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dition inherent in the KS transformation and is closely re-
lated to the fact that the two two-dimensional oscillators
have the same angular momentum as shown in Eq. (34).
Thus, it can be seen that the equivalence between the Cou-
lomb—Kepler problem and a four-dimensional oscillator or
a pair of two-dimensional oscillators results, respectively,
in the separability of the problem in spherical polar coordi-
nates or parabolic coordinates as shown in Eq. (32) in con-
junction with Egs. (33) and (34).
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Uniformly accelerated reference frames in special relativity
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A uniformly accelerated reference frame S'is defined as a set of observers who remain at rest with
respect to a given observer A who is accelerating at a constant rate with respect to the
instantaneously comoving inertial frames. The one-dimensional uniformly accelerated reference
frame S is considered. The world lines of A and the other observers making up S are determined.
Coordinates useful for describing events in S are carefully defined and the transformation
equations between different sets of them are derived. The variation with position in S of the speed
and frequency of light waves is determined. The motion of a free-particle in S is determined.
Various phenomena in S, ordinarily associated with general relativity, are considered, in
particular the asymmetric aging of twins at rest at different positions and the existence of

horizons.

L. INTRODUCTION

Most texts on special relativity leave one with the
impression that the motion of objects can only be discussed
from the point of view of an observer fixed in an inertial
frame.' Although accelerated motions are discussed,’ little
is said of accelerated observers,® and even less of acceler-
ated reference frames.

On the other hand, accelerated reference frames are con-
sidered in most general relativity texts, particularly in con-
nection with the principle of equivalence. But there is very
little discussion of the properties of such frames and most
comments concerning them are vague and occasionally er-
roneous.*

This apparent lack of interest in accelerated reference
frames or at least in the details of their properties is quite
surprising in view of the fact that the accelerated reference
frame is the bridge that Einstein used to go from special
relativity to general relativity and also in view of the fact
that the properties of such frames are extremely interest-
ing.

In contrast to the above attitude in most textbooks, sig-
nificant treatments of accelerated frames and related mat-
ters can be found in Mgller,” Rindler,® and Misneretal.” A
discussion of Mgller’s treatment can be found in Sears and
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Brehme® and a survey of the use of accelerated observers
and accelerated reference frames in relation to the twin
paradox is given by Marder.’

A number of instructive treatments have also appeared
in this Journal. Lass'® derives a useful transformation
between inertial coordinates and a particular set of coordi-
nates associated with an accelerated frame. Romain'’ dis-
cusses and analyzes Lass’s transformation. Marsh'? dis-
cusses transformations between inertial coordinates and
coordinates associated with an accelerated frame from a
more general point of view, and considers both Lass’s
transformation and Mogller’s transformation. Rindler'?
shows the relation between Kruskal space in general rela-
tivity and the accelerated reference frame. Hamilton'* dis-
cusses in detail some of the observations that would be
made in a uniformly accelerated frame. Good'® considers
in conjunction with a film clip some of the observations
which would be made by an accelerated observer especially
as it relates to the twin paradox.

One or more of the following criticisms can be made of
each of the above treatments of accelerated frames: The
approach is unnecessarily formal or abstract, key concepts
are left undefined, a working knowledge of general relativi-
ty is assumed, no attempt is made to give a physical inter-
pretation of the coordinates introduced, the relationship
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between different sets of coordinates used is not made, and
no investigation of the properties of the frame is made.

In this article we consider, within the framework of the
special theory of relativity, the nature and properties of
uniformly accelerated reference frames. Our objective is
(i) to define precisely what is meant by a uniformly accel-
erated reference frame; (ii) to show the physical meaning
of the various coordinates associated with a uniformly ac-
celerated reference frame; and (iii) to demonstrate the un-
usual properties associated with a uniformly accelerated
reference frame; properties normally associated with gen-
eral relativity, such as the variation in the speed and fre-
quency of light waves with position; the asymmetrical ag-
ing of spatially separated twins who remain at rest with
respect to one another; and regions into which an observer
can enter but not leave.

We have tried to carefully define all quantities intro-
duced, to derive results from as straightforward and ele-
mentary view as possible, and to avoid excessive formal-
ism. We assume only a modest knowledge of special relativ-
ity theory, and have provided in Sec. III an outline of the
results from special relativity which will be needed.

In order to keep the discussion as simple as possible we
restrict ourselves to motion along a line in one dimension.

I1. DEFINITIONS AND NOTATION
A. Units

To simplify the mathematical expressions which we ob-
tain in this paper, we shall work in a system of units in
which ¢ = g = 1, where c is the speed of light and g is an
arbitrary constant acceleration which we will introduce
later. For g = 9.5 m/s?, the unit of length is almost exactly
one light year and the unit of time is almost exactly 1 yr.
The technique for restoring the constants ¢ and g in the
resulting expressions can be found in the literature.!®

B. Standard clocks and standard rods

We assume in what follows that we have available a large
number of identically constructed infinitesimally small
clocks, which we shall refer to as standard clocks, and
which have the property that if any two of them are at some
instant at rest with respect to one another at the same point,
then at that instant their rates will be equal, regardless of
their accelerations.

We also assume that we have available a large number of
identically constructed infinitesimal rods which we shall
refer to as standard rods, and which have the property that
if any two of them are at some instant at rest with respect to
one another at the same point, then at that instant their
lengths will be equal, regardless of their accelerations.

C. Observers

An observer is considered to be an intelligent point parti-
cle,'” equipped with a standard clock and a standard rod,
and having the following properties: (i) negligible interac-
tion with the surroundings, (ii) the ability to move arbi-
trarily consistent with the usual relativistic limits, and (iii)
the ability to communicate with other observers by means
of light signals. We assume the universe to be one-dimen-
sional and to be filled with such observers.

253 Am. J. Phys., Vol. 55, No. 3, March 1987

D. Reference frames

Each observer defines a world line in space-time, and the
world line of each observer can be broken down into a
succession of instants in time. If we consider a continuous
set of observers whose world lines for simplicity we assume
do not cross, then an event can be specified by determining
(i) the world line on which the event occurs, or equivalent-
ly the observer who is present at the event; and (ii) the
point in time, on the above world line, at which the event
occurs. Which observer is present at the event determines
the “where” of the event, and the point on the observer’s
world line at which the event occurs determines the
“when” of an event.

We define a reference frame to be a continuous set of
observers who remain at rest with respect to one another. '#
An observer B will be considered to be at rest with respect
to an observer A if it always takes the same amount of tirhe
as measured by A for a light signal to make a round trip
from A to B and back again. As defined above, a frame of
reference is a hypothetical physical entity and not a math-
ematical entity. A frame of reference is not the same as a set
of coordinates. Methods for coordinating a frame of refer-
ence will be considered later.

IIL. INERTIAL FRAMES AND SPECIAL
RELATIVITY

A. Introduction

In this section, we have gathered together some results
from the special theory of relativity which will be useful to
usin later sections. Although the choice and formulation of
these results is somewhat unusual, we have made no at-
tempt to provide a detailed justification of them. In most
cases the necessary justification can be found in one or an-
other of the many excellent books on special relativity. The
purpose of this paper is not to investigate the foundations of
special relativity, but to show that uniformly accelerated
frames of reference can be handled quite naturally within
the framework of special relativity. Implicit in our choice
of results is the assumption that the special theory of rela-
tivity is properly defined as the theory of flat space-time
and is not restricted, as required by some definitions, to
observations made with respect to inertial frames of refer-
ence.

B. The existence of an inertial frame

We shall assume that there exists at least one frame hav-
ing the following properties: (i) if A and B are arbitrary
observers in the frame, L the distance between A and B
determined using measuring rods, and 2T the time as mea-
sured by observer A for a light signal to go from A to B and
back to A again, then the quantity c=L /T is a constant,
that is, it has the same value for every choice of observers A
and B in the frame; (ii) if length is defined using measuring
rods or light signals, then the resulting geometry is Euclid-
ean.

Any frame having the above properties will be called an
inertial frame. The quantity ¢ defined above will be called
the speed of light in an inertial frame, and in our system of
units has the value 1. We shall later generate, or at least
indicate how to generate, with the help of a few additional
postulates, a whole set of frames satisfying the above prop-
erties, but for our present purposes all we require is the
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existence of one such frame. We shall assume we have
found one and we shall designate it as the inertial frame K.

One important consequence of the above definition is
that if an observer in an inertial frame sends out light sig-
nals at equal intervals by his clock, they will be received by
all other observers in the frame with the same frequency
with which they were sent out. It follows that the standard
clocks of the observers in an inertial frame can be synchro-
nized.

C. Inertial coordinates

Since a given event will occur at a unique point on the
world line of one of the observers making up the inertial
frame K, it follows that the frame X can be used to distin-
guish one event from another. In order to utilize this fact
we coordinate the frame K, that is, we assign a number to
each observer making up the frame and to each point on his
world line. This can be done as follows: (i) Pick one ob-
server O called the reference observer and assign him the
position value x = 0. (ii) Assign every other observer X a
position value x depending on his distance from O mea-
sured either by light signals or with measuring rods. (iii)
Divide the world line of each observer into equal time inter-
vals using either the standard clock carried by the observer
or by means of periodic signals sent out by one particular
observer. (iv) Assign a time value to every point on the
world line of the observer O by picking a reference point,
assigning it the value £ = 0, and then assigning every other
point a value depending on the number of time intervals
between it and the time ¢ = 0. (v) Assign a time value to
one point on the world line of every other observer X by
proceeding as follows: Let O reflect a light pulse off X if
the light pulse is sent by O at time 7, by his clock and the
reflected pulse received by O at time ¢, by his clock, then let
the time on X’s clock at which he receives the pulse be
assigned the value (¢, + #,)/2. (vi) Assign a time value to
the remaining points on the world line of each observer
either by measuring from the one previously assigned value
or by further light signals from the observer O. We will
assume that the above procedure, or a similar one, is famil-
iar to the reader, but caution him that when one is dealing
with frames other than inertial frames, the alternative pro-
cedures permitted in the above steps lead to alternate re-
sults.

In what follows we shall obtain all our results by starting
with the frame K and we shall refer all results back to this
frame for comparison. The letters x and ¢ will be used to
designate, respectively, the position and time coordinates
with respect to this frame.

D. Basic postulates in the special theory of relativity

Instead of starting from the usual postulates of special
relativity, that is, the existence and equivalence of inertial
frames and the constancy of the speed of light with respect
to these frames, we will base our approach on the assump-
tion that there exists at least one inertial frame and the fact
that, with respect to this frame, moving clocks slow down
and moving rods contract. More specifically we assume, in
addition to the existence of the inertial frame K, the follow-
ing two postulates A and B:

(A) If X is an observer moving with a velocity x with
respect to the inertial frame K, and d7 is the time between
two neighboring points on the world line of X as measured
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by X using his standard clock, and dt is the time between
the same two events as measured by the observers in K,
then the times d7 and dt are related as follows:

dt=(1—x%*~"%dr. (N

(B) If X is an observer moving with velocity x with
respect to the inertial frame K|, and do is the length of the
standard rod carried by X, and dx is the distance between
the ends of the rod measured at some time ¢ by the observ-
ers in K, then the distances do and dx are related as follows:

dx = (1 —-x)"*do. (2)

E. The existence of a set of inertial frames

An observer Y will be at rest with respect to an observer
X if the time which elapses or the clock of X during the
passage of a light signal from X to Y and back again always
has the same value. An observer in the inertial frame X can
use postulate (A) to determine whether or not Y is at rest
with respect to X since postulate A enables the observer in
K todetermine how much time has elapsed on the clock of X
between an event in which X sends a light signal to Y and
the event in which X receives the reflected signal back
again.

If in particular we consider two observers X and Y who
at each instant of time # are moving with the same velocity
V() with respect to the inertial frame K, we will find that if
V(¢) is a constant then Y will remain at rest with respect to
X, but if ¥(¢) is not a constant, then, surprisingly and con-
trary to what many authors implicitly assume, Y will not be
at rest with respect to X.

From the above it follows that a continuous set of ob-
servers who are all moving with the same constant velocity
V with respect to the inertial frame K will constitute a
frame of reference, but a continuous set of observers who
are all moving with the same nonconstant velocity ¥ (¢) will
not. Furthermore, by exploiting assumptions (A) and (B)
it is possible not only to show that the set of all observers
moving with a particular constant velocity ¥ with respect
to the inertial frame K constitutes a frame of reference, but
also that it satisfies the definition of an inertial frame, hence
it is an inertial frame.

When inertial frames other than the frame K are used
they will be labeled K ', K ”, ... and we shall assume they
have been coordinated in a fashion similar to that em-
ployed in the coordination of K. Furthermore, we shall
assume that the reference observers and the zero setting on
the clocks have been chosen such that the events
(x,t) = (0,0), (x',t') = (0,0), ... all correspond to the
same event.

F. The Lorentz transformation

Given the inertial frame K and a second inertial frame X'’
which is moving with a constant velocity V" with respect to
K, it can be shown from postulates (A) and (B) that the
transformation between the coordinates (x,¢) in frame K
and the coordinates (x’,¢’) in frame K ' is given by the Lor-
entz transformation

X =(x—Vt)y/(1—-VH" (3)
= (=Vx)/(1 =V (4)

From Eq. (3) it follows that the world lines of the observ-
ers making up frame K ', that is the lines of constant x’, are
given by the family of equations x — ¥z = constant and
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from Eq. (4) it follows that the lines of constant ¢ * are given
by the family of equations ¢ — Vx = constant. Since a line
of constant ¢ * does not coincide with any line of constant ¢, it
follows that spatially separated events which are simulta-
neous in X’ are not simultaneous in XK.

1V. UNIFORMLY ACCELERATED OBSERVERS
A. The observer A

Let us consider a particular observer, designated as ob-
server A, whosé motion is such that at each instant the set
of observers making up the inertial frame with respect to
which he is at that instant at rest measure his acceleration
to be g, where g is a constant whose value in the units intro-
duced earlier is 1. We shall abbreviate the above statement
by saying simply that A is moving with a constant accelera-
tion g with respect to the instantaneously comoving inertial
frames.

Let us furthermore choose the reference observer O in
frame K and the setting on his clock such that the event
corresponding to A being at rest with respect to K has the
coordinates ¢ = 0 and x = ¢?/g or in terms of the units in-
troduced earliert=0and x = 1.

B. The motion of observer A

Given the observer A we first want to determine his
world line x(z) with respect to the inertial frame K. To
obiain this we introduce a second arbitrary inertial frame
K that is moving with a velocity V with respect to K. If we
knew x(t) for observer A we could find his acceleration
with respect to the frame K ’ by making use of the following
equation which can be obtained directly from the Lorentz
transformation:

d’ _x(1-y?>*?

d? (1-v%)°
Since A is undergoing constant acceleration of urit magni-
tude with respect to the instantaneously comoving inertial

frame it follows that if x = ¥ then d >x’/dt > = 1. Putting
these values in Eq. (5) we obtain

¥ =(1—x2)32, (6)

Equation (6) governs the motion of A with respect to K.
Solving for x and noting that when # = 0 then x = 1 and
x = 0, we obtain

x= (143" (7)

which is the equation of a hyperbola. As # approaches infin-
ity the velocity of A with respect to K asymptotically ap-
proaches the value 1 which in our units is the speed of light.
The world line of A as given by Eq. (7) corresponds to the
line passing through the point (x,#) = (1,0) in Fig. 1.

(3

T T T T T T T T
aL
» : Fig. 1. The world line passing
through the point (x,) = (1,0) is
L0 : the world line of the uniformly ac-
celerated observer A; see Sec. IV.
N The remaining world lines are the
ar world lines of observers who re-
i main at rest with respect to A; see
-44
o Sec. V.
-4 -2 0 2 4
X
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C. Proper time for observer A

If the observer A is moving with a velocity x with respect
to the inertial frame K, and dr is the time between two
neighboring points on his world line as measured by him
using his standard clock, then the time df between the same
two events as measured by the observers in X is given by
Eq. (1). Substituting Eq. (7) in Eq. (1), integrating, and
assuming that the clock carried by A is set to zero when A is
at rest with respect to K we obtain

r=sinh~'¢. %)

Equation (8) gives us the relationship which the observer
A would find between the reading 7 on his clock and the
reading t on the clock of the observer in frame K with
whom he is at that moment coincident.

V. UNIFORMLY ACCELERATED REFERENCE
FRAMES

A, Accélerated reference frame

A reference frame has been defined as a set of observers
who remain at rest with respect to one another.'® We are
interested in finding the set of observers who remain at rest
with respect to the observer A. One’s initial inclination is to
assume that any observer who is initially at rest in K at time
t =0 and undergoes the same uniform acceleration as A
will remain at rest with respect to A. But this is not true, as
we shall now show. Let R be an arbitrary observer and x(#)
the world line of R. Suppose that at some arbitrary time t,
the observer A sends a light signal to R which is received at
time £, and immediately reflected back and received by A at
time ;. Let us further assume that R is located further from
the origin of K than A. The position of A at time ¢, is given
by (14 ¢%)'2 the distance traveled by the light signal
betweent?, and ¢, is t, — ¢,, and the position of R at time ¢, is
x(t,). It follows that

(14132 4+ (1, — 1) =x(1y). 9
Similarly, for the return trip we obtain

x(tz)—(ts_t2)=(1+t§)l/2~ (10)
Rearranging Egs. (9) and (10) we obtain

(1+t3)"2—t,=x(8y) — t,, (an

(1 + )2 4 t;=x(8,) + ¢, (12)

Substituting Eq. (8) in Egs. (11) and (12) and noting.that
(1 + sinh? 7)V/? = cosh 7, we obtain

cosh 7, —sinh 7, = x(2,) — t,, (13)

cosh 75 + sinh 73 = x(2,) + ¢,, (14)
or equivalently,

e~ =x(t,) — 1t (15)

e =x(1,) + 1, (16)
Taking the product of Egs. (15) and (16) we obtain

en T =x(t,) —t3. (17)

If observer R is at rest with respect to A then, irrespective
of the time 7, at which R receives the signal from A, the
elapsed time 7, — 7, for the round trip as observed by A
with his clock should be constant. Setting ¢, =t and
exp(7; — 7,) = 0% = constant in Eq. (17) we obtain, for
the equation of the world line of R,

x= (0% 4+1t3)V2 (18)
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The above world line is that of an observer who at time
t = Qs at rest at the point x = o and is accelerating with a
constant acceleration o~ ! with respect to the instanta-
neously comoving inertial frame. If we had initially as-
sumed that R was located closer to the origin of X than A
rather than further away, we would have obtained the same
result.

From the above it follows that the set of observers ob-
tained by letting o range from 0— o in Eq. (18) constitutes
a reference frame, which we will refer t6 as the uniformly
accelerated reference frame S. The world lines in frame K
of some of the observers making up frame S are shown in
Fig. 1. Note that the obsérver for whom o = 0 is moving
with the speed of light at all times other than at = 0.

B. The invariance of the proper distance

Equation (18) describes the world line of an observer R
who is one of the observers making up the uniformly accel-
erated frame S. If we make a Lorentz transformation from
the coordinates x,f in the inertial frame K to the coordi-
nates *’,¢ ' in aniother inertial frame X ', the equation of the
world line of observer R assumes identically the same form.
This can be explicitly verified by making the transforma-
tion or simply by noting that the quantity x> — ¢? is an
invariant under a Lorentz transformation. It follows that
the accelerated frame is always at rest with respect to some
member of the set of inertial frames. Furthermore, the dis-
tance between any two observers R and R’ measured in the
inertial frame with respect to which § is momentarily at
rést will always have the same value irrespective of the iner-
tial frame with respect to which it is at rest. We can express
this fact by saying that the proper distance between any two
observers in .S remdins constant.

VI. COORDINATE SYSTEMS FOR
ACCELERATED REFERENCE FRAMES

A. Coordinate systems

In order to discuss the properties of the accelerated refer-
ence frame.S we will find it convenient to introduce a num-
ber of different coordinate systems.

Let us imagine the reference frame S to be an infinitely
long rocket which at = Ois-at rest in frame K with its back
end located at x = O and its front end at x = + . Let the
rocket be divided into a series of compartments or cabins,
each of which is assigned a cabin number ¢ equal to its x
position at £ = 0, and each of which has mounted on the
wall a standard clock whose reading we designate 7, and
which is set so that 7 = O when ¢ = 0. The pilot of the rock-
et, who is identified with the observer we previously desig-
nated as observer A, is located in cabin 1; that is the cabin
for which o = 1. Let each cabin also contain a computer
with monitor which links the cabin with the pilot’s cabin,
and let the computer be programimed in such a way that the
monitor displays one constant number r and one varying
number 8 determined as follows. If R is an arbitrary cabin
and A the pilot’s cabin, and if a light signal is sent from A at
time 7 on A’s cabin clock to cabin R is reflected back and
arrives again at A at time 7 + A7, then the number r ap-
pearing on R’s monitoris + A7/2ifo>1and — Ar/2if
o < 1, and the number 8 appearing on R’s monitor at the
instant the above signal from A arrivesat Ris 7 + (A7/2).
Thus the magnitude of the monitor reading 7 is the distance
the pilot A judges R to be from him under the assumption
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that the speed of light is constant, and the monitor reading
0 is the projection of A’s clock into cabin R under the same
assumption.

Each of the six coordinates introduced above, namely x,
t, o, 7, r, and @ gives us one characteristic of an arbitrary
event. Suppose for example an event occurs. Then x is the
position of the event as recorded by an observerin K, ¢ is the
time of the event as recorded by an observer in K, ¢ is the
number of the cabin in which the event occurs, 7 is the time
of the event as recorded by the cabin clock in the cabin in
which the event occurs, 7 is the fixed number appearing on
the monitor in the cabin in which the event occurs, and 6 is
the time of the event as recorded by the monitor clock in the
cabin in which the event occurs.

It is possible to uniquely identify a given event by any of a
variety of pairs of the quantities, x, ¢, o, 7, 7, and 8. We shall
consider only the pairs (x,t) (o,t), (o,7) (0,0), and (7,0).
The pairs (x,t), (0,0), and (r,8) are of particular physical
significance. The pairs (o,t) and (o,7) are chosen because
they are theoretically useful in calculations we will be mak-
ing.

B. Coordinate transformations

In order to be able to make maximum use of the different
coordinate systems introduced above we need to know the
equations of transformation between one set and another.
This information is obtained below.

Equation ( 18) gives us x(o,t). If we substitute Eq. (18)
in Eq. (1) and integrate we obtain

r=osinh~'(t /o). (19)
Combining Egs. (18) and (19) we obtain

x = cosh(r/0), (20)

t = o sinh(7/0). (21)

Now let us consider the following three events: (i) observer
A sends out a light signal at time 7, (ii) an observer R who
is located in the positive x direction from A receives the
signal and returns it to A, and (iii) observer A receives the
return signal at time 7;. The given information uniquely
determines all the coordinates of event (ii) in terms of 7,
and 7,. To determine these coordinates we note first that
Egs. (15) and (16) can be combined to give

X, =l(em+e ™), (22)
L=1e"—e™ 7). (23)

If Egs. (22) and (23) are now substituted into Egs. (20)
and (21) we obtain

0, = (en=™)12, (24)
= (e""")"? [+ )] (25)
But from the definition of » and 8, we have
ry=3Mr—7), (26)
0, =4(r5+ 7). (27)
Combining Eqs. (24)—(27) we obtain
r,=Ino,, (28)
0, =T1,/0,. (29)

By proper choice of 7, and 75, event (ii) can be made arbi-
trary. Hence

r=Ino, (30)
8=1/0. 31
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The same result would have been obtained if we had initial-
ly assumed that R was in the negative direction with re-
spect to A rather than in the positive direction.

Equations (20), (21), (30), and (31) can be solved to
obtain any one of the six unknowns x, t, o, 7, , and @ in
terms of any one of the pairs of variables (x,?), (0,?), (o,7),
(0,0), and (7,0). Herce we can obtain the equations of
transformation between any of the above pairs of variables.
The results can be summarized in the following set:

x=(? +t*)"2 = o cosh(r/0)
= ¢ cosh @ = ¢" cosh 0,
t = o sinh(7/0) = o sinh 6 = " sinh 8,

(32)
(33)

o= (x2—-tH)2=¢, (34)
7= (x*—t2)"2 tanh~'(¢ /x) = o sinh ™' (¢ /o)

=gl =¢0, (35)
r=iln(x*—t*)=Ino, (36)
6 = tarth~'(¢ /x) = sinh~ (¢ /o) = 7/0. 37N

Note that the transformation from any one member of the
set of pairs (x,t), (o,t), (0,7), (0,0), and (r,0) to any
other member of the set of pairs can be read off immediate-
ly from the set of Eqs. (32)—(37).

The transformation between (x,?) and (7,0) is the same
transformation used by Lass'% hence Lass’s coordinates
are the coordinates which would occur if distances and
times were measured by means of light signals sent out by a
particular observer. The transformation between (x,f) and
(0,0) corresponds to Mgller’s transformation® for the case
of uniform acceleration; hence Moller’s coordinates are the
coordinates which would occur if distances were measured
with standard rods, and times by means of light signals sent
out by a particular observer.

From Eq. (37) it follows that those points in (x,?) space
for which @ has some constant value 8, define the curve
t = (tanh 8,)x, which is a straight line through the origin
with the slope |d? /dx| = |tanh 6,|< 1. Butif (x',¢') are the
coordinates associated with an inertial frame K’ moving
with velocity ¥ with respect to K, then those points in (x,#)
space for which ¢’ = O define the curve t = Vx, which is
also a straight line through the origin, in this case with
slope |dt /dx| = |V |<1. It follows that when the rocket
frame S is at rest with respect to one of the inertial frames
K’ then all of the observers in § will note the same time
reading & on the monitors. The coordinate 8 is thus a logi-
cal choice for defining simultaneity in S.

C. Local coordinate system

In an inertial frame, distances measured with standard
rods and distances measured with light signals give identi-
cal results. Furthermore, the clocks of the individual ob-
servers making up an inertial frame can be synchronized
and will remain synchronized. Neither of the above facts is
true for an accelerated frame. However, if in an accelerated
frame we restrict ourselves to small distanices and short
intervals of time, then as we shall show below both of the
above conditions are approximately satisfied, and in the
limit, as the distances and intervals of time approach zero,
the conditions are exactly satisfied.

The distance Ao = 0, — o, between two points o; and
0, in the frame S is the distance that would be obtained if
we used a standard measuring rod to measure the distance.
The distance Ar = r, — r, between two points 7, and r, in
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the frame S is the distance that would be obtained by the
observer A using light s1gna1s The distance from the ob-
server A to an arbitrary point in the frame when measured
with standard measuring rods is o — 1 and the same dis-
tance when measured with light signals is 7. If we take the
ratio of these two distances we obtain

measuring rod distance e G )
light signal distance r r
2
=1 + - (38)
+— o + 3

It follows that as long as r € 1 the ratio « is approximately
one. The condition <1 when converted to dimensional
form becomes r <c2/g. Hence if g were equal to 9 m/s® then
as long as r<10' m (which is approximately one light
year) the ratio @ would be approx1mate1y one.

If two events occur at a given point o in frame S then the
time interval A7 = 7, — 7, between the events is the time
interval that would be noted by an observer R located at the
event and using his own clock; the time interval
Af = 6, — 6, between the two events is the time interval
that would be noted by observer A using his own clock and
light signals. Consider event (ii) to be an arbitrary event at
point o and event (i) to be the event which occurred at o
when frame S was at rest with respect to K. Then 7, =0,
7,=71,0,=0,60,=86.Hence

time interval as measured by A _ T e
time interval as measured by R 6
7
=14+r+ o +

(39)
It follows that as long as < 1 the ratio £ is approximately
one. This is the same result as obtained previously. Note
also that
—0=e0—-0=0(—1)=0(r+r/21+ ).
(40)

Hence the respective clocks of observers R and A, which
were initially synchronized, gradually get out of synchroni-
zation. In particular, if g = 9 m/s? then two clocks which
are located a distance of 1 m apart will get out of synchroni-
zation by about 1 severy 10'®s or about 1 severy 3 X 10° yr.

VII. THE PROPERTIES OF A LIGHT WAVE
A. The velocity of light

Let us consider a light pulse which is emitted from o = 1
at an arbitrary time. The path of the pulse is given by any
one of the following equations:

x=A+1t 41)
o=Aexp(+8), (42)
r=InAd+86, (43)

where A is a constant whose value depends on the time at
which the pulse is emitted and the direction in which it is
emitted. It follows that the speed of the pulse is given by

dx

——= 41, 44
dt - 44
do

= +o, 45
de +7 (43)
dr
2= 1. 46
dé - (46)
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Hence if (x,¢) or (7,8) coordinates are used, the light pulse
moves with constant speed. If (¢,8) coordinates are used,
the speed of the light pulse depends on its location, and
ranges in value from zero when o is zero to infinity when o
is infinite. The above differences in the values of the veloc-
ity of light arise because the above coordinate systems rep-
resent different physical methods of measuring time and
distance. The coordinates (r,0) are the coordinates which
would result if an arbitrary observer, observer A in this
case, uses the round trip time for a light signal to measure
distance, and the time elapsed on his clock to measure time:
Obviously the speed of light will in this case by definition
come out equal to unity. The coordinates (o,6) on the oth-
er hand are the coordinates which would result if an arbi-
trary observer, observer A in this case; uses measuring rods
to measure distances, and the time elapsed on his clock to
measure time.

B. Constancy of the speed of light

Einstein’s second postulate, concerning the constancy of
the speed of light, is stated in a variety of ways. Most auth-
ors'® state it essentially as follows: “The speed of light in a
vacuum is the same in all inertial frames of reference, re-
gardless of the motion of the light source.” Some,* how-
ever, state it in a stronger form: “The speed of light in a
vacuum is the same for all observers, regardless of their
motion or the motion of the light source.” The former
statement is obviously correct, but in light of the analysis in
the preceding sections the latter stronger statement must
be highly qualified. It can obviously be justified if one as-
sumes that the observer uses reflected light signals to mea-
sure the distance to a point P, and then measures the speed
of light by determining the time it takes by his clock for a
light signal to get to P and back. But in this case the speed of
light is the same for all observers by definition.>' Such a
procedure relegates measuring rods to a useless status and
gives us no physical information. On the other hand, the
strong statement can be alternatively justified if one as-
sumes the observer measures only the local speed of light
by placing his clock at one end of his rod and then measur-
ing the time it takes by his clock for a signal to go from the
given end of his measuring rod to the other end and back.
In the limit, as the length of the staridard rod approaches
zero the speed of light thus measured will be the same for
all observers. With this interpretation of the meaning of the
speed of light, the statement that the speed of light is the
same for all observers has some physical content. This can
be seen by noting that if the length of the measuring rod is
increased then the speed of light so measured will change if
the observer is one of the observers making up an acceler-
ated frame, but will not change if the observer is one of the
observers making up an inertial frame of reference.

C. Variation in the frequency of a light wave with
position

Let us suppose the observer A sends out a series of sig-
nals which are one unit of time apart according to his prop-
er time. When the observer R located at position o receives
these signals they will arrive one unit of 8 time apart, but
since 8 = 7/0 they will arrive o units of time 7 apart, where
7is the proper time of the observer R. Hence to the observer
R located at o the frequency of the signals will be

v=0o"L 47
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Thus for an observer for whom o < 1 the incoming signal
will be blue shifted, and for an observer for whom o> 1 the
incoming signal will be red shifted. By the same argument,
if the observer A is receiving a periodic signal from an ob-
server R for whom o < 1 the signal will be red shifted, and if
the observer at A is receiving a periodic signal from an
observer R for whom ¢ > 1 the signal will be blue shifted. It
follows that the observer A assumes that clocks located at
o < 1 are running slow, and those located at o> 1 are run-
ning fast. In the rocket analogy introduced earlier, if ¢ < 1
the cabin clocks will run slower than the monitor clock,
and if o> 1 the cabin clocks will run faster than the moni-
tor clock.

VIIL. FORCE-FREE MOTION OF A PARTICLE

Consider a free-particle which at time ¢ = 0 is located at
the point x = 1 and is moving with a velocity x = ¥, where,
by virtue of the limiting speed which such a particle can
have, the value of ¥ must lie between — 1 and + 1. These
are the initial conditions which would prevail if the observ-
er A projected a particle from himself at time 6§ = 0.

In terms of the set of coordinates (x,t), the set of coordi-
nates that most naturally would be used by the observers in
the inertial frame X, the world line of the particle is given
by

x=1+Vr (48)

Thus in the inertial frame K the particle moves with a con-
stant velocity ¥ away from the point x = 1.

In terms of the set of coordinates (,8), one of the sets of
coordinates that would be used naturally by the observers
in the uniformly accelerated frame S, the world line of the
particle is given by

o= 1/(cosh 6 — V'sinh 9). (49)

It follows that in the accelerated frame .S the motion ap-
pears quite different than in the inertial frame K. World
lines for the particle in terms of the set of coordinates (o,8)
are shown in Fig. 2 for various values of V. If ¥ =1 then
o=e. f V= —1theno=e % If 0<¥V <1 then the
particle rises to a maximum at o = (1 — ¥?)~'/2 arriving
at time 6 = tanh ™'V, and subsequently descends toward
o =0 but never arrives. If — 1< ¥ <0 then the particle
simply descends toward o = 0 but never arrives.

Of particular interest is the time it takes the particle to go
from o = 1 to o = 0. If the time is measured by the observ-
ers in the frame K, the time taken is (1 — ¥) 1. This value
is obtained by determining the time at which the curve

Fig. 2. World lines in (0,8) space
of free-particles projected from the
point o =1 at time # =0 with
varying initial velocities V.
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x = t, which is the world line of the observer at o = 0, inter-
sects the path of the falling particle as given by Eq. (48).
On the other hand, if the time it takes the particle to go
from o = 1 to o = 0 is measured by the observer A using
light signals, then the time taken is just the elapsed 8 time,
which as we have seen above is infinite. Hence the observer
A judges that the particle continues to get closer to o =0
but never gets there. Finally, if we consider the projected
particle to be an observer, then by his clock the elapsed time
will be (1 + P)'/2/(1 — V)2, which is obtained by inte-
grating the expression dr = (1 — ¥'2)'/2dt [see Eq. (1)]
betweent=0andt= (1 — V)L

From the above it follows that if an observer initially
located at ¢ = 1 in frame S steps out of the frame at @ =0
and allows himself to fall freely, then he simply steps into
frame K and remains at rest in this frame, and will arrive at
o = 0 after one unit of his time. But from the point of view
of the observer A who remains at ¢ = 1, the falling observ-
er falls forever and never arrives at o = 0.

IX. ASYMMETRICAL AGING OF TWINS
A. Introduction

The fact that two twins A and B who start off together at
rest in an inertial frame K, then separate and rejoin one
another at some later time may find themselves to have
aged differently has been a source of great fascination to
both physicists and nonphysicists. According to many text-
books a complete analytical explanation of this phenome-
non requires the use of accelerated reference frames, and
the handling of accelerated reference frames requires the
use of the general theory of relativity. Neither of these sta-
tements is true. In the preceding sections we have shown
that uniformly accelerated reference frames can be fully
treated within the framework of special.realtivity. And as
emphasized by numerous authors,” it is unnecessary to
resort to the properties of accelerated frames to handle the
asymmetric aging. If one accepts the fact that relative to an
inertial frame moving clocks run slow, and that the slowing
can be quantitatively determined by Eq. (1), then it is a
simple matter to determine the asymmetric aging using
only Eq. (1). The introduction of any frame other than
frame K is completely superfluous.

Despite the fact that Eq. (1) is all that is needed to deter-
mine the asymmetric aging of the twins, the results we have
obtained concerning the uniformly accelerated frame can
be used to eliminate some of the misconceptions which one
encounters in many of the standard treatments, and also to
bring out some interesting, generally overlooked facets of
the phenomenon.

B. Determination of asymmetric aging with auxiliary
frames

The most common approach to the problem of asymme-
tric aging is to have one twin A remain at rest in a particular
inertial frame K and the other twin B to travel away from A
and back again by judiciously transferring from one inertial
frame to another. Although perfectly correct, the above
method generates a certain amount of uncertainty among
some because it is necessary for B to undergo periods of
acceleration during the transfer from one inertial frame to
another. If one assumes that accelerated observers are out-
side the realm of special relativity then there is indeed a
problem. However, with the introduction of uniformly ac-
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celerated frames it is possible for twin B to make the round
trip in such a way that at every instant he is either in an
inertial frame or a uniformly accelerated frame and also in
such a way that every transfer between frames occurs when
the frames are at rest with respect to one another. The aging
of B can then be calculated using the results we have ob-
tained. This procedure does away with the conceptual diffi-
culties encountered when one restricts oneself to inertial
frames. However, as mentioned above, the introduction of
any frame other than frame X is entirely superfluous if one

accepts Eq. (1).

C. Asymmetric aging of twins at rest relative to one
another

An interesting result of our earlier analysis is that two
twins A and B who are located at different points in the
same uniformly accelerated frame will age differently. The
following example nicely illustrates this phenomenon and
adds a provocative twist.

Consider two twins A and B who at time 7 = O are, re-
spectively, located at the points x = 1 and x = 2 in frame
K. Suppose at time ¢ = 0 they both board the uniformly
accelerated rocket frame S, and then after a time A@ = 1 as
noted on the cabin monitors they disembark into the iner-
tial frame K ' which at that instant is at rest with respect to
the rocket frame. They will then find that the time in frame
K'is t' =0 and their respective locations are x' = 1 and
x' = 2. But during the trip the time A7 which has elapsed
on A’s clock is 1 while the time A7 which has elapsed on B’s
clock is 2. Thus twin A is younger than twin B by an
amount of 1. They have aged asymmetrically while remain-
ing at rest relative to one another. Furthermore, the time
and place of departure from frame K is the same as the time
and place of arrival in frame X’

D. Asymmetry of the motion

One of the standard arguments against the asymmetric
aging of two twins A and B, one of whom, A, stays at restin
an inertial frame K and the other of whom, B, travels away
from A and returns, is as follows. The motion of B relative
to A is symmetric to the motion of A relative to B, and
therefore by the same reasoning that led to the conclusion
that B ages less than A one could show that A ages less than
B. But it is impossible for both B to be younger than A and
also for A to be younger than B. Hence we have the so
called twin paradox. The usual resolution of this paradox is
to simply point out that the motion is not symmetric since
B has undergone accelerations and A has not. Further ex-
planations are usually limited. The results we have ob-
tained provide an interesting confirmation of the asymme-
try of the motion.

Suppose twin A is at rest in the inertial frame X at the
point x = 1, and twin B is at rest in the uniformly acceler-
ated frame S at the point o = 1. Attime t = & = O the twins
are located at the same point and are at rest with respect to
one another, but as time progresses they separate. If A de-
termines the distance to B as a function of the time ¢ he
obtains (1 + 72)'/2 — 1. Butif B determines the distance to
A as a function of his proper time & he obtains either

— In sech @ if distance is measured with light signals or
1 — sech @ if distance is measured with standard rods. In
either case the motion of A relative to B and the motion of
B relative to A are not symmetric. Hence arguments
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against the asymmetric aging of the twins certainly cannot
be based on the supposed symmetry of the relative motion.
Note that if 7 and 8 are small then (1 + t2)/2 — 1 ~¢2/2,
—Insechf~ —In[1 — (82/2)]=60?/2, and 1 —sech 8
=~60?/2. Hence there is an approximate symmetry in the
early part of the separation while the relative motion is
nonrelativistic.

X. HORIZONS

If the world lines of the observers making up frame S are
plotted in x-¢ space they occupy only the shaded region I
shown in Fig. 3. There are a number of consequences of this
fact.

First, any event represented by a point lying in the re-
gions II-1V will not be directly observed by the observers
making up frame S, that is, it will not occur on the world
line of any of the observers making up frame S. In contrast,
each event represented by a point in any of the regions I-IV
will lie on the world line of one of the observers making up
frame K.

Second, if we trace the world line of any observer from its
beginning at t = — o to its ending at = + o, then be-
cause the absolute value of the slope dx/dt of such a line
cannot exceed 1, or equivalently the absolute value of the
slope dt /dx cannot be less than 1, the given line can at most
pass through the linex = — fonce and the line x = ¢ once.
It follows that world lines can leave but not enter region IV
and can enter but not leave region II. Thus it is possible for
an observer to enter region I at some time ¢ < 0 or to leave it
at some time ¢ > 0, but it is not possible for an observer who
is in region I to leave and return again.

So far we have considered the world line of observers
entering and leaving region I as they appear in the inertial
frame K. But how do they appear in frame S ? If we plot in x-
t space the world lines of the observers making up frame §
and also the lines of constant 6, they appear as shown in

Fig. 4. The dotted lines in region
I are lines of constant 8 as they
appear in (x,t) space. The solid
lines in region I are the world
lines in (x,¢) space of some of the
observers making up the uni-
formly accelerated frame S.
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Fig. 4. If we now consider the world line x = 1, we note that
when it enters region I it cuts across the lower half of the
line x = — ¢ which corresponds to both 0 =0 and
8 = — o, and when it leaves region I it cuts across the
upper half of the line x = + ¢ which corresponds to both
o=0and § = + o.Hence the observer whose world line
is x = 1 enters the frame S at time § = — o« and leaves at
time 8 = + oo. It follows that from the viewpoint of an
observer in .S the observer whose world line is x = 1 has
been in ' from the beginning of time & and will remainin §
until the end of time 6. The world line in -6 space of the
observer whose world line in x-7 space is x = 1 is shown in
Fig. 5.

From the above it follows that in the uniformly acceler-
ated reference frame S there is a horizon at o = 0. If an
observer in S passes through this horizon he will be unable
to return again to the frame S. Furthermore, although ac-
cording to the proper time of the observer who crosses the
horizon o = 0 the passage from a point in .S to a point out-
side of S took a finite amount of time, to an observer fixed in
S the traveling observer continues to get closer to the hori-
zon without ever reaching it.

The above situation is phenomenologically identical to
the situation that occurs when an observer passes through
the event horizon of a black hole.”

XI. CONCLUSION

The preceding discussions demonstrate not only that
uniformly accelerated frames have a very natural place in
the special theory of relativity, but also that they serve a
very useful pedagogical purpose first by clarifying concepts
which are sometimes rather carelessly used when they are
presented only from the viewpoint of an inertial observer,
and second by introducing ideas that provide a natural pas-
sage from the special theory of relativity to the general the-
ory of relativity.
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Quantum action-angle variables are used to describe and analyze a number of familiar systems.
For a given system, the quantum canonical transformation from the old coordinates, e.g., linear
or polar, to the new coordinates, action-angle variables, is found by generalizing the
corresponding classical transformation using a method based upon the correspondence principle,
the Hermiticity and canonical nature of the old coordinates, and the requirement that the
Hamiltonian be independent of the quantum angle variable. The bound-state energy levels and
other important system properties follow immediately from the canonical transformation.
Harmonic oscillators of various dimensions and the three-dimensional angular momentum
system are used as illustrations; these illustrations provide interesting alternatives to the usual

quantum treatments.

L. INTRODUCTION, SUMMARY

Quantum mechanics is usually formulated and applied
using familiar coordinates, such as the linear coordinates
and the spherical polar coordinates, as the fundamental
canonically conjugate variables. The fact that quantum
mechanics is usually cast in terms of familiar coordinates is
unfortunate because other coordinates can offer concep-
tual and practical advantages. An example from classical
mechanics is the theory of action-angle variables.! In terms
of these variables the system Hamiltonian is free of the
angle variables so that the equations of motion can be readi-
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ly solved. Correspondingly, if one can set up a quantum
action-angle-variable theory, the Hamiltonian is again free
of the angle variables, and Schrodinger’s equation, e.g., is
easily solved.

In the present paper a method is formulated whereby
quantum action-angle variables can be found for certain
systems. The method has as its foundation the classical
action-angle-variable theory, and utilizes a form of the cor-
respondence principle, the Hermiticity of the old (origi-
nal) coordinates, the conjugate nature of the old coordi-
nates, and the fact that the system Hamiltonian must be
free of the quantum angle variables. Starting with the clas-
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