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Physically significant limiting processes are employed to derive the correct field of a uniformly 
accelerated charge. This solution is used to discuss a difficulty associated with the field of 
a charge statically supported against gravity.

1. The field of a uniformly accelerated charge was first discussed by Bom  (1909) 
and since then by several other authors, notably by Schott (1912) and Milner (1921). 
The field given by Schott differs greatly from that given by Born, which, as Milner 
showed, is in fact a particular field associated with a pair of oppositely charged and 
oppositely moving uniformly accelerated charges.

In spite of this work, most discussions (Pauli 1920; Drukey 1949) have 
been based on B om ’s solution. In the present paper the problem is considered 
again, and it is shown that two physically significant Mmiting processes having the 
mathematical abstraction of the (permanently) uniformly accelerated charge as 
limit both lead to the same solution, which differs from those previously given. As 
there is no reason to believe that there are any fundamentally different processes 
with this motion as Emit, this result is taken to establish that this solution is the 
only correct description of the field of a uniformly accelerated charge.

I f  the velocity of fight is put equal to unity and the motion of the charge is 
supposed to take place along the ar-axis (i.e. velocity and acceleration are parallel), 
then the position of the charge can be represented by

where /  is the acceleration. The motion may be represented diagrammatically by  
one branch ABC of a hyperbola in the (x,t) plane (figure 1). Since the charge is 
always on one side of the fight ray AO A', it follows that the field due to the charge 
must be similarly confined, i.e. that there can be no field in the space 0.

In our notation the Bom  field is given by

Ex =  -  [1 +/*(<*■- ■+ y*+ z2)] V, Hx = 0,
Ev =  2 \pxyU, Hy — — ,
E, =  2/% z(7 , Hz =  2PtyU ,

where U =  4e /2{ [ /2(£2— x2—y2— z2)+ l ]2+ 4/ 2(y2+ z 2)}-$.

* Now at K in g’s College, London. 
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The electric lines of force at any instant are the family o f circles passing through 
the instantaneous position o f the charge and through its mirror image in the 
plane x = 0.

Although this is the field derived by the method of retarded potentials, it clearly 
does not satisfy the condition that the field must vanish for +  0. Nor is it
possible to assume that the field is given by (2) for x + t ^ 0  and vanishes for x + t < 0 , 
since Ex as given by (2) does not vanish on =  0. As and Ez are finite there, 
the condition div E =  0 would not be satisfied. This cut-off Born field, violating 
Maxwell’s equations, has, however, been given by Schott.

I t  m ay be worth pointing out that the field given by (2) contains a charge e moving 
on ABC  and the image charge - e o n  C'B'A', but is not the field due to these two 
charges only, as such a field would vanish below AOC' (i.e. t<  — | |). This field,
considered as a field associated with two charges, was discussed by Milner (1921).

Field of a uniform ly accelerated charge

F igure 1

2. The' failure of the method of retarded potentials to give the correct field is 
hardly surprising. The solution of the wave equation by retarded potentials is valid 
only if  the contributions due to distant regions fall off sufficiently rapidly with 
distance. But in our case, as we consider a succession of points with t diminishing 
towards —x, while the relevant section of the trajectory of the particle recedes to  
infinity (at A), the velocity of approach becomes closer and closer to the velocity 
of light. It is easily seen that the contribution in fact diverges. This does not of 
course affect the validity of the Born field in the space 0. In this region
the Born field is the field of a charge of maximum velocity v (v < c). For such cases 
the use of the method of retarded potentials has been fully vindicated by experiment, 
and this method leads uniquely to the Born field.

In order to derive the correct field of a uniformly accelerated charge, it is therefore 
necessary to employ some limiting process avoiding the part of the trajectory 
stretching to infinity at A.

Two such processes would appear to be particularly suitable:
(i) Before t — —t the charge was moving with constant velocity, after =  — r 

with constant acceleration.
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(ii) At t = — r a charge e and a charge — e are simultaneously created. Charge e 
moves with constant acceleration, charge — e in some trajectory that always remains 
a distance of order r from O.

Although both methods tend to the same limit as r tends to infinity, method 
(ii) seems to be more instructive. The chief reason for this is that in method (i), 
throughout the whole limiting process, the field extends through all space-time. The 
limitation of the field to one side of a wave front is  such a characteristic property of  
the field of a uniformly accelerated charge that it would seem to be more appropriate 
to employ a limiting process such as (ii) in which the property applies at all stages.

3. Although, no doubt, the characteristics of classical fields due to pair creation 
are well understood, the absence of any explicit reference in the literature makes 
a brief discussion desirable.

F igure 2

It is clear from the law of conservation of charge that the two members of the 
pair must be created at the same point at the same time. The following argument 
shows that the two charges must also be created with the same velocity; or at any 
rate that the creation with different velocity requires an additional radiation field 
of the type that would be associated with an infinite acceleration just after the 
event, in order for the resultant field to be admissible.

To show this, consider the field of a pair created with different velocities. Let 
X  in a space-time diagram (figure 2) be the event of pair creation and let XB, XB' 
be the world lines describing the motions of the two charges. Since later accelera
tions do not concern the present argument, assume that the charges move with  
constant (but different) velocities, and therefore that XB, XB' are sections of  
straight lines.

Consider now the light cone corresponding to an event at X. In a space-time 
diagram this will be a cone of 45° semivertical angle ( in figure 2). The field due 
to a pair created at X  must vanish outside the light cone . At any point inside 
this light cone the field, as derived by the method of retarded potentials, depends 
only on sections of the world-lines after creation and hence later than X. The field



is therefore identical with the field due to permanent charges e, — e, moving like the 
created pair after X  and in any manner before X, say each with the same constant 
velocity as after X. The world-lines of these charges are AXB,  . This field is
easily calculated, but cannot be combined (without recourse to infinities) with the 
previous requirement of zero field outside the light cone. The normal electric 
intensity of the ‘inside’ field does not vanish just inside the wave front ,
while it would have to vanish just outside. The condition that the divergence of the 
electric vector should vanish can therefore not be satisfied, and the combination of 
fields is therefore inadmissible. (This conclusion is changed only by the presence 
at the wave front of a ^-function field such as would be due to an infinite acceleration 
having been suffered by one of the charges immediately after the event at X .)
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F igure 3

N ext, consider pair creation with the same velocity, but different accelerations. 
The simplest case is given by a uniformly accelerated particle +e(XB)  and 
a particle — e moving with constant velocity XB' (figure 3). In order to examine 
the effects of pair creation, consider zero field outside the fight cone XFF' and the 
sum of the field of A'XB' and the Bom  field of AXB  inside the fight cone. The use 
of the Born field is permissible since only regions with +  > e > 0 are considered 
within the fight cone. It can readily be shown that the normal component of the 
electric field vanishes on the fight cone, and indeed that all the necessary conditions 
are satisfied on the wave front. This follows directly from the fact that all the com
ponents of the 4-potential vanish linearly on the wave front. The field is therefore 
the correct one.

It is easily seen by superposition that the field of any pair created with the same 
velocity will be given in the same way even if  both are accelerated.

4. A model for a suitable limiting process may now be set up (figure 4). AXB  is 
a world fine of constant acceleration/and A'XB'is a world fine of constant accelera
tion g. The two world fines have a common tangent at X, and g is greater than / .  
Now let a pair of charges e, — e be created at X moving along XB  and — e along XB'.
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Let - r  be the time co-ordinate of X. The field of the two charges is then given by 
the superposition of their Born fields inside the light cone XFF', and it vanishes 
outside. I f  r tends to infinity, with g fixed or increasing, the field approximates to  
that of the single uniformly accelerated charge e.*

F igure 4

The calculations are readily made and are given in the appendix. I f  r is large, the 
field of the second charge is negligible except near the wave front XF. Near the 
wave front the effect of the field of the second charge is to reduce the normal electric 
field of +  e to nil and to produce strong transverse electric fields and corresponding 
magnetic fields. In the limit the transverse fields become Dirac ^-functions. The 
complete field of a uniformly accelerated charge then becomes, for t + x ^ 0 :

Ex = - [ l  + f \ t 2-x *  + y2 + z2)]U,
Ev =  y[2\pxU + W],

Ez = z[2f2xU + W],
Hx = 0, i (3

Hy = -z[2fHU+W],
Hz = y[2f 2tU+W],

U =  4e /2{ [ /2(£2 — x2 — y 2 — z2) +  l ]2 +  4/ 2(y2 +  z2)}~$,

W =  -  2e/2[l + / % 2 +  z2)]-1 8(x + t), 
while for t +  x <0 the field vanishes.

* In  the present paper the forces responsible for the m otions o f the charges are not in vesti
gated. This is appropriate in a study o f M axwellian electrodynamics, which adm its o f other 
forces. I f  this were not so, and if  an inconsistency could be introduced in that w ay, it  would  
im ply that Maxwellian electrodynamics itself was capable o f m aking statem ents about the  
construction of m atter. I f  a more physical picture is desired, a system  o f static charges m ay  
be found producing the desired m otions, or alternatively these m ay be thought o f as being 
due to the interplay o f nuclear forces.



5. It has been argued on the basis o f the Born field that a uniformly accelerated 
charge does not radiate (Pauli 1920) and the opposite point of view has also been 
held (Drukey 1949).

The two arguments in favour of the non-radiation hypothesis were:
(i) That the Born field is symmetric between past and future.
(ii) That at t =  0, i.e. when the charge is instantaneously at rest, the magnetic 

field vanishes everywhere and hence the Poynting vector vanishes. Since a Lorentz 
transformation can reduce any point of the world line to rest, the field simply moves 
with the particle.

It will be seen that with our field (3) neither of these properties applies. From the 
present work it appears therefore that a radiation field is necessarily associated with 
the accelerating charge. It is not generally permissible, of course, to consider 
a dissected path and apportion the radiative contribution of each part, but it must 
be pointed out that in our field (3) all the travelling energy at =  0 is in the ^-function 
wave at a distance o f / -1 from the charge. It m ay be worth mentioning here that the 
following is a known property of the Lorentz transformation: if  a uniformly 
accelerated point is chasing a point travelling at the speed of light, and if there is 
a distance / _1 between them, as reckoned in one Lorentz frame which is instan
taneously coincident in velocity with the accelerated point, then the same distance 
will be measured in all subsequent such Lorentz frames. (The rate at which the 
point moving at the speed of fight gains on the accelerated point is just balanced by  
the increasing contraction of the successive Lorentz frames.) The system of charge 
and radiation field is therefore similar in successive Lorentz frames; but it could not 
fairly be said that the radiation field moves with the charge.

6. The discussion given in the present paper has an interesting application to  
a problem in the theory of gravitation. The principle of equivalence states that it is 
impossible to distinguish between the action on a particle of matter of a constant 
acceleration or of static support in a gravitational field (Einstein 1923). This might 
be thought to raise a paradox when a charged particle, statically supported in 
a gravitational field, is considered, for it might be thought that a radiation field is 
required to assure that no distinction can be made between the cases of gravitation 
and acceleration. But if  the charge had an associated radiation field, this would 
reach distant regions unaffected by the gravitating body, where Maxwell’s equations 
apply without any modification due to gravitational effects. According to these 
equations there can be no static radiation field; and as the whole system is static the 
electromagnetic field cannot depend upon time.

There is, however, no paradox where the principle of equivalence is considered 
with its limitations. The surveying of a sufficiently large region can always reveal 
the presence of a gravitational field through the inhomogeneity that is associated 
with it, which is absent for an acceleration field. The presence or absence of radiation 
from the charge could only be established by surveying the space out to a distance 
/ -1 from the charge; but at that distance the presence of a gravitational field can in 
general be inferred from its inhomogeneity, and there is hence no requirement for 
the electromagnetic effects to conceal the distinction between the two cases. In the 
special case where a gravitational field is homogeneous over the entire distance f~l,
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the potential difference is c2 over that interval. That case is known to result in 
several anomalies (cf. Eddington 1930; Curtis 1950), and it appears from other 
considerations that it must be excluded from any physical discussion. For this 
reason we do not intend to deal with this case here, although we appreciate that it 
is sometimes instructive to enquire into the way in which paradoxes arise when 
conditions are assumed that have no counterpart in the physical world.

We are grateful to the referee for drawing our attention to the relation of the 
formulae for the field derived here to those obtained earlier by ScKott.
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Appendix

The calculation of the field of the charge — e may be made by using the Born 
field (2). The world fine of — e is

* =  * ° + [ ^  +  (* +  *o)2]*> (A l )

where ( — tQ, x0) are the co-ordinates of the centre of the hyperbola that represents 
the world line of the charge, and g is its acceleration. The condition that the curves 
(1) and (A 1) touch at £ =  — r determines t0 and to be

f *+  t2] ’ =  ( X - j } (0 > /)• (A 2)

Since the co-ordinates of X  are I" ~  T> (™ +  t2V > 0» 0 1, the equation of the light 
cone FXF' (figure 4) is l \J J

(t +  T f
h G H T

+ y 2 + z2. (A 3)

For given t, y, z, let the smaller value o f x determined by (A 3) be called The point 
%w, y , z) is on the part of the light cone referred to as XF  in figure 4. Since r will



be made to tend to infinity, while t, x, y, are finite, XF'is of no interest. Also 
we m ay change co-ordinates to ( t,£, y, z), where

£ = £(t, y» z) = -  y,»). (A 4)
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We shall only be concerned with £^  0, since the field vanishes outside
I f  the expression U of equation (2) corresponding to — e is called tJ (and similarly 

we shall have E, etc.), then

tf = -  4 cg2{{g\(t + 10)2 - ( x -  x0)2-  +  l}2 +  4 +  z2)}~ i (A 5)
Now

(* +  <o)2 -  (*o -  x f  = (* + *o)2 -  (^o -  -  £)2

“ [(i - 9 T+,r - i ( i - 9 ( ^ +’*)*-(^+T*)i+[<T+‘),-» , - ^ - £r

= 2?T(1J ) +2|j_ ^ + (1_ g ( ,2+22+/l ) +o(i)

for large r. 
Accordingly

o - - ± 2£t (9 - } ) + <M2 t  -  i ) - S ( v 2 + z2) + 7 1 + 4(?/2+ «2) (AO)

neglecting terms that tend to zero as r tends to infinity. It will be observed that the 
expression in curly brackets does not vanish in the region in question, since £ is non
negative and since we are not interested in values of £ of order r, as these correspond 
to regions close to XF'  in figure 4. It is clear then that, for large r, tJ is small unless 
£ is small. Hence the term gr£(2£ — £) in (A 6) may be neglected. Accordingly

= *e\2gr(g-f)  + (2g-f ) (y*  + z*)+ j j 2 J r ( y - / ) - / ( y 2 + 22) +  iJ +<%2 +  z2)J \
Hx =  0 ,

Ey =  - i f f .  =  \ %  =  \B y  =  8 *  | r ( l - £ )  + « ]{ [2 fT te - / ) - /( j /2 +  Z2) +  iJ2 +  4 (jr2 +  22) ) ' i ,

(A 7)

to the same order of approximation.
It will be seen that the variables £ and r enter Ex only in the combination £r, 

whereas the leading term of the transverse field variables is the product of r and 
a function of £r (and of y  and z).

For fixed r, all the functions become small if  £r is large. For large r, the fields are 
therefore negligible outside a narrow zone just behind the wave front, but while the 
maximum value of Ex is bounded, the maxima of the other field variables are 
proportional to r. Therefore the only effect on the total Ex field will be to produce



424 H. Bondi and T. Gold

the step function that is already known to occur at the wave front. The effect of — e 
on the transverse field will, however, be large though localized. Now

*00 * 00 2(9 —/)d (£ r )
© JS

!
a Vf

t II

e . (
2(9 - f ) £ T - f ( y 2 + z*)+jJ +  4(y2+  z2)J

ey
y2 +  z2

f(y2+ z* ) - -
J

f(y*+z2)+l_

2 eyf2 1
1 + / % 2 +  *2)'

This expression is independent o f r. Since Ey is non-negligible only in a narrow zone, 
Ey is a multiple of a ^-function. Formulae (3) follow.

It should also be pointed out that in checking the vanishing of the normal electric 
field on the wave front, the deviation of the normal from the ^-direction must be

'■v/ r s j

allowed for, since Ey is of higher order than Ex.


