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A detector undergoing uniform acceleratienin a vacuum field responds as though it were
immersed in thermal radiation of temperatdre #a/2wkc. An intuitive derivation of this result is
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[. INTRODUCTION Dirac particles of spin 1/2fermiong brings in a whole host
of new machinery, the least of which is the formulation of

Hawking' predicted that a black hole should radiate with athe Dirac equation in curvilinear coordinatéthat is, in
temperaturd =7 g/2wkc, whereg is the gravitational accel- curved space—time This formulation quickly goes beyond
eration at the surface of the black hole,is Boltzmann’s the expertise of most nonexperts. However, in both the boson
constant, and is the speed of lightthe Hawking effect The ~ and fermion cases, the beautiful and important results of
radiation results from the effect of the strong gravitation onHawking, Davies, and Unruh can be stated quite simply: for
the vacuum field. Shortly thereafter it was shown separatelf scalar field(bosons a detector carried by an accelerated
by Davies and Unruh that a uniformly accelerated detectopbserver detects a Bose—EinstéBE) number distribution
moving through the usual flat space—time vacuum of conof particles at temperatur€ given by Eq.(1), while for a
vential quantum field theory responds as though it were in &pin 1/2 field(fermiong a detector carried by an accelerated

thermal field of temperatufe® observer detects a Fermi—Dirac number distribution at the
same temperature.

fia The purpose of this paper is to present a simplified deri-

T= 2m7ke’ &y vation of Eq.(1) that is suitable for advanced undergraduate

or beginning graduate students and elucidates the essential

wherea is the acceleration in the instantaneous rest frame ofinderlying physics of the flat space—time Davies—Unruh ef-
the detectorthe Davies-Unruh effect. We will refer to Eq.  fect. Once the simplest features of a quantized vacuum field
(1) as theHawking-Unruh temperatureoecause its applica- are accepted, Eq.l) emerges as a consequence of time-
bility to flat space—time accelerated detectors or to stationargependent Doppler shifts in the field detected by the accel-
detectors situated outside the horizon of a black hde  erated observer.
pends only on the interpretation of the source of the accel- In Sec. Il the essential features of uniform acceleration are
erationa. reviewed, and in Sec. Il we use these results to obtain Eq.

The results of Hawking, Davies, and Unruh suggest pro{1) in an almost trivial way based on the Doppler effect. In
found consequences for the merger of quantum field theorpec. IV this simple approach to the derivation of the tem-
and general relativity and sparked intense debates over unrgerature in Eq(1) is developed in more detail. In Sec. V we
solved questions that are still being actively investigated. I£xtend the previous calculations for scalar fields to spin 1/2
black holes are not really “black,” are naked singularities theDirac fields. We close with a brief summary and discussion.
ultimate fate of black holes, or will the long-sought fusion of
guantum mechanics and general relativity into a coherent. UNIFORM ACCELERATION
theory of quantum gravity prevent such occurrences? If a ] ) ) )
quantum mechanical pure state is dropped into a black hole We will refer to an observer moving with constant velocity
and pure thermafuncorrelatetl radiation results, how does in flat space—time as Minkowski observernd refer to a
one explain the apparent nonunitary evolution of the puré?lndler observétas one who travels with uniform accelera-
state to a mixed state? tion in the positivez direction with respect to the former.

The intriguing consequence of quantum field theory forUniform acceleration is defined as a constant acceleration
accelerated detectors indicated by E%. has not been de- in an instantaneous inertial frame in which ttiindler) ob-
rived in a physically intuitive way. Numerous explicit and server is at rest. The acceleratidn/dt of the Rindler ob-
detailed calculations have appeared in the scientific literatureerver as measured in the lab franfihat is, by the
over the last 30 years for a wide variety of space—timesMinkowski observer is given in terms ofa by a Lorentz

However, even for the simplest calculation involving a scalatransformation formula which relates the acceleration in the
field (bosong, the intricacies of field theory techniques, two frameg

coupled with a forest of special function properties, make
most derivations intractable for the nonspecialist. An inves- d_U:
tigation of the flat space—time Davies—Unruh effect for dt
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If we integrate Eq.(2) and takev=0 at t=0, we have
v(t)=at/\1+a%t?/c? The relationdt=d/\1—0v?/c? be-
tween the lab timet, and the proper times, for the accel-
erated observer givelg r) = (c/a)sinh@7/c) if we taket(r
=0)=0. The velocityv of the accelerated observer as de-
tected from the lab frame can be expressed in terms of th
proper timer as

ar
v(r)=ctanl'(?).

A straightforward integration of Eq(3) using v(t(7))
=dz/dt=dz(7)/d7-d7/dt yields the well-known hyperbolic
orbit of the accelerated, Rindler observer in theirection®

ar ar
c c/
We will considera>0, that is, the observer accelerates in the
positive z direction.

©)

c c?
—sin z(7)=—cos
a a

t(7)

(4)

[Il. INDICATION OF THERMAL EFFECT OF
ACCELERATION

Consider a plane wave field of frequeney and wave
vector K parallel or anti-parallel to the direction along
which the observer is accelerated. In the instantaneous re
frame of the observer, the frequeney of this field is given
by the Lorentz transformation

wK{l—tam(
wx—Kuv(7) B

O ot mie \/

arT

a

aT

:

1—tankt

efa-r/c

(5

for K=+ wg/c, that is, for plane wave propagation along

:wK

the z direction of the observer’s acceleration. For propaga-

tion in the —z direction,

e? Tlc

wi(7) = wx (6)
where K= —wy /c. Note that for small values odr, wy
=wy(1+ar/c), the familiar Doppler shift. Equationb)
and (6) involve time-dependenboppler shifts detected by
the accelerated observer.

Because of these Doppler shifts, the accelerated observér

sees waves with a time-dependent phasg(7)
=["wy(7')d7' = (wkc/a)expl@r/c). We suppose therefore
that, for a wave propagating in thez direction, for which
[Twg(7)d7’ = (wkc/a)expl@rc), the observer sees a fre-
quency spectrun$({)) proportional to

@)

o0 2
U d 7 el Q7ei(wkc/a)ed™®

If we change variables tp=e?"¢, we have
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foc dTeiQrei(ch/a)ea"/Cz Efxdyy(iﬂc/afl)ei(ch/a)y
— o ajo
c_(iQc
“a | a
e .
-iQc/
wke| ™ cae—wﬂc/za, )
a
where T is the gamma functio® Then, because
IT'(iQc/a)|?= /[ (Qc/a)sinh(zQc/a)],'* we obtain
iQ7r~i(w ar/c mC 1
fwdq-e'ﬂ L “0a e2™R]" ©)

The time-dependent Doppler shift detected by the acceler-
ated observer therefore leads to the Planck facesffT
—1) ! indicative of a Bose—Einstein distribution for scalar
(boson particles withT=#%a/27ke, which is just Eq.(1).

We obtain the same result for a wave propagating in-tlze
direction.

Note that the time-dependent phase can also be obtained
directly by considering the standard nonaccelerated
Minkowski plane wave eXpe- |=exfdi(Kz* wyt)] and sub-
stituting Eq. (4):  ¢+(7)=Kz(7) = wkt(7)=(wkc/a)

X exp(+ar/c) with K= w /c. 1?13

IV. AMORE FORMAL DERIVATION

st
The derivation of the temperature in EG) leaves much

to be desired. We have restricted ourselves to a single field
frequencywy , whereas a quantum field in vacuum has com-
ponents at all frequencies. Moreover, we have noted the ap-
pearance of the Planck factor, but have not actually com-
pared our result to that appropriate to an observer at rest in a
thermalfield (that is, a field in which the average number of
particles is given by a BE distribution for bosons or a Fermi—
Dirac distribution for fermions at a fixed temperatdrg

To rectify these deficiencies, let us consider a massless
scalar field in one spatial dimension)( quantized in a box
of volumeV:1*

R 2mhc?
d):;(WC

oV
Here K=+ wy/c, anday and a& are, respectively, the an-
nihilation and creation operators for modé ([éK,aE,]
=0dkk'» [ak,ak/]=0). We use” to denote quantum me-
chanical operators. The expectation vald¢/dt)2)/4mc?
of the energy density of this field i¥ '3/ wy[(akax)
1/2]. For simplicity, we consider the field at a particular

point in spacesay,z=0), because spatial variations of the

12
[age 'oKi+afel oK.

(10

field will be of no consequence for our purposes.

For a(bosonig¢ thermal state the number operaﬁq}éK
has the expectation valuee(>«<’KT—1)~1. Consider the
Fourier transform operator

5= 5 [ atie
27Tﬁ02 1/2
=;( ad(w—Q) (Q>0). (11

(1)KV
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The expectation valugd'(Q)§(Q')) in thermal equilibrium ~ which is identical to the thermal result EQ.3) if we define

is therefore the temperature by Ed1).
) Note that the expectation vall(étKaL): Skk involves
G )=> (Zﬂlc (aka)s(Q-Q") the creation and annihilation operators of the accelerated ob-
K | ok server and is taken with respect to the accelerated observer’s
X (g — ) vacuum, which is different from the vacuum detected by the
K nonaccelerated observer. This point is discussed more fully
2t c2 1 in Sec. VL.
_; ( wKV ) eﬁwK/kT_l
V. FERMI —DIRAC STATISTICS FOR DIRAC
X8(Q—=Q")8(wg—Q). (120  PARTICLES

We go to the limit where the volume of the quantization box We have considered a scalar field and derived the Planck
becomes very large/—, so that we can replace the sum factor €"*’kT—1)"! indicative of Bose—EinsteifBE) sta-

overK by an integral:=«— (V/27) [dK.*® Thus tistics. We began with the standard plane-wave solutions of
. L the form expi(Kz+ wyt)] for the nonaccelerated Minkowski
A PP * observer and considered the time-dependent Doppler shifts
(@' g(0 )):ﬁ&f_dew_K e kT _ as detected by the accelerated obser?/er. For spigpllz Dirac
particles we would expect an analogous derivation to obtain
X 8(|Klc—Q)s(Q—-Q") (e"¥¥T+ 1)1 indicative of Fermi—DiradFD) statistics.
256/ Mathematically, the essential point involves the replace-
= gramr— Q- Q"). (13) mentiQc/a—iQc/a+1/2 in the integrals in Eq$7)—(9),"°

and the relation |I'(iQc/a+ 1/2)|?>= w/coshgrQc/a).
Now consider an observer in uniform acceleration in thePhysically, this replacment arises from the additional spinor
quantizedvacuumfield, that is, the particle free vacuum ap- nature of the Dirac wave function over that of the scalar
propriate for the accelerated Rindler observer. This observeflane wave. For a scalar field, only the phase had to be
sees each field frequency Doppler-shifted according to EqdnStantaneously Lorentz-transformed to the comoving frame
(5) and (6), and so for him/her the operaté(Q) has the of the accelerated observer. For non-zero spin, the spinor

form structure of the particles must also be transforifedy
Fermi—Walker transportéi along a particle’s trajectory to
1 (= _ 2mhc?\ /2 ensure that it does not “rotate” as it travels along the accel-
@(Q)=EJ’ wdTEIQTEK: ( oV ) erated trajectory. Ensuring this “nonrotating” condition in

the observer’s instantaneous rest frame leads to a time-

[ Bpe—iRdr op(r) 1 5t gifrdr’ wy(r') dependent Lorentz transformation of the Dirac bispinor of
[ake k7 +8,€ ] ° N
) 1o the formt S(7) =exp(° y*ar/2c) = cosh@r/2c)
1 dreiorS 2mhe + v % sinh@r/2c), where the & 4 constant Dirac matrices
T2m )T < | oV are given by
X [Ay @ (Korelae” K7 gt o-i(equycla)e ko) o (10 5 0 o
K K ’ Y= B , Yy = B , (17)
0 -1 o, O

(14
. At ando,=diagonal(1;- 1) is the usual X2 Pauli spin matrix
where ex=|K|/K. Becausedy|vacuum=0, only the ax

terms in Eq.(14) contribute to the vacuum expectation value " the z dTlr;;:tlon. If S(7) acts on a spin up Statﬁ)_
(§1(Q)§(Q")). If we perform the integrals overas before  =[1,0,1,0", S(7)[1)=explar2c)|1). Thus, for the spin

A AT \_ ; up Dirac particle we should replace the plane wave scalar

and use(@xay,) =k’ , We obtain wave function exfig(r)] used in Eq. (7) by
A A c \2/2mhc? iQc\|? exp@r2c)exdie(n].2* This replacement leads ti{dc/a

@' Q)= >a v ) 2 —iQcl/a+1/2 in Eq.(8), and therefore the result

0 2 2
ie -0 ; ; ar/c C 1
Xe—ch/aE i wKC ieg(Q—Q")cla f_wdTe'QTeaT/ZCe'(wKC/a)e :wKa 6277(20 a1
K wg\ a (18)
(15 If we compare Eq(18) with Eq. (9), we note the crucial

where we have used the fact that the sum d¢evanishes change of sign in the denominator fromil for BE statistics

unlessQ =0’ We show in the Appendix that the sum over to + 1 for FD statistics. We also note that the prefactor in Eq.
K is (2va/c?) 8(Q—Q'), so that (9) involves the dimensionless frequen@c/a while in Eq.
’ (18) the prefactor involves the factargc/a (the argument of

A hc?| [iQc)|? c/a , the exponential in the distribution function is stillQ/kT
(@ (e N=—I'\—|| e o(Q—-Q7) with the same Hawking—Unruh temperatufe:#ia/2mkc).
ohelO) This difference in the prefactor is no cause for concern, be-
C

(16) cause in fact a single frequencyy detectable by a

— _ !
ezwma—lﬁ(Q an, Minkowski observer is actually spread over a continuous
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range of frequencieQ detectable by the accelerated Rindler portional to the Bose—Einstein distribution. We then consider
observer, with a peak centered@t w .?% This fact allows  the calculation of this correlation function again, but this
us to replacewy by Q in the final result[This frequency time for an accelerated observer in his particle free Rindler
replacement is explicitly evidenced by the delta functionvacuunf® state |Og), such that for a single mode,
8(wx—Q) in Egs.(11)—(16) in the comparison of the ther- (0Og|araL|0g)=1. The new feature is that from his local sta-
mal and accelerated correlation functigns. tionary perspective, the accelerated observer detects all
For the spin up Dirac particle, the more formal field- Minkowski frequencies(arising from the the usual plane
theoretic derivation of Sec. IV proceeds in exactly the samavaves associated with Minkowski states time-dependent
fashion, with the modification of the accelerated wave func-Doppler shifted frequencies.
tion from expie(7)]—exp@r2c)exdie(7)] and the use of The derivation presented here shows why quantum field
anti-commutators{ay ,aL,}= S« for the quantum me- fluctuations in the vacuum state are crucial for the thermal

. . o . i gt ar0’)) i ishi -
chanical creation and annihilation operators instead of th&ffect of acceleration{g (Q_)Q(QT» is nonvanishing be
commutators appropriate for scalar BE particles. For the corcause the vacuum expectatiiyay) # 0. But there is more
relation function we find to it than that, becausgiya)) also is nonvanishing for an

observer witha=0. For such an observer, however,

At N , ZﬁC/wK ,
(8" = ey 792 -0, (19
the FD analogue of Eq16). f dTeiQTeiR’dT"”K(”):f drel@Fer
VI. SUMMARY AND DISCUSSION =276(0+ wy)
In the usual derivation of the Hawking-Unruh temperature =0 (20)

Eq. (1),27% one solves the wavéor Dirac) equation for the

field mode functions in the Rindler coordinates E4), and  for scalar particles, because bdthand wy are positive. In
then quantizes them. Because the hyperbolic orbit of the amther words, the thermal effect of acceleration in our model
celerated observer Eq4) is confined to the region of arises because of the nontrivial nature of the quantum
Minkowski space—time>0, z>|t| bounded by the asymp- vacuum and the time-dependent Doppler shifts detected by
totest= +z called theright Rindler wedggwith mirror or-  the accelerated observer. For Dirac particles, the essential

bits confined to thdeft Rindler wedgedefined byz<0, |z| ~ Nnew feature is the additional spinor structure of the wave

>|t| obtained from defining the accelerated observer’s cooriunction over that of the scalar plane wave. To keep the spin
nonrotating in the comoving frame of the accelerated ob-

. o . 2
:'ncit:s ﬂis t'(tTt) _rns (g/?)tilgthﬁzc) acan?n éfa:()ecte d(fa / the SETver, the Dirac bispinor must be Fermi—Walker transported
) ar/c)], it tu u vacuu y along the accelerated trajectory, resulting in an additional

accelerated observer N say, thg right Rlndller wedge is OIIf’[ime-dependent Lorentz transformation. Formally, this trans-

ferent than the usual Minkowski vacuufdefined for allz formation induces a shifting dfc/a—iQc/a+1/2 in the

andt) detected by the unaccelerated observer. The inequivas,|cylation of relevant gamma function-like integrals, lead-

lence of these vacu@nd hence the Minkowski versus Rin- ing to the FD Planck factor.

dler quantization procedur€s is due to the fact that the | the following we briefly discuss the relationship of our

right and left Rindler wedges are causally disconnected fromyrrejation function to those used in the usual literature on

each other. Readers can easily convince themselves of thgig subject and point out a not widely appreciated subtlety

causal disconnectedness of the right and left Rindler wedg&gating details of the spatial Rindler mode functigmdich

by drawing a Minkowski diagram inzt) coordinates and e have ignored in our modefo the statistics of the noise

observing that light rays at 45° emanating from one wedge spectrum detected by the accelerated observer.

do not penetrate the other wedge. Hence the Minkowski In our model, we have not motivated the use of the corre-

vacuum that the accglerated observg( moves.through appeagsion function(§'(Q)g(Q’)) aside from the fact that we

to her/him as an excited state containing particles, and not aguld calculate it for a nonaccelerated observer in a thermal

the particle free vacuum appropriate for the right Rindlerfield and for a uniformly accelerated observer in vacuum and

wedge. The Bose—Einstein distribution with the Hawking—compare the resuilts. It is easy to show that a harmonic oscil-

Unruh temperatur@ for scalar field{Fermi—Dirac for Dirac  |ator with frequencyw, and dissipation coefficieny, lin-

fields) is usually derived by considering the expectationearly coupled to the field Eq(10), reaches a steady-state

value of the number operat@iag, for the accelerated ob- energy expectation value

server (in the right Rindler wedgein the unaccelerated

Minkowski vacuum [0y), that is, (Oy|aag/Ou) - % G aQ"))

~[exptQ/kT)=1]"1 (with the upper sign for scalar fields <E>°<f dﬂf dﬂ’(Q_w (O —wgtiy) (21

and lower sign for Dirac fields The proportionality of the 0 0 oY oY

particle number spectrum detected by the accelerated Rindler o o

observer moving through the Minkowski vacuum to a ther-V‘[r]r'Ch _ offers some  motivation  for  considering

mal spectrum is referred to as ttleermalization theorerby ~ (8'(2)9(£2")). In fact, it can be shown that(E)

Takagi® =[e"0/kT—1]71, which shows again that our accelerated
In this work we have taken a slightly different observer acquires the characteristics appropriate to being in a

viewpoint?* For a scalar field, we first consider an unaccel-thermal field at the temperatufle=7%a/2mkc.

erated Minkowski observer in a thermal state and find that In an extensive review of the Davies—Unruh effect,

the expectation value of a field correlation function is pro-TakagP utilizes the quantum two-point correlatigiVight-
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man function gu(7,7')=(0y|d(7) $'(7')|0y) to deter- able by utilizing the expressioa=GM/r? for the gravita-

mine the power spectrum of the vacuum noise detected btjonal acceleration of a test mass at a distanf®m a mass

the accelerated observer for a scalar field, M, and determind at the surface of the earth, the Sun, and
a Schwarzschild black hole.
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This viewpoint is also taken in a different derivation of the Unruh—Davies

zbg_e}f'fect in Ref. 9.

he unaccelerated Minkowski vacuuyB),) is unitarily related to the Rin-
dler vacuum|0g)®|0,) via |Oy)=5(r)|0g)®|0,), where §(r) is the
squeezing)peratoré(r)=exr{r(éRéL—éTRéD]. The subscript® andL de-
note the right £>0,z>|t|) and left ¢<0]z|>|t]) Rindler wedges, re-
spectively, which are regions of Minkowski space—time bounded by the
asymptoteg=*z. |0g) is the Fock state of zero particles in the right
Rindler wedge and0,) is the Fock state of zero particles in the left
Rindler wedge. Note that the orbit of the accelerated Rindler observer
given by Eq.(4) is confined to the right Rindler wedge. Because the right
and left Rindler wedges of Minkowski space—time are causally discon-
nected from each other, the creation and annihilation operafarag and
é[, a, live in the right and left wedges, respectively, and mutually com-
mute with each other, that iséR,é[]:O, etc. Because, physical states
that live in the right wedge have zero support in the left wetgel vice
versa, they are described by functions solely of the operafq'?(s ag
appropriate for the right wedge, that i$Wg)="f(8g,a%)|0r)®[0,)
=|r)®|0.). Itis in this sense that we can speak/0f) as the vacuum
for the right Rindler wedge, and similar[p, ) as the vacuum for the left
Rindler wedge.
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