general relativity. Only the
one-dimensional uniformly accelerating reference frame
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was considered; hence, any discussions of the geometry in
the frame were necessarily limited. In the present article,
we extend our results to the three-dimensional uniformly
accelerating reference frame and use it as a vehicle for illus-
trating the geometrical properties of noninertial frames.

Explicit expressions are obtained for the rod and radar
distances between two points in a uniformly accelerating
reference frame. We find (i) the two distances are not
equal, (ii) the geometry associated with rod distance is
Euclidean, and (iii) the geometry associated with radar
distance is not Euclidean.

The non-Euclidean character of the geometry in a nonin-
ertial reference frame is usually illustrated by considering a
rotating reference frame and noting that if measuring rods
at rest in the frame are placed along the circumference of a
circle centered on the axis of rotation, they will be contract-
ed, whereas measuring rods placed along the radius of such
a circle will not be contracted; hence, the usual Euclidean
relationship between the circumference of a circle and its
radius will not hold.? The uniformly accelerating reference
frame provides an alternate and, in many ways, simpler
vehicle for illustrating the non-Euclidean character of the
geometry in a noninertial frame.

The fact that spatial geometry is dependent on the means
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used to measure distance is usually illustrated with rather
contrived examples. If, for example, a differentially heated
plate is measured with a rod with an appreciable coefficient
of thermal expansion, the resulting geometry will be non-
Euclidean and will depend onf the value of the coefficient of
thermal expansion of the rod.? In this example, it is easy to
recognize the inadequacy of the measuring instrument.
However, in the case of the uniformly accelerating refer-
ence frame, two highly acceptable methods of measuring
distance result in one instance in a Euclidean geometry and
in a second instance in a non-Euclidean geometry.

In summary, our objective in this article is (i) to definea
uniformly accelerating reference frame in three dimen-
sions; (ii) to show that the observers making up the frame
are at rest with respect to one another and, hence, the frame
is a rigid frame; (iii) to clarify the exact meaning of spatial
geometry in a reference frame; (iv) to show that to obtain a
satisfactory radar distance function it is necessary to em-
ploy clocks that keep coordinate time rather than proper
time; (v) to obtain expressions for the rod and radar dis-
tances between two points in a uniformly accelerating ref-
erence frame; and (vi) to use the above results to illustrate
the fact that spatial geometry in a noninertial frame de-
pends not only on the nature of the frame but also on the
mode of measuring distances.

II. DEFINITIONS AND NOTATION
A. Units

To simplify the mathematical expressmns, we shall work
in a system of units in which ¢ = g = 1, where ¢ is the speed
of light and g is some convemently chosen reference accel-
eration. Using such units is equivalent to writing all equa-
tions in terms of dimensionless quantities without specifi-
cally introducing new variables to designate the resulting
quantities. At any stage in the development, the equations
can be written in dimensionless form, or equivalently, in
terms of arbitrary units by dividing each quantity appear-
ing in the expression by whatever combination of quantities
¢ and g will make it dimensionless. In particular, length
quantities are divided by ¢?/g and time quantities by c/g.

B. Measurement

Geometry is based on measurement and measurement
requires instruments with which to make the measure-
ments. We assume we have available a large number of
identically constructed and calibrated devices capable of
measuring proper times and lengths. For convenience, we
will refer to one of these devices as a metrosphere. Else-
where® we have described in detail a hypothetical instru-
ment whose operation is based on the properties of light
signals and free particles and which has this capability. For
the purposes of this article, however, it is not necessary to
know how a metrosphere works. It is sufficient to know
that it is capable of functioning as a standard rod or stan-
dard clock.

C. Observers

An observer is considered to be a hypothetical intelligent
point particle,® equipped with a metrosphere and having
the following properties: (i) negligible interaction with the
surroundings, (ii) the ability to move arbitrarily consistent
with the usual relativistic limits, and (iii) the ability to
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communicate with other observers by means of light sig-
nals. We assume that we have available an unlimited sup-
ply of observers.

D. Reference frames

We define a reference frame to be a spatlally continuous
set of observers moving in a specified manner.’

A particular event can be uniquely specified by designat-
ing (i) the observer in the frame on whose world line the
event occurs; and (ii) the point in time, on the above world
line, at which the event occurs. Which observer is present
at the event determines the “where” of the event and the
point on the observer’s world line at which the event occurs
determines the “when” of the event.

In an arbitrary reference frame neither the rod nor radar
distance between two observers will in general be constant.
In this article, we will consider only reference frames in
which these distances are constants. In such reference
frames all the observers are by definition at rest with re-
spect to one another and the frame may be envisioned as a
rigid three-dimensional structure.

E. Coordinatized reference frames

Given a frame of reference, numbers can be assigned to
each of the observers in the frame and to each point on the
world line of each of the observers.® Such an assignment
constitutes a coordinate system for that frame. A coordi-
nate system is not the same as a frame of reference. A frame
of reference is a hypothetical physical entity. A coordinate
system presupposes a frame of reference and is a particular
mathematical entity associated with that frame.

In coordinatizing a frame, it is always possible to desig-
nate a particular observer by a set of three numbers
(x,,X5,x5) and a point on his world line by a single number ¢
in such a way that the set of four numbers (x,,x,,x5,#) var-
iesin a continuous fashion along any curve in space-time. It
is assumed that such a choice has been made. '

Given a coordinatized reference frame, a particular
event is specified by a particular set of values of the above
four numbers. The set of numbers (x,,x,,X,) designates the
observer who is present at the event and the number 7 desig-
nates the time for that observer at which the event took
place. Since the set of numbers (x,,x,,x;) identifies a par-
ticular observer, it has a meaning independent of the num-
ber #; however, the number ¢ represents a point on the world
line of a particular observer and thus requires the prior
specification of the set of values (x,,x,,x).

The notation P(x,,x,,x;) will be used in what follows to
denote the observer P who is characterlzed by the set of
numbers (x,X5,X3).

III. GEOMETRY
A. Spatial and space-time geometry

In this article, our interest is in the spatial geometry of
reference frames. The results we obtain depend on both the
nature of the reference frame and the manner in which the
spatial distance between observers in the frame is mea-
sured.

In contrast to the above situation, the object of interest in
space-time geometry is the four-dimensional manifold of
events and rather than the distance between points, one
considers the interval between events. The geometry of
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space-time is unique and, for the purposes of this article,
will be assumed to be pseudo-Euclidean. This assumption
confines us to special relativity. Although our results pro-
vide some insights into the subject of space-time geometry,
no explicit use will be made in this article of the concepts of
space-time geometry.

B. Distance functions

Ifina particular reference frame it is possible to associate
with every pair of observers (P’, P") a function 1p(P',P")
having the properties

p(P',P")>0, (1a)
p(P,P")=0,ifand onlyif P'=P", (1b)
p(P',P") =p(P",P"), (2)
p_(P'.,P'"Kp(P',P") +p(P",P"), (3

then the function is called a distance function.®

We will be interested in two approaches to the problem
of estabhshmg a distance relationship between arbitrary
pairs of observers (P',P"). The first approach is based on
the number of metrospheres or standard unit rods, each
assumed to be locally at rest in the frame, required to con-
nect P’ and P ". Thesecond approach is based on the time as
measured by P’ for a light signal to go from P’ to P” and
back. As noted in Sec. I, a distance established by the first
method will be called a rod distance and a distance estab-
lished by the second method will be called a radar distance.

C. Riemannian geometry

Given a particular coordinatized reference frame, with
spatial coordinates (X1,X2,%5), for which thére exists a dis-
tance function p, if it is possible to define a set of functions
8;; (¥1,%5,%;), where /and j range between 1-3, such that the
square of the distance dp between the observer P(x,,x,,x3)

and an arbitrary nerghbormg observer
P(x, + dx,,x, 4 dx,,x; + dx,) is given by
dp’ = 3 38y dx, dx;, )
77

then the spatial geometry of the frame for the given dis-
tance function is said to be Riemannian. '® The quantity dp
is called the line element. The existence of a distance func-
tion does not automatically imply that the square of the line
element can be written in the form given by Eq. (4).

D. Euclidean geometry

Given a coordinatized reference frame in which a dis-
tance function has been defined and which is such that the
square of the line element can be written in.the form given
by Eq. (4), if it is possible to recoordinatize the frame in
such a way that in terms of the new coordinates

dp* = z dx?, (5)

that is, in such a way that g; = §,;, where §,, is the Kron-

ecker delta, then the spatial geometry of the frame for the
given distance function is said to be Euclidean. '

IV. INERTIAL REFERENCE FRAMES

In flat space-time there exist frames of reference, called
inertial frames, in which clocks can be synchronized and in

600 Am. J. Phys., Vol. 57, No. 7, July 1989

which the geometry based either on rod or radar distance is
Euclidean.

" Let I be a particular inertial frame in which the clocks
have been synchronized and the spatial coordinates (x,,z)
of the observers have been chosen in such a way that the
square of the line element is given by dx? + d)y* + dz°.

If I represents a similarly coordinatized inertial refer-
ence frame moving with respect to 7 in the positive x direc-
tion with speed V and if at = ¢’ = 0 the origins and the
axes of the two frames coincide, then the transformation
between the two frames is given by the Lorentz transforma-
tion

xX=T(x=Vt), y=y, 2=z t'=Tlt—-"Vx),

(62)
where

T=(1-py>»-'2 (6b)
V. A UNIFORMLY ACCELERATING REFERENCE
FRAME

A, Definition

We define the uniformly accelerating reference frame 4
as the frame made up of the set of observers P(X,Y,Z)
whose positions relative to the frame I are given by (see
Ref. 1)

x=X2+t)'"? y=Y, z=2, (N

where x>0, X0, and there are not restrictions on y, z, ¥,
and Z.

The velocity and acceleration of observer P(X, Y,Z) rela-
tive to frame I can be obtained by taking the first and sec-
ond derivatives of Egs. (7) with respect to time ¢ while
holding X, ¥, and Z constant. In doing this, we obtain

x=t(X>+1t3)""Y p=0, =0, (8)
X=X2(X24+tH7¥ y=0, z=0. 9)

Relative to frame 7 the observers in frame 4 are moving
with different nonconstant velocities and accelerations.
Nevertheless, it can be shown, and will be shown below,
that the observers in K are at rest with respect to one an-
other and each observer is accelerating at a constant rate
relative to the instantaneously comoving inertial frame.

B. Comoving inertial frames

If Egs. (7)-(9) are transformed from frame I to frame
I’ using the Lorentz transformation (6), then the resulting
equations will be identical with those obtained by replacing
x,¥,z,and tin Egs. (7)—(9) withx',y’,z',and ¢ ', respective-
ly. Hence Egs. (7)-(9) are invariant in form under the
Lorentz transformation (6).

From Egs. (8), it follows that at = O frame 4 is at rest
with respect to frame 1. From the invariance of Egs. (8)
under the Lorentz transformation (6), it follows that at
t' = 0 frame A is at rest with respect to frame 7’. Hence, as
frame 4 moves it is always at rest with respect to one of the
inertial frames that are moving with respect to I in the
positive x direction. Furthermore, if these frames are coor-
dinatized in the manner described in Sec. IV, then frame 4
will be at rest with respect to a particular one of these iner-
tial frames at time zero in that frame. The frame with re-
spect to which, at a given instant, 4 is at rest will be called
the instantaneously comovmg inertial frame.

From Egs. (8) and the invariance of Egs. (9) under the
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Lorentz transformation (6) it follows that observer
P(X,Y,Z) is undergoing a constant acceleration with re-
spect to the instantaneously comoving inertial frame and if
the comoving inertial frame is coordinatized as described
above, then the acceleration will be in the positive x direc-
tion and of magnitude 1/X.

C. Proper time

Let us assume that at ¢ = 0 in frame 7 each of the observ-
ers in frame A sets his metrosphere clock at zero. The time
subsequently indicated by one of these clocks will be desig-
nated by 7. Since the metrosphere clocks measure proper
time, this time will be called the proper time. If an observer
Pis moving with speed v with respect to theinertial frame 1,
then in time d¢ the passage of proper time is given by'?

dr=(1- ) 2 dr=[1— (& + 37 + )] dr. (10)

Substituting Eqs. (8) in Eq. (10) and solving the resulting
equation we obtain, for the proper time of observer
P(X,Y,2),

7= Xsinh~'(¢/X) = X cosh~" (x/X). (11)

D. Coordinate time

For a number of reasons the proper time 7 is not particu-
larly convenient. First, clocks registering proper time can-
not be synchronized. Second, as we shall subsequently
show, although in an inertial frame one can define the radar
distance between two observers P’ and P” as one-half the
proper time measured by P’ for a signal to make a round
trip from P’ to P” and back, in a uniformly accelerating
reference frame this definition will not satisfy the condi-
tions required for a distance function. However, a time T
that does not suffer these deficiencies can be defined as

T=1/X. (12)

The time T will be called coordinate time and we will as-
sume that every observer in frame 4 has been equipped
with an auxiliary clock that keeps coordinate time. The
coordinate time T is the time designated by & in Ref. 1.
Some additional interesting properties of coordinate time
are that (i) coordinate time and proper time coincide on
the plane X = 1, (ii) the rate of a clock keeping coordinate
time coincides with the rate of arrival of signals sent at unit
proper time intervals by an observer in frame 4 located on
the X'= 1 plane, and (iii) the velocity with respect to I of
an arbitrary observer in frame A is given by (x,),2)
= (tanh 7,0,0); hence, when frame A is at rest with re-
spect to one of the comoving inertial frames; all the observ-
ers in 4 will note the same value of the coordinate time.

E. Signal transit time

The following theorem is central to our subsequent anal-
ysis of radar distance and is also of significance in analyzing
the general properties of a uniformly accelerating reference
frame.

Theorem: If in frame A a light signal is sent at coordinate
time 7', by an observer P'=P(X’,Y’',Z’) and received at

coordinate time 7, by a second observer
P"=PX",Y",Z"), then

T,-T,=K(P'.P"), (13a)
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where

K(P'P") =K(P".P') =cosh~'"{1 + [(X" —X')2
¥ Y (2 -2
2X'X"}. (13b)

Proof: Let event 1 be the emission of the light signal by
observer P’ and event 2 the reception of the light signal by
observer P”. The coordinates of events 1 and 2 in frame J
are (x,,V1,21,41) and (x5,95,25,1,), respectively; and in frame
A they are (X', Y, Z',T,) and (X", Y",Z",T,), respec-
tively. In frame J, the sigrial travels with unit speed along a
straight line; hence,

(= x4+ =y + (B —2)’ = (L —t)%  (14)
However, from Eqs. (11) and (12), it follows that
x,=X'cosh T\, =Y, z,=2",
_ ty,=X'sinh T,, (15)
=X"coshT,, y,=Y", 22=Z”, ‘
' =X"sinh T, (16)

Substltutmg Egs. (15) and (16) in Eq (14) and making
use of the identities cosh? —sinh* =1 and cosh u
cosh v — sinh u sinh v=cosh(u — v), we obtain Eq. (13).

' VL. ROD GEOMETRY IN A UNIFORMLY

ACCELERATING REFERENCE FRAME

The uniformly accelerating reference frame A is always
at rest with respect to one of the inertial frames 1, 1', I",...,
and when it is at rest with respect to a particular one of
these frames, for example, /, then the coordinates (X,Y,Z)
coincide with the coordinates (x,y,z). It follows that the
rod distance between two observers P’ and P” will be the
same as the rod distance between the two observers in
frame I'with whom P’ and P " were, respectively, coincident
at time ¢ = 0. Thus the rod distance function between two
observers P’ and P” in frame A is given by

p(Pr’Pu)z[(X//_XI)Z -
+H (Y=Y (2" -2 AT
from which it follows that the square of the line element is
given by
dp’ =dX?+dY>+dZ> (18)

It follows that the rod geometry in a uniformly accelerating
reference frame is Euclidean.

VIL RADAR GEOMETRY IN A UNIFORMLY
ACCELERATING REFERENCE FRAME

If an observer P’ sends a signal to an observer P” (event
1); observer P” receive$ and returns the signal (event 2);
and observer P’ receives the return signal (event 3); then
from the signal transit theorem it follows that

WT— =%[(T3_T2)+(T2_T1)]=%[K(P",P')
+K(P',P")] =K(P",P") (19)
and consequently,
W —7) =X'T, —X'T)=X"(T,—T))
=X'K(P',P"). (20)

From Eq. (20) it follows that if one tries to use the prop-
er time 7 to set up a radar distance by defining the radar
distance p(P',P") by the quantity (7, — 7,)/2, then
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p(P\P"))#p(P",P"); hence, condition (2) is not
satisfied.

On the other hand, if one uses the coordinate time 7" to
set up a radar distance by defining the radar distance
p(P’,P") by the quantity (T; — T,)/2, then all of the re-
quired conditions for a distance function will be satisfied.
Using (T5 — T,)/2 to define the radar distance between
the two observers P’ and P", we obtain

p(P'.P")=cosh™ {1+ [(X" —=X")*+ (¥Y" — ¥')?
+(Z"=Z"H2/2X'X"}. (21)

If we designate a particular observer on the plane X = 1
by O and the time that elapses on the clock of O when a
signal traverses the closed path OP’'P"O as Ar(OP'P"0),
then it can be shown that the exact same distance function
would have been obtained if we had definedp(P’P ") by the
relation  AT(OP'P”0) — JAr(OP'O) — \AT(OP"0).
Hence, the given distance function is also the distance func-
tion that would have been obtained if all distances were
measutred by means of light signals sent out by a single
observer on the X = 1 plane. ‘

From Eq. (21) it follows that the square of the line ele-
ment is given by

dp’ = (dX*+dY*+dZ*)/X>. (22)
It can be shown by the usual techniques of metric differ-
ential geometry that frame 4 cannot be recoordinatized in

such a way that dp®> = dx} + dx} + dx?%; hence, the radar
geometry will be non-Euclidean.

VIII. CONCLUSION

The most significant result obtained in the preceding
analysis is the signal transit theorem (13). With it one is
able not only to confirm the fact that the radar distance
between any two observers in a three-dimensional uniform-
ly accelerating frame remains constant, but also one is able
to obtain an explicit expression for this distance. Given the
distance fuinction, the associated geometry can be deter-
mined.

The definition that we have used for a frame of reference
is a definition that is more common in the Soviet Union
than in the West.'* It has the advantage of allowing a clear
distinction to be made between space and time and, also,
between a frame of reference and a coordinate system. The
former distinction allows one to separate spatial geometry
from space-time geometry. The latter distinction enables
one to recognize the fact that spatial geometry is based on
the choice of frame and the mode of distance measurement
and not on the coordinates employed.

Our presentation has necessarily been abbreviated by
limitations on the length of this article. We have, however,
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provided the reader with the necessary conceptual and ana-
lytical framework to pursue the subject in greater detail.
We have used the material in a course and found it to be
pedagogically quite helpful.

We have also tried in the present article to emphasize
those aspects of the subject that are generally ignored in
standard texts. There are a number of straightforward, but
interesting extensions of the results, which we leave to the
reader. As one example, we have simply stated that there is
no recoordinatization of the uniformly accelerating refer-
ence frame 4 that would reduce the radar distance given by
Eq. (22) to a Euclidean form. The proof of this is an inter-
esting exercise in metric differential geometry. We have
also not pursued the consequences of a geometry based on
the square of the line element given by Eq. (22). Those
consequences that do not explicitly depend on the spatial
three-dimensionality of the frame have been considered in
Ref. 1.
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