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It is shown how the Doppler-shifted frequencies that result from the uniform acceleration of a
source of light, and/or of the receiver, can be derived, and that very simple formulas often apply.
For completeness it is shown how a basic equation can be extended to apply in an accelerated

frame of reference.

L. INTRODUCTION

Textbooks on special relativity usually consider the
Doppler effect for light only for the situation where source
and receiver are in uniform relative motion, although
Rindler! explains how the standard formulas are to be in-
terpreted when the motion is not uniform. A generalization
of these formulas (for example, from [(1 — u/c)/ (1 + u/
¢)1Y* for the frequency ratio for uniform relative motion
in one dimension) was recently published by Bachman.? A
succinct derivation is given below. The frequency ratio for
accelerated motion can in principle be worked out in any
convenient frame of reference. In practice, a calculation
will always be simplest when based in an inertial frame, but
as far as I am aware an explicit result has been obtained for
one situation only, by Hamilton,? in a study of the proper-
ties of light in an accelerated frame. The topic is in fact
within the scope of an undergraduate course on special rel-
ativity.

Let x, and x, be the positions of source and receiver at
times 7, and ¢,, respectively, in an inertial frame—their mo-
tion is, meantime, in one dimension. Successive light
flashes are emitted at £, and ¢, + dt,, and received at ¢, and
t, + dt,, respectively. The corresponding intervals of prop-
er time are dr, and dr,. Then
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r dTS
—v—z dr (1
dt, (1 —u?/c?)'?
= (2)

ot (1 — /)’
with x, > x,, ¢(¢, — t,) = x, — x,, and therefore
dt,(1—wu,/c)=dt.(1 —u/c). 3)
Combining these, we have the required result:

v, (1 + us/c)‘/z(l - u,/c)‘/2 @)
v 1—u/c 1+u/c)

When u, and u, are constant, Eq. (4) reduces to the stan-
dard result, that

v, (1 — u/c)”2
v 1+use) ’

involving the relative velocity w= (u, —u.)/
(1 — u,u,/c?), but as Bachman has emphasized, u, and u,
must otherwise be taken at different times.

We assume that the source is controlled by an ideal
clock, the mechanism of which is unaffected by accelera-
tion, so that v, is a constant. It follows from the form of Eq.
(1) that v, /v, is invariant in a transformation to another
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frame of reference—such as that which we consider in a
final section. This point was emphasized by Tolman* in his
“schematic outline” of “the generalized Doppler effect,”
from which Eq. (1) can be said to derive. His objective,
however, was a wide generalization and he did not include
explicitly the condition equivalent to our Eq. (3). To be
meaningful, v, must eventually be expressed in terms of 7,.

I1, UNIFORM ACCELERATION OF RECEIVER OR
SOURCE

The motion specified by

d u
)= )
di\ [T = 4%/
is usually referred to as hyperbolic motion, and g, which is
invariant in a Lorentz transformation, is sometimes termed
the proper acceleration. The acceleration du/dt is equal to
g only for u = 0, but we can imagine a sequence of Lorentz
transformations to a sequence of rest frames in each of
which the acceleration is momentarily equal to g. In this
sense the acceleration is uniform.

With x =0 and » = 0 at ¢ = 0, the solution of Eq. (5)
can be written as

x = (c¥/g)[cosh(gr/c) — 1], (6)
where

t = (c/g)sinh(g7r/c). (7
It follows that

u/c = tanh(gr/c). (8)

These are well-known results.’ Note that we are concerned
with the acceleration of a light source or receiver, or of an
observer with a clock that records 7, but not as yet of an-
other frame of reference.

Consider first the situation where the source s remains at
x, = 0 while the receiver r is uniformly accelerated. From
Egs. (4) and (8),

v, (1 — u,/c)‘/2 _ (1 — tanh(g7',/c))“2
1 +u,/c 1 + tanh(gr,/¢)

= exp( — gr,/¢). (9

This is the result arrived at by Hamilton,? following a more
difficult route. ,
However, the essence of the Doppler effect is the relation
between 7, and 7,. From c(t, — t,) = x,, we have, using
Eqgs. (6) and (7),
87 _ 8% _ coshée

sinh — —
c C s

from which it follows that

1 —gr,/c=exp( — gr./c). (10)
Using Eq. (1), we then obtain Eq. (9). In dealing with
hyperbolic motion, where coordinatés and time can be di-
rectly expressed in terms of proper time, this is a simpler
method than the use of Eq. (4). (It can of course also be
used when the motion is uniform.)

When r remains at x, = 0 and s is accelerated, we find in

the same way from c{¢, — ¢t,) = x, that
1 + gr,/c =exp(gr,/c), (1)

so that
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v, d s — -1
_ar =exp( grs)=(1+grr) _
v, dr, c ¢

(12)

I have not so far found this simple result in the literature.
The singularity at 7, = — ¢/g corresponds to ¢, » — oo;
signals emitted over a long time arrive almost simulta-
neously.

III. SOME MORE GENERAL SITUATIONS

In this section we write £, = (c*/g) [cosh(gr,/c) — 1],
and similarly for s, since the hyperbolic motion will not
always have x =0 at = 0.

Whenx, = 0and x, = x, + £,, Eq. (9) applies through-
out when the constant x, is positive. However, for x, <0, »
passes by (through!) s when x, = 0, with a discontinuity in
the Doppler ratio, from exp( —gr,/¢) for x,>0 to
exp(gr,/c) for x, <0. This is of course a feature of the
Doppler effect for motion in one dimension, and we shall
avoid it in the future by excluding the possibility of x, — x,
changing sign.

When x, =0 and x, = x, + &, with x, >0, Eq. (12) is
modified to

—1
oot
v 4 C

5

(13)

Let s and r start together from the origin with proper
accelerations g, and g,, respectively, with g, > g, to ensure
x, >x,. We then find in the usual way that

-1
Vs & 8 ¢
The results given in Sec. II can be obtained by putting
g, =0, g, =gtoreproduce Eq. (9), whileg,-0,g, = — g

gives a configuration equivalent to that which led to Eq.
(12), and reproduces that equation.

Let x, =x, + &, and x, =x, + §,, with x,>x,. The
proper accelerations are g, and g,, respectively; g, > g, cer-
tainly ensures x, > x_, but is more stringent than is neces-
sary. The Doppler ratio is found to be

'Vr 1 7, -
_z[_é’_n+gl(__x_21_L+x_§)expg2 ] . ()
Vs & g ¢ g ¢ ¢

The interesting feature of this result is that v, /v, becomes
time independent if

g £
=——=2 _ and = (16)
& 14 gx,/c? &2 1 4 gx,/c?
when it reduces to
Vo _8 _ltegx/c (17)

v, g l4+gx/c®

Reference to Moller® shows that Egs. (16) are the condi-
tion for r and s to be at rest in an accelerated frame of
reference. We shall return to this topic in Sec. IV.

The source and the receiver can have initial velocities; a
general treatment requires a more general solution of Eq.
(5). A reasonably concise treatment is possible for the fol-
lowing example. With x, = 0, ris projected from the origin
with initial velocity — v and returns there with final veloc-
ity v as the result of a proper acceleration g. The Doppler
ratio is most readily found by transforming to an inertial
frame in which s has constant velocity v, and r performs
ordinary hyperbolic motion until it overtakes s. The result
is
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1/2
1,_:(_____1—v/c) expgzr—. (18)
v 1 +v/c c

5

This applies during the proper time of the round trip,
which is (¢/g)In[(1 +v/c)/(1 —v/c)] for r and 2v/
(g1 = v?/c%) for 5. When the roles of s and r are inter-
changed,

ﬁz[(__””/c)m_s‘i]'l. (19)
v 1—v/c c

The motion of s and r need not be on the line joining
them. For example, take x, = 0 and let  accelerate in the x
direction, starting from x,, y,. The basic condition is
c(t, —t,) = (x* + y2)'/2. Some straightforward algebra
gives, with x, = x, + £, as usual,

r

— cosh &, X, sinh(gr,/c)
v

T T e )
[Withx, <0andy, -0, Eq. (20) reproduces the discontin-
uity in v, /v, which was mentioned at the beginning of this
section.] When s1is also accelerated, for example, along the
z axis, we readily obtain a relation between 7, and 7, and
from it an equation for v,/v,. While this is a solution of the
problem, v,/v, cannot be written down as a function of 7,
only, since the equation relating 7, and 7, cannot be solved
explicitly for 7. This is generally true when s is accelerated,
unless the situation i$ one-dimensional.

The method used in this article does not offer much that
is new for the discussion of aberration angles. To take an
example, suppose that »is moving in the x direction, while s
can be moving in any specified direction. The outwardly
drawn line from the position of s (at time ¢, ) to that of r (at
time ¢,) has length 4, and a direction cosine
h,, = (x, — x,)/d,, in the inertial frame. This direction
cosine is expressible in terms of 7, and 7, and (in princi-
ple) in terms of 7, alone. The corresponding direction co-
sine for an observer accompanying 7, which gives the angle
between a continuation of the incoming ray to r and the x
direction, is given by the standard formula

Bt = h, —u./c ’
1—h,u,/c
with u,/c given by Eq. (8).
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IV. THE DOPPLER EFFECT IN AN
ACCELERATED FRAME OF REFERENCE

Moller® has given the equations of transformation
between an inertial frame and an accelerated frame, the
origin of which makes in the inertial frame the hyperbolic
motion described in Sec. IL. This is a rigid frame with static
properties, and its geometry is Euclidean. Using in this sec-
tion (xpz) and ¢ for coordinates and (coordinate) time in
this frame, the metric is given by

A dr = dt*(1 + gx/c?)? — (dx* + dy* + d2P).

The (coordinate) velocity of light is w = c(1 + gx/c?),
and in a one-dimensional situation the time for light to
travel from x, to x, is therefore ¢, — ¢, = {Tdx/w. Follow-
ing the steps which were made in an inertial frame, Egs.
(1)-(4), one is led to a simple generalization of Eq. (4),
namely,

v, W, (1 + us/ws)l/z(l — u,/w,)'/2 21
v, w \1— u,/w, 14+u/w,)

There is now a frequency shift for ¥, = u, = 0, which an
observer in this frame would interpret as an effect of gravi-
ty. The equation

r

v, w, l4gx/c

gx./¢ 22)
vi w, 14gx/c (

with x, and x, constant, is consistent with Eq. (17), since
the constant coordinate of s in the accelerated frame is its
coordinate in the inertial frame at time zero, and similarly
for r.
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