
Does A Uniformly Accelerating Charge Radiate?

One of the most familiar propositions of elementary classical electrodynamics is that "an 
accelerating charge radiates". In fact, the power (energy per time) of electromagnetic 
radiation emitted by a charged particle is often said to be strictly a function of the 
acceleration of that particle. However, if we accept the strong Equivalence Principle (i.e., 
the equivalence between gravity and acceleration), the simple idea that radiation is a 
function of acceleration becomes problematic, because in this context an object can be 
both stationary and accelerating. For example, a charged object at rest on the Earth's 
surface is stationary, and yet it's also subject to a (gravitational) acceleration of about 9.8 
m/sec2. It seems safe to say (and it is evidently a matter of fact) that such an object does 
not radiate electromagnetic energy, at least from the point of view of co-stationary 
observers. If it did, we would have a perpetual source of free energy. Since the upward 
force holding the object in place at the Earth's surface does not act through any distance, 
the work done by this force is zero. Therefore, no energy is being put into the object, so if 
the object is radiating electromagnetic energy (and assuming the internal energy of the 
object remains constant) we have a violation of energy conservation.

Of course, we could question the claim that no work is being done by the force holding 
the object in place. Indeed if we imagine a capsule in freefall, and within that capsule an 
object being accelerated in such a way that it maintains a constant altitude relative to the 
outside gravitating source, we would say, inside the capsule, we had done work on the 
object as we increased its velocity relative to the capsule, even though from the outside 
standpoint of the gravitating source the object is stationary and no work has been done on 
it. This is not too surprising, since work and kinetic energy are understood to be relative 
concepts, but it seems to lead to the puzzling conclusion that electromagnetic radiation 
must also be a relative concept. The familiar relativity of kinetic energy corresponds to the 
symmetry between different frames of reference, which is to say, we can always find a 
system of inertial coordinates with respect to which any given object (at a given instant) 
has zero kinetic energy. Our consideration of charged particles in a gravitational field 
seems to suggest similarly that we can always find a system of coordinates (at least 
locally) with respect to which a charged particle (at a given instant) does not radiate - even 
though the particle may be radiating at that instant with respect to some other system of 
coordinates.

It's also possible to question whether the equations of electrodynamics really do imply that 
an accelerating charge necessarily radiates. Surprisingly, this is still an open question for 
the classical theory. The difficulty is in knowing how to correctly account for the 
influence of a charged particle on itself. Remember that two electrons repel each other 
with a force (statically) proportional to the reciprocal of the square of the distance between 
them. This is traditionally understood in terms of each particle interacting with the field of 
the other particle. The intensity of each electron's field increases to infinity as the distance 
goes to zero (assuming point-like particles), so the force with which an electron is repelled 
increases to infinity as it approach the location of an electron - but therein lies a 
conceptual difficulty. According to this description, each electron is located in a place 
where there is an infinite force of repulsion against electrons! 

We can try to deal with this in various ways. For example, we might simply declare that 
an electron does not interact with its own field, it interacts only with the fields of other 
particles. If we take this approach we must then explain why a charged particle resists 
changes in its state of motion more strongly than an uncharged particle of the same inertial 
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mass. The traditional account of accelerated charges tell us that this "radiation reaction" 
force applied through the particle's motion supplies the energy that is radiated away in the 
form of electromagnetic waves. The origin of this force is usually taken to be the 
interaction of the particle with its own field. Thus if we declare that charged particles do 
not interact with their own fields we need a different explanation for radiation reaction. 
One well-known candidate is the Wheeler-Feynman absorber theory, according to which 
the excess resistance of a charged particle to changes in its state of motion is due to 
advanced waves emanating backwards in time from an all-encompassing array of 
absorbers in the future, whose waves are excited by the retarded waves emanating 
forwards in time from the particle.

We could also point out that although the force of repulsion on a charged particle from its 
own field is infinite, it is equally infinite in all directions, so the infinite forces cancel out, 
leaving no net force on the particle due to its own field - at least if the particle is in 
uniform motion. Then we can further suppose that the acceleration of a charged particle 
causes it to bias this singularity as it overtakes its own field, thereby incurring a net force. 
This same disturbance of the field results in radiation, so we can see the expected 
correlation between radiation and reaction. However, this approach leads to some highly 
non-intuitive conclusions. For one thing, the equation of motion based on this premise 
seems to imply that a uniformly accelerating charge does not radiate at all. (This is 
sometimes called hyperbolic motion, because the worldline of the particle is a hyperbola 
in spacetime, asymptotic to a particular pair of light rays.) Even more disquieting, we find 
that the equations of motion for a free charged particle possess "run-away" solutions, in 
which the particle rapidly accelerates toward the speed of light. In effect the particle is 
surfing on its own field. 

Whether these solutions are realistic or not is an open question, but the predicted absence 
of radiation for hyperbolic motion has sometimes been cited as a way of reconciling the 
Equivalence Principle with the fact that a charged particle held stationary in a 
gravitational field (and therefore undergoing constant proper acceleration) does not 
radiate. For example, in Feynman's "Lectures on Gravitation" he says "we have inherited a 
prejudice that an accelerating charge should radiate", and then he goes on to argue that the 
usual formula giving the power radiated by an accelerating charge as proportional to the 
square of the acceleration "has led us astray" because it applies only to cyclic or bounded 
motions. He says the work per unit time done against the radiation reaction force for a 
particle moving along the x axis is actually

Thus the radiation reaction force (and therefore the radiated power) is proportional to the 
third derivative of position, so if the particle is undergoing constant acceleration it does 
not radiate (according to this formula). If this is true, why do we so commonly regard 
radiation as being strictly a function of acceleration? Feynman points out that (1) can be 
re-written in the form

where the first term is the usual expression for the radiated power. For a simple sinusoidal 
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motion x(t) = sin(� t) the first term is proportional to �4sin(� t)2, which is positive-
definite, whereas the second term is proportional to �4cos(2� t), which oscillates between 
positive and negative values evenly. Hence the cumulative integrated work represented by 
the second term over any integer number of cycles is zero, whereas the work represented 
by the first term increases steadily. This explains why we ordinarily neglect the second 
term, and take the first term as defining the radiative power, which leads us to the 
(erroneous) conclusion that radiation is strictly a function of the second derivative 
(acceleration), when in fact it is proportional to the third derivative of position. 
(Incidentally, if we return to the original equation (1) and apply it to our sinusoidal 
particle, we get power proportional to �4cos(� t)2, which shows that the effect of the non-
positive-definite term in the second equation is to shift the power phase by �/2.)

Despite Feynman's assurances, there is no general agreement in the literature about 
whether a uniformly accelerated charge radiates (in classical electrodynamics). Indeed, 
many people reject Feynman's conclusion as absurd. For example, in Richard Becker's 
"Electromagnetic Fields and Interactions" we find in paragraph 4 of Part II the claim that 
equation (1) is valid only for nearly periodic motions (for which all the derivatives of 
position are proportional to corresponding powers of the frequency), and that

Absurd results are obtained if [equation (1)] is applied to other forms of motion, such as the 
retardation of a free electron in a constant opposing field. In this case only the second 
derivative would be different from zero, and [equation (1)] would therefore predict no 
radiation damping at all.

The above derivation of the radiation damping is unsatisfactory, because it is not at all clear 
how the emitted spherical wave influences the electron's motion. In order to gain a closer 
understanding of the nature of this "self-reaction" it is necessary to compute the resultant 
force on all electron volume elements... Types of motion [such as that of the free electron] 
can only be treated in the light of a more precise knowledge of the structure of the electron...

Thus Becker rejects as absurd the notion that a uniformly accelerating charge experiences 
no radiation reaction, whereas Feynman bases his defense of the Equivalence Principle on 
this very notion. 

Of course, above some frequency level, we know that the classical equations of 
electromagnetism are invalid, as shown by the "ultra-violet" catastrophe in cavity 
radiation. We must also account for the photo-electric effect and all the other familiar 
effects of quantum mechanics, which are incompatible with the simple wave conception 
of electromagnetic radiation. Nevertheless, even in the quantum theory of electrodynamics 
we find that the question of radiation reaction leads to difficulties, which to date have only 
been resolved in a somewhat ad hoc manner by means of re-normalization.

It's interesting to consider the result of treating electromagnetic radiation simply as the 
emission of classical particles at a fixed speed, ala Newton's corpuscular theory of light. 
Here we immediately encounter difficulties, because these corpuscles of light convey 
momentum, and if they are considered to be emitted discretely from the charged particle, 
the reaction would be an impulse, implying infinite acceleration of the emitting charged 
particle, albeit for an infinitely short period of time. Now, if the radiation from this 
particle is strictly proportional to the acceleration, we must expect the particle to radiate at 
an infinite rate - for an infinitesimal period of time - due to the reaction from the emission 
of a single corpuscle of radiation. We can argue that the total integrated amount of this 
radiation is finite, but the emission of each of these radiated corpuscles yields another 
impulse acceleration of the charged particle, resulting in still more radiation, and so on. If 

Page 3 of 9Does A Uniformly Accelerating Charge Radiate



nothing else, this clearly illustrates the problematic nature of the dual propositions that 
acceleration causes radiation and that radiation causes acceleration. It's easy to see how 
delicately these two propositions need to be balanced in order to yield well-behaved 
results.

Concerning the notion that radiation is relative, it's interesting to recall the fundamental 
observation that led Einstein to the special theory of relativity. He began his 1905 paper 
on the electrodynamics of moving bodies with the words

It is well known that Maxwell's electrodynamics - as usually understood at present - when 
applied to moving bodies, leads to asymmetries that do not seem to be inherent in the 
phenomena. Take, for example, the electrodynamic interaction between a magnet and a 
conductor. The observable phenomena here depend only on the relative motion of conductor 
and magnet, whereas the customary view draws a sharp distinction between the two cases, in 
which either the one or the other of the two bodies is in motion. For if the magnet is in 
motion and the conductor is at rest, an electric field with a definite energy value results in the 
vicinity of the magnet that produces the current wherever parts of the conductor are located. 
But if the magnet is at rest while the conductor is moving, no electric field results in the 
vicinity of the magnet, but rather an electromotive force in the conductor, to which no energy 
per se corresponds, but which, assuming the same relative motion in the two cases, gives rise 
to electric currents of the same magnitude and the same courses as those produced by the 
electric forces in the former example.

In this passage the relative velocity between magnet and conductor is assumed to be 
constant, and no mention is made of accelerating charges or radiation, but we can surely 
see the possibility of a direct analogy to the case of accelerating charges. Again we find 
that classical electrodynamics - as usually understood at present - when applied to 
accelerating bodies, leads to asymmetries that do not seem to be inherent in the 
phenomena (especially if we accept the strong Equivalence Principle). If a charged 
particle undergoes oscillating accelerated motion while a distant conductor is at rest or in 
uniform motion, the charged particle will emit electromagnetic radiation with definite 
energy and momentum, and this radiation will induce slight currents in the conductor. If, 
on the other hand, the charged particle is at rest or in uniform motion and the distant 
conductor undergoes oscillating accelerated motion, no radiation emanates from the 
charge (according to the customary view), and yet currents appear in the conductor 
precisely corresponding to those in the former case, now attributed to the effects of the 
static electric field.

It seems reasonable to suggest that the sharp distinction which the customary view draws 
between these two circumstances is not justified, and that the principle of relativity 
(suitably qualified, of course) can be applied to the descriptions of physical effects with 
respect to much more general systems of reference. Indeed the strong Equivalence 
Principle entails precisely this, which is why Einstein viewed his theory of gravity as a 
generalization and extension of the principle of relativity. As early as 1911 he wrote

According to this conception once cannot speak of the absolute acceleration of a system of 
reference, just as in the ordinary theory of relativity one cannot speak of the absolute velocity 
of a system.

Oddly enough, some modern authors fail to appreciate this fundamental fact. For example, 
Ohanian and Ruffini write

It is tempting to give the principle of general invariance the physical interpretation that 
acceleration is also relative. Einstein named his theory of gravitation the theory of general 
relativity because he thought that (locally) the phenomena observed in a gravitational field 
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are indistinguishable from those observed in an accelerated system of reference... However... 
tidal effects allow us to make an absolute distinction between the gravitational forces and the 
pseudo-forces found in accelerated reference frames. It is therefore false to speak of a general 
relativity of motion.

In reply to this, we should first point out that Einstein's theory is not the theory of general 
relativity, it is the general theory of relativity. The significance of this distinction should 
be clear. Second, the idea that tidal effects falsify the Equivalence Principle is simply 
incorrect, arising from a failure to recognize that the localization restriction is temporal as 
well as spatial. Furthermore, those who imagine that "real gravity" exists only where there 
is local curvature fail to consider circumstances in which a perfectly uniform stationary 
gravitational field over a limited region can be produced by a suitable arrangement of 
matter. Would they really claim that there is no true gravity in such a region because there 
is no local curvature? The Equivalence Principle is nothing but the spacetime version of 
the proposition from Riemannian geometry that a differentiable manifold is locally 
Euclidean.

One of the bases of our prejudice that radiation must be absolute is the notion that 
radiation consists of localizable entities, separate from the emitting and absorbing entities. 
Indeed this was one of the reasons Maxwell felt a need for a corporeal carrier or medium 
for radiation. He wrote

...we are unable to conceive of propagation in time, except either as the flight of a material 
substance through space, or as the propagation of a condition of motion or stress in a medium 
already existing in space... If something is transmitted from one particle to another at a 
distance, what is its condition after it has left the one particle and before it has reached the 
other? 

This sort of thinking often leads people to consider a "free photon", but of course there is 
no such thing, at least not in our experience. A photon is necessarily both absorbed and 
emitted. If it weren't, we would have no experience of it. It is only the emission and 
absorption events that are observable, not the existence of some entity "in transit". This is 
closely related to the impossibility of a perfectly monochromatic wave, because in order to 
be perfectly monochromatic a wave can have neither a beginning nor an end. (Termination 
points introduce a range of frequency components.) It should also be remembered that a 
perfectly monochromatic wave carries no information, and therefore is not subject to any 
limitation on the phase velocity. We typically regard the relativistic speed limitation as 
applying equivalently to both information and energy, so this raises the interesting 
question of whether a perfectly monochromatic wave (if such a thing actually existed) 
would convey energy. Many of those who have studies this subject have emphasized the 
distinction between the case of a charge that has been uniformly accelerated for all time 
versus the case of a charge that has been uniformly accelerated for a long but finite time. 
Ultimately this connects back to the distinction between a hypothetical "free photon" (if 
such a thing really existed) and a real photon that is necessarily both emitted and 
absorbed. 

Another interesting treatment of this subject is contained in A. O. Barut's book on 
"Electrodynamics and Classical Theory of Fields and Particles", published in 1964 and 
again in 1980. He begins with a heuristic derivation of the radiation reaction force based 
on a simple energy balance using the premise that the power (work per unit time) of the 
radiation is given by just the first term of equation (2). Equating the integral of this power 
to the integral of the radiation reaction force times the velocity we have
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We now make use of the fact that

which implies

Consequently, if we choose an interval 0,T such that either the first or the second 
derivative is zero at both ends, then the first term on the right side vanishes, and we can 
substitute into equation (3) and re-arrange to give

Barut then notes that one (thought not necessarily the only) solution of this equation is 
given by setting the integrand to zero, which implies

Hence we arrive at Feynman's equation (1), but clearly something strange is going on 
here. Recall that Feynman started with this relation, claiming that it was applicable to 
general motions, and then derived Barut's equation (3) as an approximation for periodic 
motion. In contrast, Barut started with equation (3), seeming to claim that it is valid for 
general motions, and then "heuristically" derived equation (1) as an approximation for 
periodic motion, precisely the opposite of Feynman's reasoning. As if this was not 
confusing enough, Barut then concludes by saying that "The assumption made above that 
d2x/dt2 vanishes at t = 0 and t = T is certainly true for oscillating motion, but we expect 
that a result like equation (5) should be quite generally true". Unfortunately he does not 
elaborate on why we expect this. Everyone seems to invoke the identity (4), but there is no 
common agreement on how it should be interpreted, and on which terms are to be 
regarded as fundamental.

Much of the literature on the question of radiation from accelerating charges focuses on 
the Lorentz-Dirac equation of motion for a classical charged point-like particle interacting 
both with an external field and with its own field. This equation is the source of equation 
(1), but it's important to remember that it is based on classical electrodynamics of point-
like particles, rather than on quantum electrodynamics, so it's physical relevance is 
questionable. Moreover, the internal validity of the Lorentz-Dirac equation is cast into 
doubt by the existence of run-away solutions (see below), which presumably are not 
observed - although it's interesting to consider what a run-away particle would look like. 
The fundamental problem is that, since this equation involves the third derivative of 
position, we cannot fully specify the initial conditions in terms of just position and 
velocity, as we can for ordinary equations of motion. The usual phase space for n particles 
has 6n dimensions (three position and three momentum coordinates for each particle), 
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whereas the phase space for a charged particle under the Lorentz-Dirac equation would 
have 9n dimensions. Typically we regard the position and velocity (or momentum) as 
independent free parameters, but it's much less clear that position, velocity, and 
acceleration can be taken as mutually independent free parameters for all times.

In addition, the usual neglect of the "near" static field when dealing with the "far" 
radiation field is based on the assumption that the distance r from the source is sufficiently 
great so that the terms proportional to 1/r2 are negligible compared to the terms 
proportional to 1/r, but the radiation reaction calculations extend all the way down to r = 
0. Nevertheless, despite the dubious status and physicality of the Lorentz-Dirac equation, 
it's interesting to briefly review the form of this equation, and its implications. After mass 
re-normalization, and in terms of units such that c = 1, this equation for a particle of mass 
m and charge q can be written as

where U is the four-velocity, A is the four-acceleration, F is the force four-vector (with 

the components F� = F��u
�) due to an external field F��, and � is the proper time along 

the worldline of the particle. (The scalar A2 is the squared Minkowski norm of A.) The 
first term on the right-hand side is the Lorentz force, and the second term is the radiation 
reaction force. For our purposes the most interesting aspect of this equation is the fact that 
the radiation force vanishes if the particle's proper acceleration A is constant. In other 
words, the quantity in parentheses is identically zero under these conditions. To see this, 
we need only observe that the vanishing of the quantity in parentheses can be expressed as

The condition of constant proper acceleration implies that the squared norm of the 
acceleration four-vector is constant, equal to the negative of the squared norm a2 of the 
acceleration three-vector a with respect to the particle's instantaneous co-moving inertial 
rest frame. Thus the radiation reaction force vanishes (for non-zero charge) if and only if 
the velocity four-vector satisfies the harmonic equation

The motion must be in a straight line, so we can consider just motion along the x axis with 
coordinate time t, in which case this equation implies

where U0 = dt/d� and U1 = dx/d�. Of course, we also have U2 = U0
2 � U1

2 = 1. One 

solution of these equations is
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which represents the familiar equations of "hyperbolic motion", i.e., motion with constant 
proper acceleration. This is the basis for the claim that a uniformly accelerated charge 
does not radiate, because the energy of radiation presumably comes from the work done 
against the radiation reaction force, which is zero for motion with constant proper 
acceleration - at least according to the Lorentz-Dirac equation. However, as noted 
previously, this equation is based on questionable assumptions, and is known to possess 
unphysical solutions. Perhaps the most disquieting of these are the run-away solutions. 
For a free charged particle with no external force, the Lorentz-Dirac equation reduces to

Focusing again on motion along the x axis, this vector equation can be split into its two 
component equations, the first of which is

As always, we also have the condition U0
2 � U1

2 = 1, and one way of automatically 

ensuring this condition is to set

for some arbitrary function f. Inserting these expressions into the first component 
equation, we have

Dividing through by sinh(f), we arrive at

Thus we have

where C = (2q2)/(3m) and the symbols k and J denote arbitrary constants. The U1
component of (6) leads to the same conditions on f (and of course the U2 and U3

components are satisfied with U2(�) = U3(�) = 0), so letting K = kC, the solution of the 

unforced Lorentz-Dirac equation (6) for motion along the x axis can be written as
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Hence the velocity of the particle with respect to the x,t coordinates is

The hyperbolic tangent is asymptotic to � 1, so depending on the sign of K the speed of 
the particle quickly approach the speed of light as � increases. These run-away (also 
known as "self-accelerated") solutions are widely regarded as unphysical, calling into 
question the validity of the Lorentz-Dirac equation of motion. It's also interesting to note 
that these solutions are not time-symmetric, because the constant C = (2q2)/(3m) is 
(presumably) positive definite. Hence the free charged particle asymptotically approaches 
the speed of light in the positive � direction, whereas in the negative � direction it 
approaches the fixed speed tanh(J). These solutions would be time-symmetric only if q2 or 
m could be negative.

The strangeness of these run-away solutions has led to careful re-examinations of the 
premises underlying the Lorentz-Dirac equation. There are subtle issues of interpretation 
when trying to equate the energy of radiation with the work done on a particle, not to 
mention the difficulty of isolating the inertial mass m from the electromagnetic mass. (For 
example, when asking whether a charged particle requires the same upward force to hold 
it stationary in a gravitational field as does an uncharged particle of the same mass, we 
need to carefully consider how the charge contributes to the mass of the particle.) As a 
result, the Lorentz-Dirac equation does not provide a definite answer to the question of 
whether a uniformly accelerated charge radiates.
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