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This is an introduction t@pacetime algebréSTA) as a unified mathematical language for physics.

STA simplifies, extends, and integrates the mathematical methods of classical, relativistic, and
quantum physics while elucidating geometric structure of the theory. For example, STA provides a
single, matrix-free spinor method for rotational dynamics with applications from classical rigid body
mechanics to relativistic quantum theory—thus significantly reducing the mathematical and
conceptual barriers between classical and quantum mechanics. The entire physics curriculum can be
unified and simplified by adopting STA as the standard mathematical language. This would enable
early infusion of spacetime physics and give it the prominent place it deserves in the curriculum.
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[. INTRODUCTION Topics have been selected to showcase unique advantages of
. L . . ) STA rather than for balanced coverage of every subject. Nev-
Einstein’s special theory of relativity has been incorpo-grtheless, topics are developed in sufficient detail to make
rated into the foundations of theoretical physics for the bettesTa yseful in instruction and research, at least after some
part of a century, yet it is still treated as an add-on in theyractice and consultation with the literature. The general ob-
physics curriculum. Even today, a student can get a Ph.D. ifpctives of each section in the article can be summarized as
physics with only a superficial knowledge of relativity theory g ows:
and its import. | submit that this sorry state of affairs is due, ggction |1 presents the defining grammar for STA and in-
in large part, to serious language barriers. The standard ey, ces basic definitions and theorems needed for
sor algebra of relativity theory so differs from ordinary vec- ¢, ginate-free formulation and application of spacetime ge-
tor algebra that it amounts to a new language for students t8metry to physics

learn. Moreover, it is not adequate for relativistic quantum Section IIl distinguishes betweeproper (invarian and

theory, which introduces a whole new language to deal withy| 46 formulations of physics. It introduces a simple alge-
spin and quantization. The learning curve for this language i

. ) 'Braic device called thepacetime splito relate proper de-
so steep that only graduate students in theoretical physics, ;ns of physical properties to relative descriptions with
ordinarily attempt it. Thus, most physicists are effectively

barred from a working knowledge of what is purported to ber.espect to inertial systems. Th?s provides a seamless connec-

the most fundamental part of physics. Little wonder that thélogecgtiil—ﬁ\t/oetstir%é ?riecﬁzzltcrﬁ:aﬁ{“(l)sfI?(S)t;;ioenilén d reflec-

majority is content with the nonrelativistic domain for their . X :

research and teaching. tions in GAlto a coo_rdmate-free treatment of Lorentz trans-
Beyond the daunting language barrier, tensor algebra haI rmations on spacetime. Thg meth(_)d IS more versatile than

certain practical limitations as a conceptual tool. Aside from® ar:dard motlat'?odz, bec:#:se It appl!fs to fslf)mors{ ats wefll as

its inability to deal with spinors, standard tensor algebra ig/€Ctors, and it reduces the composition of Lorentz transior-

coordinate-based in an essential way, so much time must ggations to the 'geomhetri'c prqd#ct. by df
devoted to proving covariance of physical quantities and_LOrentzinvariantphysics with STA obviates any need for

equations. This reinforces reliance on coordinates in thd€ passive Lorentz transformations between coordinate sys-
physics curriculum, and it obscures the fundamental role of€MS that are required by standardvariant formulations.
geometric invariants in physics. We can do better—mucHnStéad, Sec. V uses the spinor form of an active Lorentz
better! transformation to characterize change of state along world
This is the second in a series of articles introduciep- lines. This generalizes the spinor treatment of classical rigid
metric algebra(GA) as a unified mathematical language for P0dy mechanics in GAL, so it articulates smoothly with non-
physics. The first article (hereafter referred to as GA1 relativistic theory. It has the dual advantages of simplifying
shows how GA simplifies and unifies the mathematical methsolutions of the classical Lorentz force equation while gen-
ods of classical physics and nonrelativistic quantum mechargralizing it to a classical model of an electron with spin that
ics. This article extends that unification to spacetime physicé shown to be a classical limit of the Dirac equation in Sec.
by developing @pacetime algebréSTA) expressly designed VIl
for that purpose. A third article is planned to present a pro- Section VI shows how STA simplifies electromagnetic
found and surprising extension of the language to incorpofield theory, including reduction of Maxwell’s equations to a
rate general relativity. single invertible field equation. It is most notable that this
Although this article provides a self-contained introduc-simplification comes from recognizing that the famous
tion to STA, the serious reader is advised to study GAL first'Dirac operator” is just the STA derivative with respect to a
for background and motivation. This is not a primer on rela-spacetime point, so it is as significant for Maxwell's equation
tivity and quantum mechanics. Readers are expected to kas for Dirac’s equation.
familiar with those subjects so they can make their own com- Section VII reformulates Dirac’s famous equation for the
parisons of standard approaches to the topics treated hemectron in terms of the real STA, thereby showing that com-
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plex numbers are superfluous in relativistic quantum theory. As we have seen before, the geometric prodwotan be
STA reveals geometric structure in the Dirac wave functiondecomposed into a symmetiizner product

that has long gone unrecognized in the standard matrix
theory. That structure is explicated and analyzed at length to
ascertain implications for the interpretation of quantumand an antisymmetriouter product
theory.

Section VIII discusses alternatives to the Copenhagen in-
terpretation of quantum mechanics that are motivated bgo that
geometric analysis of the Dirac theory. The questions raised B
by this analysis may be more important than the conclusions. v =U-v+ullv. @)

My own view is that the Copenhagen interpretation cannot To facilitate coordinate-free manipulations in STA, it is
account for the structure of the Dirac theory, but a fully useful to generalize the inner and outer products of vectors to
satisfactory alternative remains to be found. arbitrary multivectors. We define the outer product along

Finally, Sec. IX outlines how STA can streamline the with the notion ofk-vectoriteratively as follows: Scalars are
physics curriculum to give the powerful ideas of relativistic defined to be 0-vectors, vectors are 1-vectors, and bivectors,
field theory and quantum mechanics roles that are commersuch asulv, are 2-vectors. For a givekevectorK, the in-
surate with their importance. tegerk is called thestep(or grad¢ of K. Fork=1, the outer

product of a vectow with a k-vectorK is a (k+1)-vector
defined in terms of the geometric product by

Il. SPACETIME ALGEBRA vOK = JvK+(—1)"Kv) = (— 1)K Ov. ®)

u-v==5uv+ovu)=v-u, 6)

ulv=Xuv—vu)=—v0u, (6)

The standard model for spacetime is a realMBkowski ~ The corresponding inner product is defined by
vector spaceM* called Minkowski spacetimer (by sup- v-k=3vK+ (-1 Kp)=(-1)K K. v, 9)
pressing the distinction between the model and the physical | .
vector addition and scalar multiplication taken for granted,ing (8) and(9) we obtain
we impose the geometry of spacetime.btf by defining the vK=v-K+vIK, (10)
geometric product o for vectorsu, v, w by the following

rules: which obviously generalize&’). The important thing about

(10) is that it decomposesK into (k—1)-vector and k
(uv)w=u(vw), associative (1) +1)-vector parts.

A basis for STA can be generated bystandard frame
17,:0,1,2,3 of orthonormal vectors, with timelike vecteg
(v+w)u=vu+wu, right distributive ©) in the forward light cone and componergs, of the usual

metric tensor given by

u(v+w)=uv+uw, left distributive (2

2 2 :
v°=¢,|v|%, contraction (4
’ U= Y Vo= 3(Yu¥ot Ygn¥u)- (11)
(We usec=1 so spacelike and timelike intervals are mea-
sured in the same unjitThe y, determine a uniqueight-
handed unit pseudoscalar

wheree, is thesignatureof v and themagnitudgv| is a real

positive scalar. As usual in spacetime physics, we sayuthat

is timelike if its signature is positive ife, =1, spacelikeif

€,=—1, or lightlike if |v|=0, which is equivalent to null

signature €,=0). 1= Y0Y1Y2¥3= YoUy10y20y3. (12
It should be noted that these are the same rules defining tq(ows that

the “classical geometric algebra” in GAL, except for the ) ) )

signature in the contraction rul@) that allows vectors to i’=—1 and y,i=-iy,. (13

have negative or null squar€This modification was the . icak =1 . . .
great innovation of Minkowski that we honor by invoking Thus,i is a geometrica—1, but it anticommutes with all

his name) spacetime vectors. By forming all distinct products of he
Spacetime vectors are denoted by italic letters to distin¥/® obtain a complete basis for the ST consisting of the
guish them from the 3D vectors denoted by boldface letter@ = 16 linearly independent elements
in GAL. This convention is especially helpful when we for- 1 0 i 14
mulate relations between the two kinds of vector in Sec. Il Y Yu Yoo Yl B (_ )
By successive multiplications and additions, the vectors of To facilitate algebraic manipulations it is convenient to
M?* generate a geometric algelfa= G(M?) calledspace-  introduce theeciprocal frame{ y*} defined by the equations
time algebra(STA). As usual in a geometric algebra, the _ v v_ ov
X ' =0, or -y'=0 15
elements ofG, are calledmultivectors The above rules de- IG 9" 14 '7"_7 " . =
fining the geometric product are the basic grammar rules ofsummation convention in forcg!Now, any multivector can

STA. be expressed as a linear combination of the basis elements
In reviewing its manifold applications to physics, one can(14). For example, a bivectdf has the expansion
see that STA derives astounding power and versatility from _lruv
F=3F*"y,0v,, (16)

« the simplicity of its grammar,
« the geometric meaning of multiplication
« the waygeometry links the algebra to the physical world Frr= gyt . F.y’=y" (y*-F)=(y"Oy*)-F. a7

with its “scalar componentsF#” given by
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Note that the two inner products in the second form can be

performed in either order, so a parenthesis is not needed.

RR=RR=1. (28)

The entire spacetime algebra is obtained by taking lineafhen¢ can be put in theanonical form

combinations of basik-vectors in(14).
A generic elemenM of the STA, called anultivector can

therefore be written in thexpanded form
M=a+a+F+bi+gi, (18

where @ and B are scalarsa andb are vectors, andr is a
bivector. This is a decomposition df into its k-vector parts,

Y= (pe'P) VR, (29

We shall see that thigwvariant decompositioas a funda-
mental physical significance in the Dirac theory.

An important special case of the decompositi@f) is its
application to a bivectoir, for which it is convenient to
replaceB/2 by B+ =/2 and writef=p'?Ri. Thus, for any

with k=0,1,2,3,4, as is expressed more explicitly by puttingbivector F that is not null F2+0) we have the invariant

(18) in the form
4

M= M, (19
k=0

where the subscriptk) means k-vector part” Of course,
M(O): «, M (1)-:a, M(z): F, M(g):bi, M(4):,8| . Alterna-
tive notations includéVl s=(M)=M ¢, for the scalar part of

a multivector. The scalar part of a product behaves much lik

useful theorel{ MN)=(NM) for arbitraryM andN.
Computations are also facilitated by the operatiorresf

version the name indicating reversal in the order of geomet-

ric products. FoM in the expanded fornil8) thereverse M
can be defined by

M=a+a—F—bi+gi. (20)

e
the “trace” in matrix algebra. For example, we have the very

canonical form

F=fe'f=f(cosB+ising), (30

wheref?=—ff=|f|?, sof is said to be aimelike bivector
with magnitude|f|. Similarly, the dualif is said to be a
spacelike bivectgrsince {f )?=—|f|2. Thus the right side
of (30) is the unique decomposition & into a sum of mu-
tually commuting timelike and spacelike parts.
WhenF?=0, F is said to be dightlike bivector and it can
still be written in the form(30) with

f=kOe=Kke, (31

wherek is a null vector ane is a spacelike vector orthogonal
to k. In this case, the decomposition is not unique, and the
exponential factor can always be absorbed in the definition
of f.

To extend spacetime algebra into a complspacetime

Note, in particular, the effect of reversion on the variouscalculus suitable definitions for derivatives and integrals are

k-vector parts:

@=a, a=a, F=-F, i=i. (21)
It is not difficult to prove that
(MN) =NM, (22

for arbitrary M and N. For example, in(20) we have bi)
=ib=—bi, where the last sign follows froni3).

A positive definite magnitudéM| for any multivectorM
can now be defined by

IM[2=|(MM)|. (23)

Any multivectorM can be decomposed into the sum of an
evenpart M, and anodd part M _ defined in terms of the
expanded forn(18) by

M, =a+F+pi, (29)

M _=a+bi, (25
or, equivalently, by

M. =32MZFiMi). (26)

The set{M .} of all even multivectors forms an important
subalgebra of STA called theven subalgebra

If ¢ is an even multivector, therry is also even, but its
bivector part must vanish according t@0), since )

=yp. Therefore, iy has only scalar and pseudoscalar
parts, as expressed by writing

Y= pe'P=p(cosp+isinp), (27)
wherep=0 andp are scalars. Ip # 0, we can derive frony
an even multivectoR= ¢(yr) ~ V2 satisfying
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required. Though that can be done in a completely
coordinate-free way, it is more expedient here to exploit
one’s prior knowledge about coordinates.

For each spacetime pointa standard framéy,} deter-
mines a set of “rectangular coordinatet*} given by

(32

In terms of these coordinates the derivative with respect to a
spacetime point is an operatoV =g, that can be defined by

M= M, = M
Xt=yt-x and x=x*y,.

V=vy*a,, (33
whered,, is given by
M=W=’y#-v. (34)
The square oW is the usual d’Alembertian
VZ=g*"9,d, where gr'=yH . y". (35)

The matrix representation of thesctor derivativeV can be
recognized as the so-called “Dirac operator,” originally dis-
covered by Dirac by seeking a “square root” of the
d’Alembertian(35) in order to find a first order “relativisti-
cally invariant” wave equation for the electron. In STA,
however, where the* are vectors rather than matrices, it is
clear thatV is a vector operator; indeed, it provides an ap-
propriate definition for the derivative with respect to any
spacetime vector variable.

Contrary to the impression given by conventional accounts
of relativistic quantum theory, the operaf@ris not specially
adapted to spig-wave equations. It is equally apt for elec-
tromagnetic field equations, as seen in Sec. VI.

This is a good point to describe the relation of STA to the
standard Dirac algebra. THRirac matricesare representa-
tions of the vectorsy, in STA by 4xX4 matrices, and to
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emphasize this correspondence the vectors here are denotedMinkowski's covariant formulation of Einstein’s theory
with the same symboly,, ordinarily used to represent the replaced the explicit use of variables relative to inertial ob-
Dirac matrices. In view of what we know about STA, this servers by components relative to an arbitrary coordinate
correspondence reveals the physical significance of the Diragystem for spacetime. Thepfoper formulatiori given here
matrices, appearing so mysteriously in relativistic quantuntakes another step to move from covariance to invariance by
mechanicsThe Dirac matrices are no more and no less thanrelating particle motion directly to Minkowski’s “absolute
matrix representations of an orthonormal frame of spacetimespacetime” without reference to any coordinate system.
vectorsand thereby they characterize spacetime geometryMinkowski had the great idea of interpreting Einstein’s
But how can this be? Dirac never said any such thing! And_heor_y of rel_ativity as a prescri_ption for fusing space and
physicists today regard the seg,} as a single vector with time into a single entity “spacetime The straightforward
matrices for components. Nevertheless, their practice showdlgebraic characterization of “Minkowski spacetime” by
that the “frame interpretation” is the correct one, though wespacetime algebra makes a proper formulation of physics
shall see later that the “component interpretation” is actuallyPossible. _ _ o _
equivalent to it in certain circumstances. The correct inter- The history or world line of a material particle is a time-
pretation was actually inherent in Dirac’s argument to derivdike curvex=x(7) in spacetime. Particle conservation is ex-
the matrices in the first place: First he put thg in one-to-  pressed by assuming that the functi(r) is single-valued
one correspondence with orthogonal directions in spacetimand continuous except possibly at discrete points where par-
by indexing them. Second, he related the to the metric  ticle creation and/or annihilation occurs. Only differentiable
tensor by imposing the “peculiar conditior’11) on the ma-  Particle histories are considered here, aralways refers to
trices for formal algebraic reasons. But we segli) that  the proper time(arc length of a particle history. After a unit
this condition has a clear geometric meaning in STA as th@f length (say centimetejshas been chosen, the physical
inner product of vectors in the frame. Finally, Dirac intro- Significance of the spacetime metric is fixed by the assump-
duced associativity automatically by employing matrix alge-tion that the proper time of a material particle is equal to the
bra, without realizing that it has a geometric meaning in thisime (in centimeters recorded on gperhaps hypothetickl
context. If indeed the physical significance of the Dirac ma-clock traveling with the particle.
trices derives entirely from their interpretation as a frame of The unit tangenb =v(7) =dx/d7=X of a particle history
vectors, then their specific matrix properties must be irrelwill be called the(proper) velocityof the particle. By the
evant to physics. That is proved in Sec. VII by dispensingdefinition of proper time, we hawér=|dx| =|(dx)?|*%, and
with matrices altogether and formulating the Dirac theory
entirely in terms of STA. vo=1. (36)

In relativistic quantum mechanics one often encounters the . o )
notationy- p=y*p, , wherey is regarded formally as a vec- The te“rm proper \_/elf’)cj!ty is preferable to the alternative
tor with matricesy* as components and is an ordinary (€ms “world velocity,

invariant velocity,” and “four ve-
vector. Likewise, the Dirac operator is denoted lyd locity.” The adjective “proper” is used to emphasize that the
= y*d, without recognizing it as a generic vector derivative

velocity v describes an intrinsic property of the particle, in-
with components?,,. The notationy-p has the same defi-

dependent of any observer or coordinate system. The adjec-

T i o - e tive “absolute” would do the same, but it may not be free
ciencies as the notatioar-a criticized in GAL. In STAitis  from undesirable connotations. Moreover, the word “proper”
inconsistent with identification ofy“} as an orthonormal s shorter and has already been used in a similar sense in the
frame. terms “proper mass” and “proper time.” The adjective “in-
variant” is inappropriate, because no coordinates or transfor-
mation group has been introduced. The velocity should not
be called a “4-vector,” because that term means pseudo-
scalar in STA; besides, there is no need to refer to four com-
onents of the velocity.

Though STA enables us to describe physical processes by
dyoper equations, observations and measurements are often
expressed in terms of variables tied to a particular inertial
system, so we need to know how to reformulate proper equa-
fions in terms of those variables. STA provides a very simple

[ll. PROPER PHYSICS AND SPACETIME SPLITS

STA makes it possible to formulate and analyze convenP
tional relativistic physics in invariant form without reference
to a coordinate system. To emphasize the distinctive featur
of this formulation, | like to call it proper physics From the
proper point of view, the term “relativistic mechanics” is a
misnomer, because the theory is less rather than more rel : .
tivistic than the so-called “nonrelativistic’ mechanics of W&y to do that called apacetime split .
Newton. The equations describing a particle in Newtoniary In STA a given inertial system is completely characterized
mechanics depend on the motion of the partigativeto  °Y a_smgle future-pomtmg,_tlmellke unit vector. Refer to the
some observer; in Einstein’s mechanics they do not. Einsteiff€rtial system characterized by the vectgp as the
originally formulated his mechanics in terms of “relative Yo-SystemThe vectory, is tangent to the world line of an
variables” (such as the position and velocity of a particle observer at rest in they-system, so it is convenient to use
relative to a given observgrbut he eliminated dependence vy, asa name for the observeiThe observery, is repre-
of the equations on the observer’s motion by the “relativity sented algebraically in STA in the same way as any other
postulate,” which requires that the form of the equations bephysical system, and the spacetime split amounts to no more
invariant under a change of relative variables from those othan comparing the motion of a given systéttme observer
one inertial observer to those of another. Despite the taint afo other physical systems. Indeed, the world line of an iner-
misnomer, the terms “relativistic” and “nonrelativistic” are tial observer is the straight world line of a free particle, so
so ensconced in the literature that it is awkward to avoidnertial frames can be characterized by free particles without
them. the anthropomorphic reference to observers.
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An inertial observery, determines a unique mapping of show how the bivectors for spacetime are split into vectors
spacetime into the even subalgebra of STA. For each spacand bivectors for?®. Comparison with(14) shows that the

time point(or evenj x the mapping is specified by

Xyo=t+X, (37
where

t=X- (39)
and

x=x0yp. (39

This defines they,-split of spacetime. Equatio(88) assigns
a unique time to every evenk; indeed,(38) is the equation

for a one-parameter family of spacelike hyperplanes with

normal yg.
Equation(39) assigns to each evemta uniqueposition
vectorx in the vy, system. Thus, to each evexthe single

o generate the entire even subalgebra, which can therefore
be identified withGz=G(P°). Remarkably, the right-handed
pseudoscalar foP? is identical to that forM?, that is,

010,03=1="YY1Y2Y3- (45

To be consistent with the operation @versiondefined in
GA1 for the algebraj; we require

o-l= o, and (o a'j)T= 0j0;. (46)
This can be extended to the entire STA by defining
M= 7oM o (47

for an arbitrary multivectoM. The explicit appearance of the
timelike vectory, here shows the dependenceMf on a
particular spacetime split. The definitions in this paragraph

equation (37) assigns a unique time and position in the g,arantee smooth articulation of proper physics with physi-

vo-System. Note that the reverse &7) is

’}/OX:’}/O'X"‘ ‘}/ODX:t_X, (40)
so, sincey3=1,
X%=(Xy0) (70X) = (t=X) (t+x) =t>—x%. (41

cal descriptions relative to inertial frames.

Now let us rapidly survey the spacetime splits of some
important physical quantities. L&t=x( ) be the history of a
particle with proper time 7 and proper velocityv =dx/dr.
The spacetime split of is obtained by differentiating37);

hence

The form and value of this equation are independent of the

chosen observer; thus we have proved that the expression vYo=vo(1+V),

t?>—x2 is Lorentz invariantwithout even mentioning a Lor- where

entz transformation. Thus, the term “Lorentz invariant” can
be construed as meaning “independent of a chosen space-

time split.” In contrast to(41), Eq. (37) is not Lorentz in-
variant; indeed, for a different observef we get the split

Xyo=t'+x". (42

Mostly we shall work with manifestly Lorentz invariant
equations, which are independent of even an indirect refer-

ence to an inertial system.

The set of all position vectorg39) is the three-
dimensionalposition space of the observer,, which we
designate byP3="7%(y,)={x=x0y,}. Note that?P® con-

(48)
dt
Uo:U'?’oza_:(l_Vz)fl/2 (49
is the “time dilation” factor, and
dx drdx uld
e (50)

T dt dtdr v-y
is therelative velocityin the yy-system. The last equality in
(49) was obtained from

1=0v2=(v o) (yov) =vo(1+V)vo(1—V)=v5(1—V?).
(51

sists of all bivectors in STA withy, as a common factor. In Let p be theproper momentunti.e., energy-momentum

agreement with common parlance, we refer to the elemen%ctcm of a particle. The spacetime split pfinto energy(or
of P* as vectors. Thus, we have two kinds of vectors, thosgg|ative massE and relative momenturp is given by

in M* and those inP%. To distinguish between them, we

refer to elements aM* asproper vectorsand to elements of Pr=E+p, (52)

P* asrelative vectors(relative toyo, of course]. To keep ~ where

the discussion clear, relative vectors are designated in bold- . _

face, while proper vectors are not. E=p-y and p=plyo. (53
By the geometric product and sum, the vector§ingen-  Of course

erate the entire even subalgebra of STA as the geometric p?=(E+p)(E—p)=E2—p?=m?, (54)

algebrag;=G(P% employed for classical physics in GA1. ) )
This is made obvious by constructing a basis. Correspondingherem is the proper masf the particle.

to a standard basisy,} for M?*, we have a standard basis The proper angular_momen_tum of a partiqle rela_tes its
(o k=123 for P° Mwhere proper momentunp to its location at a spacetime poirt
K - ’ Performing the splits as before, we find

o= vdv0= % 7o0- (43

| o px=(E+p)(t—x)=Et+pt—Ex—px. (55
These generate a basis for the relative bivectors: The scalar part of this gives the familiar split
oilloy=o0i=10y=v;v;, (44) p-Xx=Et—p-x (56)

where the allowed values of the indic@s |, k} are cyclic
permutations of 1, 2, 3, and the wedge is the outer product Qi
relative vectorgnot to be confused with the outer product of
proper vectors as if43)]. The right sides of43) and (44)

o often employed in the phase of a wave function. The
ivector part gives us the proper angular momentum

pOx=pt—EX+i(xXp), (57)
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where, as explained in GAXXp is the standard vector
cross product.

An electromagnetic field is a bivector-valued functibn
=F(x) on spacetime. An observey, splits it into an electric
(relative vector part E and a magnetidrelative bivectoy
partiB; thus

F=E+iB, (58
where

E=(F-y0)y0=3F+F") (59
is the part off that anticommutes with,, and

iB=(FOyo)yo=3F—F") (60)

is the part that commutes. Also, in accordance wW#),

As in the 3D case, the canonical forf®1) simplifies the
whole treatment of Lorentz transformations. In particular, its
main advantage is that it reduces the composition law for
Lorentz transformations,

LoLi=La, (66)
to the versor product
L2Ll:|_3. (67)

It follows from the rotor form(64), that, for any vectora
andb,

(Ra)(Rb)=RabR=R(ab). (69)

Thus, Lorentz rotations preserve the geometric product. This
implies that the Lorentz rotatiof®4) can be extended to any

FT=E—iB. Note that the split of the electromagnetic field in MultivectorM as

(58) corresponds exactly to the split of the angular momen-

tum (57) into relative vector and bivector parts.

A different kind of spacetime split is most appropriate for

Lorentz transformations, as explained in the next section.

V. LORENTZ TRANSFORMATIONS

Orthogonal transformations on spacetime are called
entz transformationd/ith due attention to the indefinite sig-

RM=RMR (69)

The most elementary kind of Lorentz transformation is a
reflection nby a (non-nul) vectorn, according to
n(a)=—nan 1, (70)

This is a reflection with respect to a hyperplane with normal
n. Even ifnis normalized tdn| =1, if it is spacelike we need
n~1=—n in (70) to account for its negative signature. A
reflection

nature of spacetim¢ll), geometric algebra enables us to (71)
treat Lorentz transformations by the same coordinate-free

methods used in GAL1 for 3D rotations and reflectiokgain, ~ With respect to a timelike vectas=v ™" is called atime
the method has the great advantage of reducing the compeeflection Let ny, n,, n3 be spacelike vectors that compose
sition of transformations to simple versor multiplication. The the trivector

method is developed here in complete generality to include
space and time inversion, but the emphasis is on rotors and N3N2N (72
rotations as a foundation for classical spinor mechanics i space inversion can then be defined as the composite of

the next section and subsequent connection to relativistigeflections with respect to these three vectors, so it can be
guantum mechanics in Sec. VIII. written

The main theorem is that any Lorentz transformation of a

v(a)=—vav
-1

1:iU.

spacetime vectoa can be expressed in tloianonical form
La=e LalL™?, (61)

where e, =1 if versor L is an even multivector and,
=—1 if L is odd. The condition

LL =1 (62

(73

Note the difference in sign between the right sideq#)
and (73). The composite of the time reflectidil) with the
space inversioli73) is the spacetime inversion

vs(a)=nzn,n,ann,nz=ivavi=vav.

-1_

=-—a, (74

which is represented by the pseudoscal@tote that space-

vsi(@)=vev(a)=iai

allows L to have any nonzero magnitude, but normalizationtime inversion is proper but not orthochronous, so it is not a

to |L|=1 is often convenient. The Lorentz transformatlon
is said to beproperif ¢ =1, andimproperif ¢, =—1. It is
said to beorthochronousf, for any timelike vectorv,

v-L(v)>0. (63

A proper, orthochronoud.orentz transformation is called a
Lorentz rotation(or arestrictedLorentz transformation For
a Lorentz rotatiorR the canonical form can be written

R(a)=RaR (64)

where the even multivectd® is called arotor and is normal-
ized by the condition

RR=1. (65)
The rotors form a multiplicative group called thetor

group, which is a double-valued representation of the Lor-

entz rotation groupalso called the restricted Lorentz group
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rotation despite the fact thatis even.

Two basic types of Lorentz rotation can be obtained from
the product of two reflections, nameliynelike rotations(or
boosts$ and spacelike rotationsFor aboost

L(a)=LalL, (75)
the rotorL can be factored into a product
L= [2%1%1 (76)

of two unit timelike vectors); andv,. The boost is a rota-
tion in the timelike plane containing, andv,. The factor-

ization (76) is not unique. Indeed, for a givdnany timelike

vector in the plane can be chosenvas andv, can then be
computed from(76). Similarly, for aspacelike rotation

U(a)=UaU, (77

the rotorU can be factored into a product
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U:nznl (78)

of two unit spacelike vectors in thgpacelike planeof the
rotatipn. No_te that the product, sayv,, of a spacelike vec- m+pyo m+E+p
tor with a timelike vector is not a rotor, because the corre- = = -
sponding Lorentz transformation is not orthochronous. Like- [2m(m+p-yo)] [2m(m+E)]
wise, the pseudoscalais not a rotor, even though it can be (89)
expressed as the product of two bivectors, for it does n

1+vy,

N T T

L=(vvyo

) T OJi’his displaysL as a boost of a particle from rest in the
satisfy the rotor conditiolRR=1. yo-System to a relative momentum

The Lorentz rotation(64) can be applied to a standard " "Generalizing the treatment of rotating frames in GAL, the
frame{y,}, transforming it into a new frame of vectofs,}  |orentz rotation of a framé79) can be related to the stan-

given by dard matrix form by writing
e,=Ry,R. (79 e,=Ry,R=ay,. (89)
A spacetime rotor spliof this Lorentz rotation is accom- As in GA1, this can be solved for the matrix elements
plished by a split of the rotoR into the product ~ %
"=e, v'=(v'Ry,R) ) -
R=LU, (80) .aﬂ w Y (y Yu )(0) - (90)
) _ _ Or it can be solved for the rotdrwith the result
whereU'= yoUy,=U or ~
e R=+(AR)"12A, 91)
UyoU =170 B \where
Tt T v= _ _ v
andL'= yoLyo=L or A=e v =a,y, " (92
yoL=L"p. (820  Equation(89) can be used to describe a change of coordinate
frames.

This determines a split af79) into a sequence of two Lor-

. ) 5 In the tensorial approach to Lorentz rotations, the coordi-
entz rotations determined By andL, respectively; thus,

natesx*= y*-x of a pointx transform according to

€= R'yﬂNR: L(U 7,uU L. (83 XH—x'F=akx?,  with akay= 5 (93
In particular, by(81) and(82), as the orthogonality condition on the transformation. This
_ B_ T2 can be interpreted either aspassiveor an active transfor-
€o=RyoR=Lyol =L0. (84 mation. In the passive case, it is accompanied lysaially
Hence, implicit) transformation of coordinate frame:
L>=eg%o. (85) Y= V=W (94)

This determined. uniquely in terms of the timelike vectors so that each spacetime point=x“yM=x’“yl’L is left un-

€y andyg, which, in turn, uniquely determines the sgB0)  changed.

of R, sinceU can be computed frord) =LR. In the active case, each spacetime poxtx“y, is
It is essential to note that the “spacetime rotor sp(80)  Mapped to a new spacetime point

is quite different from the “spacetime split” introduced in f Tl — ) — AT

the preceding section, for example (8). The terminology X=Xy, =x"y,=RxR (95)

is mptivated by the expression of rotdgsandL in terms of  where the last form was obtained by identifyinyg with e,

relative vectors, to which we now turn. ) in (89). This shows that STA enables us to dispense with
Equation(81) for variableU defines the fittle group” of  coordinates entirely in the treatment of Lorentz transforma-

Lorentz rotations that leave, invariant. This is the group of  tions. Consequently, we deal with active Lorentz transforma-

“spatial rotation$ in the y,-system. Each such rotation tions only in the coordinate-free forii®4) or (61), and we

takes a frame of proper vectosg (for k=1,2,3) into anew dispense with passive transformations entirely.

frame of vectord y,U in the yo-system. Multiplication by If all this seems rather obvious, just turn to any textbook

vo expresses this as a rotation of relative vecogs v on relat|y Istic quantum theofy,vvhe're the’.’ﬂ are matrices
into relative vectors, : thus, we get and(89) is introduced as a change in matrix representation to

prove relativistic invariance of the “Dirac operatory,d,,
Q;UakUT:UakU, (86) :7'#‘%- In STA this is recognized as a passive Lorentz
transformation, so it is superfluous. Consequently, this aspect
of Lorentz invariance need not be mentioned in our treatment
of the Dirac equation in Sec. VII.

in exact agreement with the equation for 3D rotations in
GALl.

Equation(84) can be solved fot, in particular, for the
case wherey=v is the proper velocity of a particle of mass
m. Then(48) enables us to writé85) in the alternative forms V- SPINOR PARTICLE MECHANICS

Pyo E+p Now we are prepared to exploit the unique advantages of
L?=v Yoo T T T (87 STA with a spinor formulation of relativistitor propej me-
chanics. This approach has three major benefits. First, it ar-
It is easily verified that this has the solution ticulates perfectly with the rotor formulation of nonrelativis-
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tic rigid body mechanics in GAl. Second, it articulatesing nonrelativistic rotor equation for a spinning body was
perfectly with Dirac’s quantum theory of the electron, pro- introduced in GAL. It should be noted that the nonrelativistic
viding it with an informative and useful classical limit that rotor equation describes only rotational motion, while its
includes a natural classical explanation for the gyromagneticelativistic generalizatiof99) describes rotational and trans-
ratio g=2. Indeed, the spinor used here for particle mechantational motion together.

ics is an obvious special case of the real Dirac spinor intro- For a classical particle with mase and chargee in an
duced in Sec. VII. Finally, the spinor formulation simplifies electromagnetic fieldF, the dynamics is specified by

the solution of problems in relativistic mechanics and auto-

matically generalizes particle mechanics to include spin pre- (=—F. (101
cession. m
The rotor equation for a frame S0 (100 gives the particle equation of motion
e,=Ry,R (96) mo=eF-v. (102

can be used to describe the relativistic kinematics of a rigidrhis may be recognized as the classical Lorentz force with
body (with negligible dimensionstraversing a world linec ~ tensor componentsnu“=eF**v,, but note that tensor
=x(7) with proper timer, provided we identifye, with the ~ theory does not admit the more powerful rotor equation of

proper velocityy of the body, so that motion (99). , . _
As demonstrated in specific examples that follow, even if
dx o ~ one is interested in the motion of a structureless point charge,
E._X—U_eo_ RyoR. 97) the rotor equation(99) is easier to solve than the Lorentz

force equation(102). However, if one wants to extend the
Then{e,=e,(7); ©=0,1,2,3 is acomoving framdravers-  model to an electron with spin, the same solution automati-
ing the world line along with the particle, and the ror cally describes the electron’s spin precession. The result is
must also be a function of proper time, so that, at each timghysically meaningful, too, for, as we see later, the classical
7, Eq. (96) describes a Lorentz rotation of some arbitrarily model of an electron with proper rotational velocity01)
chosen fixed frame{y,} into the comoving frame{e,  proportional to the field® gives the same gyromagnetic ratio
=e,(7)}. Thus, we have a rotor-valued function of properas the Dirac equation. Indeed, it is a well-defined classical
time R=R(7) determining a one-parameter family of Lor- limit of the Dirac equation, though Planck’s constant remains

: _ = : . inthe magnitude of the spin. This role of the electromagnetic
entz rotationse,, () = R(7) y,R(7). The rotorRis aunimo field F as a rotational velocity is so simple and natural that it

dular spinor, as it satisfies the unimodular conditid®R  deserves a name. | propose to dub the relatib®l) the

=1. Lorentz torquesince it is a straightforward generalization of
The spacelike vectorek=Ryk~R (for k=1,2,3) can be the Lorentz forc&€102). It is noteworthy that this idea, which

identified with the principal axes of the body. But the sameis so natural in STA, seems never to have occurred to physi-

equations can be used for modeling a particle with an intrinCists using tensor theory. This is one more example of the

sic angular momentum aspin, wheree; is identified with ~ influence of mathematical language on physical theory.

the spin directiors; so we write

5=€;=R7sR. (98 A Motion in constant electric and magnetic fields
Later we see that this corresponds exactly to the spin vector ) ) ) ) .
in the Dirac theory where the magnitude of the spin has the If F is a uniform field on spacetime, thed=0 and(99)

constant valugs|=#/2. has the solution
The rotor equation of motion for R R(7) has the form R=elRQR (103
R=10R, (990  whereRy=R(0) specifies the initial conditions. When this is

: . . substituted intd103) we get the explicit- dependence of the
Where_(~l=Q(j-) is a bivector-valued function. The fact that proper velocityy. The integration 0f97) for the historyx(t)
Q1 =2RR=—() is necessarily a bivector is easily proved by is most simply accomplished in the general case of arbitrary
differentiating RR= 1. Differentiating (96) and using(99), non-null F by exploiting the invariant decomposition
we see that the equations of motion for the comoving framé = fe'¢ determined in (30). This separates() into

have the form mutually commuting partsQ,=(e/m)f cose and Q,
, =(e/m)if sing, so
e,=Q0-e,. (100 (e/m) ¢
_ _ _ (1207 o(12)(Q1+ Q)7 — (120 7(112 Q57 (104)
Clearly Q) can be interpreted as a generalizethtional ve-
locity of the comoving frame. It also determines an invariant decomposition of the initial

The dynamics of the rigid body, that is, the effect of ex-velocity v(0) into a component in thef-plane and a com-
ternal forces and torques on the body, is completely charagonentv, orthogonal to thd-plane; thus,
terized by specifyind) as a definite function of proper time. _ _
The single rotor equatio(®9) is equivalent to the set of four v(0)=f"Y(f-v(0)+f (fu(0))=vi+v,. (109
frame equation100. Besides the theoretical advantage of When this is substituted i97) and (104) is used, we get
being closely related to the Dirac equation, as we shall see, it
has the practical advantage of being simpler and easier to 9% Q47 (106

. —=p= +eemy,.
solve than the set of frame equatioi90). The correspond- dr rviTeTY,
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Note that this is an invariant decomposition of the motionwhich can be interpreted as the frequency of the plane wave
into “electriclike” and “magneticlike” components. It inte- “seen by the particle.” Sincey=dx/dr, we can integrate
grates easily to give the history (114 immediately to get

x(7)—x(0)=2(e*1"=1)Q7 'v, +2(e?"=1)Q; v,. k-(x(7)—X(0))=wr. (115

(107 Inserting this into(109 and absorbind- x(0) in the phase
This general result, which applies for arbitrary initial condi- factor, we getz(k-x)=z(w7), expressing the desiredde-

tions and arbitrary uniform electric and magnetic fields, haﬁaendence ofF. Equation(112 can now be integrated di-
such a simple form because it is expressed in terms of i”r'ectly, with the result

variants. It looks far more complicated when subjected to a

space-time split and expressed directly as a function of R— efz 1 € f 116
“laboratory fields” in an inertial system. Details are given in - 2m /) + 2m 21 (118
my mechanics book.
where
2  |oT . .
B. Electron in the field of a plane wave 21=Zsm< 7>[a+e"‘”’2+ a_e 'em?], (117

As a second example with important applications, we in—p;g gives the velocity and, by integrating97), the com-

telgrztite the ro:_or elquat|on \];O_rl_ﬁ. “c_Iassm?I ltefst %hafg?k’;.'” anplete particle history. Details are given elsewH&leis of
electromagnelic plane waveinis IS Useful for describing ,r4ctical interest to know that this solution is equivalent to

the interaction of electrons with lasers. As explained at th he “Volkov solution” of the Dirac equation for an electron
end of Sec. VI in GAL, any plane wave fief=F(x) with i, 3 plane wave field.In this case, the quantum mechanical
proper propagation vectdr can be written in the canonical go|ytion is equivalent to its classical limit. The solution has
form practical applications to the interaction of electrons with la-
F=fz, (108  ser fields?
) ) The problem of motion in a Coulomb field has been
where f is a constant null bivector f{=0), and the solved by the same spinor methbichut no other exact so-

x-dependence df is exhibited explicitly by lutions of the rotor equatio99) with Lorentz torque have
zZ(k-X)=a, ek 4o g ikx) (109 been published.

with . .
» C. Spin precession
at=pie*'5i, (110 . e . .

) ) We have established that specification of kinematics by the
whered.. andp..=0 are scalars. It is crucial to note that the oy equation(99) and dynamics by) = (e/m)F is a geo-
“imaginary” i here is the unit pseudoscalar, because it eNmetrically perspicuous and analytically efficient means of
dows these solutions with geometrical properties not poSgharacterizing the motion of a classical charged particle, and
sessed by conventional “complex solutions.” Indeed, ashoted that it automatically provides us with a classical model
noted in GAL1, the pseudoscalar property ohplies that the  of gpin precession. Now let us take a more general approach
two terms on the right side dfL09 describe right and left o modeling and analyzing spin precession. Any dynamics of
circular polarizations. Thus, the orientation iofletermines spin precession can be characterized by specifying a func-

handedness of the solutions. , _ tional form for Q. That includes gravitational precession
For the plane wave108), Maxwell's equation reduces to anq electron spin precession in the Dirac theory. To facilitate
the algebraic condition, the analysis for any given dynamical model, we first carry

kf=0. (111  the analysis as far as possible for arbitr&yThen we give

o, ) ) a specific application to measurement of tiéactor for a
This impliesk®=0 as well asf*=0. To integrate the rotor pjrac particle.

equation of motion The rotor equation of motiof99) determines both trans-
_ e lational and rotational motions of the comoving fra96),
R= %FR, (1120  whatever the frame models physically. It is of interest to

separate translational_and rotational modes, thoqgh they are
it is necessary to expre§sas a function ofr. This can be generally coupled. This can be done by a spacetime split by
done by using special properties Bfto find constants of the particle velocityv or by the reference vectoy,. We
motion. Multiplying (112 by k and using(111) we find im-  consider both ways and how they are related.
mediately thakkR is a constant of the motion. So, with the
initial condition R(O): 1, we obtain k=kR=Rk= kﬁ, D. Larmor and Thomas precession
whence

- To split the rotational velocity) by the velocityv, we

RKR=Kk. (113 write

Thus, the one-parameter family of Lorentz rotations repre- () =(y2=(Q-v)v +(Q0v)v. (119
sented byR=R(7) lies in the little group of the lightlike
vectork. Multiplying (113 by (96), we find the constants o
motionk-e,=k- vy, . This includes the constant Q=0,+0_, (119

w=k-v, (114 where

¢ This produces the split
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Q. =3Q+v00)=(Q-v)v=0bv (120 ZLE:i)D(U"‘?’o) (130
and 1+v- Yo '
. ~ These terms combine to give the well-knowhomas pre-
Q_=40-v0v)=(Qv)v. (12D cessionfrequency

Note thatQ)-v=v was used if120) to expresd) , entirely o e~ (0OvOyg) v

in terms of the proper acceleratianand velocityv. This — @7=((2LL)Uyo)yo=LL—LL=—""""—

split has exactly the same form as the s(@i8) of the elec- Yo

tromagnetic bivector into electric and magnetic parts corre- : _

sponding here t6), andQ _ , respectively. However, it is a =170, VXV. (131

split with respect to the instantaneous “rest frame” of the ) )
particle rather than a fixed inertial frame. In the rest frameThe last step here, expressing the proper vectors in terms of
the relative velocity of the particle itself vanishes, of course felative vectors, was derived from the split

o) the_ p_article’s acceleration is entirely deter_m_ined by the z}v:z}szvS(\'/Jri(VX\'/)). (132
“electriclike” part ., as (120 shows explicitly. The -

“magneticlike” part Q_ is completely independent of the Finally, writing

particle motion; it is theLarmor precessior(frequency of w =L L (133

the spin for a particle with a magnetic moment, so let us refer

to it as the Larmor precession in the general case. for the transformed Larmor precession, we have the desired
Unfortunately,(119) does not completely decouple preces-result

sion from translation becaug@_ contributes to both. Also,

13
we need a way to compare precessions at different points on ] ] (134
the particle history. These difficulties can be resolved byThe Thomas term describes the effect of motion on the pre-
adopting they,-split cession explicitly and completely.

R=LU, (122

exactly as defined b{80) and subsequent equations. At ev-
ery time 7, this split determines a “deboost” of relative vec-  Now let us apply the rotor approach to a practical problem

tors e,ep= Rykyoﬁ: Ro-kfz (k=1,2,3) into relative vectors _of s_pir_l precessi_on. In general, f_or a charged particl_e v_vith an
intrinsic magnetic moment in @niformelectromagnetic field

o=w7tow_.

E. The g-factor in spin precession

a=L(ee)L=UaU (129  F=F,+F_,

in the fixed reference system ¢f. The particle is brought e g e 1

to rest, so to speak, so we can watch it predessspin in 0= moe Fi+ EF— “mc F+ 5(9_2)':— , (139

one place. The precession is described by an equation of the

form where as defined by121), F_ is the magnetic field in the

instantaneous rest frame of the particle, angs the usual

d_U __ }in (124 gyromagnetic ratio. This yields the classical equation of mo-
dt 2 ' tion (102 for the velocity, but by(98) and(100) the equation

s0, as already shown in GAL, differentiation (423 yields of motion for the spin is

the familiar equations for a rotating frame: . e 1
§=—|F+5(g—2)F_|s. (136)

de, m 2
PR (129 This is the well-known Bargmann—Michel-Telegd@MT)

equation, which is used in high precision measurements of

The problem now is to expressin terms of the givef) and  ipe g-factor for the electron and muon.

determine the relative contributions of the pafls, and
Q)_ . To do that, we use the time dilation factog=uv - v,

=dt/d7 to change the time variable i124) and write
(126)

w=—liwvg

so (124) becomesU=iwU. Then differentiation of(122)
and use 0of99) gives

Q=2RR=2LL+LwL. (127
Solving for w and using the spli€119), we get

w=L0 L+LovL—2LL. (128
Differentiation of (87) leads to

L(pv)L=LL+LL, (129

while differentiation of(88) gives
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To apply the BMT equation, it must be solved for the rate
of spin precession. The general solution for an arbitrary com-
binationF = E+iB of uniform electric and magnetic fields is
most easily found by replacing the BMT equation by the
rotor equation

R—eFRRl = |is 13
~5m +§(9—)ﬁlo, (137
where

iBo=RF_R=RFR—(RFR)"] (139

is an “effective magnetic field” in the “rest system” of the
particle. With initial conditionsR(0)=L,, U(0)=1, for a
boost without spatial rotation, a solution @37) is

1 e\
Lo exp{z(g—2)<ﬁ)|807
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whereBy, is defined by V-F=], (149
VOF=0. (150

1 -
BO:E[LOFLO_(LOFLO)T] o ] )
This is the coordinate-free form for the two covariant tensor

USO equations for the electromagnetic field in standard relativistic
=B+ 1 Vox(BXVO)+UooEXVO, (140) theOI’y.
Voo As a pedagogical point, it is worth noting that the decom-

wherevgo=v(0)- yo=(1—Vv?) ~Y2 The first factor in(139  Position (148) into divergence and curl is a straightforward
has the same effect on both the veloaitand the spirs, so generalization of the 3D vectorial decomposition introduced
the last factor gives directly the change in the relative direcin GAL. Also note that, as standard Sl units are not well
tions of the relative velocityw and the spirs. This can be Suited for spacetime physics, we choose a system of units
measured experimentally. that minimizes the number of constants in basic equations.
To conclude this section, some general remarks about thghe reader can infer the choice from the spacetime split of
description of spin will be helpful in applications and in Maxwell's equation given below. .
comparisons with more conventional approaches. We have The reduction of the two Maxwell equatiorig49 and
represented the spin by the proper vestet|s|e; defined by 150) fo a.smgle Maxwell's equation (147 brings many
(98) and alternatively by the relative vector=|s|e;, where simplifications to electromagnetic theory. For example, the

e; is defined by(123). For a particle with proper velocity operatorV has an inverse s@47) can be solved for

=L2y,, these two representations are related by F=V~1], (151
sv=Lol (141 Of course,V~! is an integral operator that depends on
_ boundary conditions o for the region on which it is de-
or, equivalently, by fined, so(151) is an integral form of Maxwell’s equation.
o=T(sv)L=TsLy,. (142) However, if the “current”J=J(x) is the sole source of,

_ _ _ _ then(151) provides the unique solution (d.47).
A straightforward spacetime split of the proper spin vesfor ~ Next we survey other simplifications to the formulation
like (48) for the velocity vector, gives and analysis of electromagnetic equations. Differentiating

SY0=50+5, (143 (147) we obtain
where VIF=VJ=V.J+V0J, (152
s=sly, (144) whereVz_is the d’Alembertian(35). Separately equating sca-
] ) ) o lar and bivector parts afL52), we obtain thecharge conser-
is the relative spin vector, argl v =0 implies that vation law
UoSOZV'S. (145) V \]:0 (153)
From (141) and(143), the relation ofsto o is found to be 534 an alternative equation for the E-M field
S:U+(Uo—l)(0"V)V, (146) VZF:VDJ (154)

where vo=v-yo and V=V/|v|. Both vectorss and o are A Electromagnetic potentials

sometimes used in the literature, and some confusion results

from a failure to recognize that they come from two different A different field equation is obtained by using the fact that,
kinds of spacetime split. Of course either one can be usedinder general conditions, any continuous bivector figld

since one determines the other, lauts usually simpler be- = F(x) can be expressed as a derivative with the specific
cause its magnitude is constant. Note froid6) that they  form

are indistinguishable in the nonrelativistic approximation. .
F=V(A+Bi), (155
VI. ELECTROMAGNETIC FIELD THEORY where A=A(x) and B=B(x) are vector fields, s& has a
In STA an electromagnetic field is represented by a‘vector potential” A and a “trivector potential’Bi. This is a
bivector-valued functiorF=F(x) on spacetime. The field generalization of the well-known “Helmholtz theorem” in

produced by a source with proper current dendityd(x) is ~ Vector analysis® Since VA=V-A+VOA with a similar
determined byMaxwell’s equation equation forVB, the bivector part 0f155 can be written

VE=J. (147 F=VOA+(VOB)i, (156)

As explained in Sec. Il, the differential operatBr=0, in  while the scalar and pseudoscalar parts yield the so-called
STA is regarded as thevecton derivative with respect to a “Lorenz condition”

spacetime poink. A_VU.R—
SinceV is a vector operator the expansigi0) applies, so V-A=V-B=0. (157
we can write Inserting(155) into Maxwell’'s equation(147) and separating

vector and trivector parts, we obtain the usual wave equation

VE=V-F+VLF, (148 for the vector potential
whereV -F is thedivergenceof F and VOF is thecurl. We V2A= ] (158
can accordingly separatél4?7) into vector and trivector '
parts: as well as
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V2Bi=0. (159  with normaln=n(x), By linearity T(n)=n,T#, wheren,,

The last equation shows thBtis independent of the source =n-v, and
J, so it can be set to zero {155). However, in a theory with TH=T(y*) = IFy*F. (169
magnetic charges, Maxwell's equation takes the form ) ]
L The divergence of (n) can be evaluated by using Maxwell’s
VE=J+iK, (160 equation(147), with the result
whereK =K(x) is a vector field, the “magnetic current den- 3,TF=T(V)=J-F. (169
sity.” On substituting(155) into (160 we obtain in place of ) ) )
(159 Its value is the negative of theorentz force(density F-J,
PR which is the rate of energy-momentum transfer from the
VoBi=iK. (16D sourced to the fieldF.

The pseudoscalarcan be factored out to mak&61) appear .
symmetrical with(157), but this symmetry between the roles D. Eigenvectors of the Maxwell tensor
of electric and magnetic currents is deceptive, because one isThe compact, invariant forn167) enables us to solve
vectorial while _the other is actually_ trivectorial. ~ easily the eigenvector problem for the Maxwell energy-

The separation of the generalized Maxwell's equationmomentum tensor. IF is not a null field, it has the invariant
(160 into parts with electric and magnetic sources can bejecompositiorF = fe'¢ given by(30), which, when inserted
achieved by again using48) and again gettingl49 for the (167), gives
vector part but getting

T(n)=—3fnf. (170

VOF=iK (162 T o
) ) ] This is simpler thar{167) becausd is simpler tharF. Note
for the trivector part. This equation can be made to l00ky|5g that it implies that all fields differing only by an arbi-

similar to (149 by duality to put it in the form trary “duality factor” €'¢ have the same energy-momentum

V- (Fi)=K. (163 tensor. The eigenvalues can be found fr(ii@0) by inspec-
tion. The bivectorf determines a timelike plane. Any vector
in that plane satisfiesCJf =0 or, equivalentlynf=—fn. On
the other hand, ih is orthogonal to the plane, thenf=0
andnf=fn. For these two case&l70) gives us

T(n)==*%’n. (171

] ] ThusT(n) has a pair of doubly degenerate eigenvaltigs?
Sometimes the source currehtan be decomposed into a corresponding to “eigenbivectord”andif, all expressible in

Note that the duaFi of the bivectorF is also a bivector.
Hereafter we restrict our attention to the “physical cage”
=0.

B. Maxwell's equation for material media

conduction current 3 and a magnetization curre-M,  terms ofF by inverting (30). This approach should be com-
where the generalizemhagnetization M=M(X) is a bivector  pared with conventional matrix methods to appreciate the
field; thus simplifications achieved by STA.
J=JC+V.-M. (164
The Gordon decomposition of the Dirac current is of this ilk. E. Relation to tensor formulations
Because of the mathematical identi¥y- (V-M)=(VOV) The versatility of STA is also illustrated by the ease with
-M =0, the conservation law -J=0 implies also thatv  which the above invariant formulation of “Maxwell theory”
-J¢=0. Using(164), Eq. (149 can be put in the form can be related to more conventional formulations. The tensor
e componentsF#” of the E-M field F are given by(17),
V-G=J (169 whence, usind34), we find
where we have defined a new field 9, FHr=J.y'=J" (172
G=F—M. (166

for the tensor components of Maxwell's equatioih49).
A disadvantage of this approach is that it mixes up physicallySimilarly, the tensor components (63 are

different kinds of entities, an E-M fiel& and a matter field O E m=KHe 173
M. However, in most materialdl is a function of the field, [vT ap]

so when a “constitutive equationM=M(F) is known Wwhere the brackets indicate antisymmetrization and,s
(165 becomes a well-defined equation fér =i L (Y.7»YaYp)- The tensor components of the energy-
momentum tensofl68) are

pnvaps

C. Energy-momentum tensor TH'=yk. T"= = 3(y*Fy"F)(o)

STA enables us to write the usual Maxwell energy- =(y*-F)-(F-y") = 39" ¥"(F?)o)
momentum tensor (n) =T(n(x),x) for the electromagnetic _FuapEv_ lauv ap
field in the compact form FAOF = 2077 F o gF 7. (174
T(n)=3%FnF=—FnF. (167  F. Spacetime splits in E-M theory

Recall that the tensor field(n) is a vector-valued linear To demonstrate how smoothly the proper formulation of
function on the tangent space at each spacetime paile- E-M theory articulates with the relative formulation, we
scribing the flow of energy-momentum through a surfacequickly survey several spacetime splits. A spacetime split of
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Maxwell’s equation(147) puts it in the standard relative vec- term “local observable” is nonstandard but the concept is not
tor form for an inertial system. Thus, following the proce- unprecedented. It refers to assignment of physical interpreta-

dure in Sec. 1V,
Jyo=Jdp+J (175

splits the current) into a charge densityy=J- v, and a

relative currentt=J0y, in the yo-system. Similarly,
yoV=0;+V (176

splits V=4, into a time derivativel,= y,-V and spatial de-

rivative V= yo[OV =4, with respect to the relative position

vector x=xyy. Combining this with the split of into
electric and magnetic parts, we get Maxwell's equatib4ir)
in the split form

(6;+V)(E+iB)=Jp—J, 77
in agreement with the formulation in GAL.
Note that(176) splits the D’Alembertian into
V2= (Vyo)(%V)= (0~ V)(q+ V)=~ V2. (179

The vector field T°=T(y°)=T(y,) is the energy-
momentum density the y,-system. The split

TOY0=T09=T%+T° 179
separates it into an energy densit§’=TC. 1% and a mo-

mentum densityr °=T°04°. Using the fact that, anticom-
mutes with relative vectors, frorf168 we obtain

TO=3FF'=3(E*+B%) +EXB,
in agreement with GAL.

(180)

tion to some local quantity such as energy or charge density
rather than to global quantities such as expectation values. It
serves as a device for describing local geometric structure of
the theory quite apart from claims of objective reality. Its
bearing on the interpretation of quantum mechanics is dis-
cussed in the next section.

For reference purposes, | provide a complete catalog of
relations between local observables in the real theory and the
so-called “bilinear covariants” in the matrix theory. This fa-
cilitates translation between the two formulations. It will be
noted that the real version is substantially simpler, and the
complexities of translation can be avoided by sticking to the
real theory alone.

Finally, | provide a thorough analysis of local conservation
laws in the real Dirac theory to ascertain further what STA
can tell us about geometric structure and physical interpreta-
tion. The analysis is much more complete than any treatment
in textbooks that | know.

This account is limited to the single particle Dirac theory.
The tendency in textbooks is to forego a thorough study of
single particle theory and leap at once to the second quan-
tized many particle theory. | leave it to the reader to decide
what might be lost by that practice.

Space does not permit an adequate account of “real solu-
tions” of the Dirac equation in this article. Partial treatments
are given elsewher;'°but it is worth mentioning here that
in some respects the real Dirac equation is easier to solve and
analyze than the Schroedinger equation.

The spacetime split helps us with physical interpretationA. Derivation of the real Dirac theory

Corresponding to the spliE=E+iB, the magnetization
field M splits into

M=—P+iM, (182)

where P is the electricpolarization densityand M is the
magnetic moment densitWriting

G=D+iH, (182
we see that166) gives us the familiar relations

D=E+P, (183

H=B—-M. (184

Insertion 0f(182) into (165 with a spacetime split yields the

usual set of Maxwell's equations for a material medium.

VII. REAL RELATIVISTIC QUANTUM THEORY

The Dirac equation is the cornerstone of relativistic quan-
tum theory, if not the single most important equation in all of
guantum physics. This section shows how STA simplifies the?/
entire Dirac theory, reveals hidden geometric structure wit

Derivation of the real STA version of the Dirac theory
from the standard matrix version is essentially the same as
for the Pauli theory, but the differences are sufficient to jus-
tify a quick review. To find a representation of the Dirac
theory in terms of STA, we begin with a Dirac spindy, a
column matrix of four complex numbers. Latbe a fixed
spinor with the properties

ulu=1, (189
YoU=u, (186)
Y2yu=i'u. (187

In writing this we regard they,, for the moment, as 4 4
Dirac matrices, and’ as the unit imaginary in the complex
number field of the Dirac algebra. Now, we can write any
Dirac spinor
V= yu,

hereys is a matrix that can be expressed as a polynomial in

#he v, . The coefficients in this polynomial can be taken as

implications for physical interpretation, and provides a com-€al, for if there is a term with an imaginary coefficient, then
mon spinor method for classical and quantum physics with 4187 enables us to make it real without alteri@8g) by
more direct and transparent classical limit of the Dirac equateplacingi’ in the term byy,y; on the right of the term.

tion.

Furthermore, the polynomial can be taken to be an even mul-

First, we show how to reformulate the standard matrixtivector, for if any term is odd, the(1.86) allows us to make
version of Dirac theory in terms of the real STA. As this it even by multiplying on the right by,. Thus, in(188) we
reformulation eliminates superfluous complex numbers andghay assume thag is a real even multivectorso we can

matrices from the standard version, | call it theal Dirac
theory.

reinterpret they,, in ¢ as vectors in STA instead of matrices.
Thus, we have established a correspondence between Dirac

Next we provide the real Dirac wave function with a geo- spinors and even multivectors in STA. The correspondence

metric interpretation by relating it tiocal observablesThe
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(like the space of Dirac spinoris exactly eight-dimensional, emphasizes that this bivector plays the role of the imaginary
with one scalar, one pseudoscalar and six bivector dimeri¥ that appears explicitly in the matrix forrd91) of the
sions. Dirac equation. To interpret the theory, it is crucial to note
Finally, it should be noted that by eliminating the ungeo-that the bivectori has a definite geometrical interpretation
metrical imaginaryi’ from the base field we reduce the de- while i’ does not.
grees of freedom in the Dirac theory by half, with conse-
guent simplification of the theory that shows up in the real
version. TheDirac algebrais generated by the Dirac matri-
ces over the base field of complex numbers, so it Has 2 Equation (192 is Lorentz invariant, despite the explicit
X 2=232 degrees of freedom and can be identified with theappearance of the constantgandi= v,y in it. These con-
algebra of 4<4 complex matrices. Fronil4) we see that stants need not be associated with vectors in a particular
STA has 2=16 degrees of freedom. reference frame, though it is often convenient to do so. It is
One immediate simplification brought by STA appears inonly required thaty, be a fixed, future-pointing, timelike
the spacetime split. To write his equation in Hamiltonianunit vector whilei is a spacelike unit bivector that commutes
form, Dirac defined &4 matrices with y,. The constants can be changed by a Lorentz rotation

B. Lorentz invariance

K= YkYo (189 Yu—7,=C7,.C, (194

for k=1,2,3. This is, in fact, a representation of th&¢2  whereC is a constant rotor, sGC=1,
Pauli matrices by 44 matrices. STA eliminates this awk- ;L ~ RS
ward and irrelevant distinction between matrix representa- %=C»C and i"=CiC. (199
tions of different dimension, so the, can be identified with A corresponding change in the wave function,
the oy, as we have already done in the spacetime &48). , =

There are several ways to represent a Dirac spinor in =9 =yC, (196
STA* but all representations are, of course, mathematicallynduces a mapping of the Dirac equatid®?) into an equa-
equivalent. The representation chosen here has the advatien of the same form:
tages of simplicity and, as we shall see, ease of interpreta- _ ,
o PACTY Pre Syith—eAp =my’ v5. (197

To distinguish a spinog in STA from its matrix represen-  This transformation is no more than a change of constants in
tation W in the Dirac algebra, let us call it @al spinorto  the Dirac equation. It need not be coupled to a change in
emphasize the elimination of the ungeometrical imaginaryeference frame. Indeed, in the matrix formulation it can be
i’. Alternatively, we might refer ta) as theoperator repre- interpreted as a mere change in matrix representation, that is,
sentationof a Dirac spinor, because, as shown below, it playsa change in the particular matrices selected to be associated
the role of an operator generating observables in the theorwith the vectorsy,,, for (188) gives

In terms of the real wave functiow, the Dirac equation L
for an electron can be written in the form V=ygu=yg'u’, (198

YOy it = €A = Miyo, (190 Whlfc:f?he scplé.cial case

wherem is the mass ané= —|g| is the charge of the elec- C=ei%o, (199
tron, while theA,=A-y, are components of the electro- _ _ , .
magnetic vector potential. To prove that this is equivalent tdV€ré #o is @ scalar constant199 gives yo=1, andi

the standard matrix form of the Dirac equatibwe simply ~ =i, S0 and

interpret they,, as matrices, multiply by on the right, and W' = yeleo (200

use(186) and (188 to get the standard form ) ) )
are solutions of the same equation. In other words, the Dirac

y*(i'hd,—eA,)¥=mV. (191 equation does not distinguish solutions differing by a con-
stant phase factor.
This completes the proof. Alternative proofs are given
elsewheré®~*® The original converse derivation afL90) . .
from (191) was much more indirecf C. Charge conjugation

Henceforth, we can work with thesal Dirac equation Note that o,=y,y, anticommutes with bothy, and i

(190 without reference to its matrix representaticipl). . Lo . .

We know from previous sections that computations in STA, 73 SO mylt|pllcat|on of the Dirac equatiof192) on the
can be carried out without introducing a basis, and we rec[Ight by o, yields

ognize the so-called “Dirac operatoiV = y*d, as the vec- VyCit+eAyC=my‘y,, (200
tor derivative with respect to a spacetime point, so let US\ here

write the real Dirac equation in the coordinate-free form
Y= yo,. (202

Vi —eAy=m , 19
v y=mivo (192 The net effect is to change the sign of the charge in the Dirac
whereA=A , y* is the electromagnetic vector potential, and equation, therefore, the transformatign- Y© can be inter-

the notation preted ascharge conjugationOf course, the definition of
) ) ) charge conjugate is arbitrary up to a constant phase factor
I=y271=1Y3Y0=103 (193 such as in(200. The main thing to notice here is that in
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(202 charge conjugation, like parity conjugation, is formu- Table I. Bilinear covariants.
lated as a completely geometrical transformation, without

any reference to a complex conjugation operation of obscurg®®®" VW =TyoW = (4) 0= p cOSB
physical meaning. Its geometric meaning is determined by&c®r Yy =¥ y0y, ¥ = (ol 0= (v vt o
what it does to the “frame of observables” identified below. =(¥yo) - v,=(pv)- v,=pv,
_ ei'fi~ 1 el ~
Bivector w2 V5 = 1)Y= o (b rando

D. Interpretation of the Dirac wave function e .
P () (M) =M, == pliePs0)- (7,0,

As explained in Sec. Il, since the real Dirac wave functionpge dovectsr

1. = 1 ~
. ! . 51 Wy, vsV =50 (y,y3¥) 0= V. (pS)=pS
= y(x) is an even multivector, we can write 2 w7s¥ =R (730 = 7 (9) s,

Pseudoscalar U ysW = (i ) (0)= — p Sin B

= oelB
yp=per, (203 ®Here we use the more conventional symbgk y,y1v,7; for the matrix
wherep and g are scalars. Henag has thel orentz invariant ~ representation of the unit pseudoscalar
decomposition
¢=(pe'$)?R,  where RR=RR=1. (204)

At each spacetime poing, the rotorR=R(x) determines a
Lorentz rotation of a given fixed frame of vectdrg,} into

tron, andp=p(x) is the relative probability(i.e., proper
probability density that the electron actually is at The
correspondence @¢207) to the conventional definition of the

a frame{e,=e,(x)} given by Dirac current is displayed in Table I.

e,= R'yﬂf{. (205 The probability conservation law
In other wordsR determines a unique frame field on space- V- (#y#)=V-(pv)=0 (208
time.

follows directly from the Dirac equation. To prove that we

The physigal interprgtation given t.o the_ frame figd) } is . can useg204) and(205) to put the Dirac equatiofl92) into
a key to the interpretation of the entire Dirac theory. Specifihe form

cally, thee, can be interpreted directly as descriptors of the 5 _
kinematics of electron motion. It follows frorf205), there- h(V ) yop=mpe'Pee,+ pAeesey, (209
fore, that the rotor field(R=R(x) is a descriptor of electron
kinematics.
It should be noted tha05 has the same algebraic form v D=1y U+ Y
as thecomoving fram&96) defined on classical partical his- (V) vodl0=2L (Vi) Y04+ ¢70(V) Jio
tories. Thus,(205 is a direct generalization of96) from =%7"'(%l/l?’ol~/l+wyoﬁ#?ﬁ)=0- (210
frames on curves to frame fields on spacetime. Conversely, i
as we shall see, probability conservation in the Dirac theory The vector field
permits a decomposition of the frame field into bundles of | ~ 4,
comoving frames on Dirac “streamlines.” This provides a 2 ¥Y3¥=p3h€3=pS (213

direct connection to the classical spinor particle mechanics igj|| pe interpreted as thepin vectordensity, in exact corre-

Sec. V and thereby a natural approach to the classical limit &§pondence with the real PS theory. Justification for this in-

the Dirac equation, as discussed in the next section.  terpretation comes from angular momentum conservation
Anticipating that the factorge'#)"/? can be given a statis- treated below. Note in Table I that this vector quantity is

tical interpretation, the canonical for(@04) can be regarded represented as a pseudovedtor axial vectoy quantity in

as an invariant decomposition of the Dirac wave functionthe conventional matrix formulation. The spin pseudovector

into a two-parametestatistical factor(pe'”)*? and a six- s correctly identified ass, as shown below.

from which it follows that

parametekinematical factor R _ As we have noted before, angular momentum is actually a
From (204), (209, and(196) we find that bivector quantity. Thespin angular momentum=SS(x) is a
~ T bivector field related to the spin vector fiedek s(x) b
gy =4y, ' =pe,. (206) P (X) by
Note that we have here a set of four linearly independent S=isv=3hiezeo=3hRy,y;R=3R(i%)R. (212

vector fields which are invariant under the transformatio ; ; ; ; ; ;
specified by(194) and(195). Thus 'ghese fields do not dependnl-rrsgwrsl'gtma SrngZtic(:; g}'fhghs(’?)lir:] ?J tﬁgu&\:‘zﬂ?:]tag?ﬁ;;eprgzﬂons
on any c_oordmate system, despite the appea;;h%@fn ing in the Dirac equatior{192. Indeed, it shows thathe
the left side of(206). Note also that the fact@'”?in (204 pivector Li% is a reference representatioof the spin that is
does not contribute t@206), because the pseudoscalamn-  yotated by the kinematical fact® into the local spin direc-
ticommutes with they,,. _ o tion at each spacetime point. This establishes an explicit con-
Two of the vector fields ir206) are given physical inter- nection between spin and imaginary numbers that is inherent
pretations in the standard Dirac theory. First, the vector fieldn the Dirac theory but hidden in the conventional formula-
~ _ tion, and, as we have already seen, remains even in the
YvoP=peo=pu (207 Schroedinger approximation.
is theDirac current which, in accord with the standaBbrn Explicit equations relating spin to the unit imaginaryin
interpretation we interpret as @robability current Thus, at  the PS theory are given in GA1. They apply without change
each spacetime pointthe timelike vectow =v (x) =ey(X) in the Dirac theory, so the argument need not be repeated
is interpreted as therobable (prope)p velocity of the elec- here. The important fact is that for every solution of the
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Dirac equation, at each spacetime pointhe bivectorS  algebraic relations known as “Fierz identitieg” However,
=S(x) specifies a definite spacelike tangent planespm  the invariant decomposition of the wave functi(204) re-
plane if you will. duces the relations to their simplest common terms. Table |
Explicit identification ofS with spin is not made in stan- Shows exactly how the covariants are related by expressing
dard accounts of the Dirac thedhypically, they introduce them in terms ofp, B, v, s,, which constitutes a set of

the spin(density tensor seven independent parameters, since the velocity and spin
i i vectors are constrained by the three conditions that they are
SPB=— Oy vAY = — T P ghvaB Qrthogonal and hav_e constant mag_nltuqles. '_I'hls parametriza-

P 2 YTy 2 YwYsTE tion reduces the derivation of any Fierz identity practically to

inspection. Note, for example, that

= ps, 4P, (213 N b A 3
pP=(WW)2+ (W ysW)?=(Vy, W) (¥ y*¥)

where use has been made of the identity
y' Oy OyP=7,75e""* (214 == (Ty,ys W) (T y ysW). (220

and the expression fa, in Table I. Note that the “alternat- Evidently Table I tells us all we need to know about the
ing tensor” e#**# can bedefinedsimply as the product of bilinear covariants and makes further reference to Fierz iden-

two pseudoscalars, thus tities superfluous. o '
WaB— v 2B Note that the factor’'# occurs explicitly in Table I only in
et P=—i(y Oy Oy 0y") those expressions involving electron spin. The conventional

justification for including thei’ is to make anti-Hermitian
operators Hermitian so the bilinear covariants are real. We
=—(y307,09:1090) - (y*Oy"0y*0y#), (219  have seen, however, that this smuggles spin into the expres-
sions. That can be made explicit by usif®]2) to derive the

==Yy v*v") 0

v a B vaf
Yy Dy Dy =10 (219 general identity
From (213 and(215 we find o~ ~
i"AVTY=vT yayﬁ\IfS“'B, (221
S”"‘B=Sﬂe“”“'3= —i(SD'y”Dy“DyB) . .
wherel is any matrix operator.
=—i(is)- (y"Oy*0yP). (217 Perhaps the most significant thing to note about Table | is

that only seven of the eight parameters in the wave function
are involved. The missing parameter is fifeseof the wave
; o ) . _function. To understand the significance of this, note also
with v, =v -y, and use of duality gives the desired relation y»; i contrast to the vectoes ande; representing velocity
betweens*# and S and spin directi :
pin directions, the vectoes ande, do not appear in
v,S"*F=—i(sOvOy*0yP)=—[i(sv)]- (y*OyP) Table | except indirectly in the produebe,. The missing
_ By caB parameter is one of the six parameters implicit in the r&or
=S (yP0y")=8". (218 determining the Lorentz rotatio205. We have already
Its significance will be made clear in the discussion of anguhoted that five of these parameters are needed to determine
lar momentum conservation. the velocity and spin directionsy ande;. By duality, these
Note that the spin bivector and its relation to the unitvectors also determine the directiese; =ieze, of the “spin
imaginary is invisible in the standard version of the bilinearplane” containinge, ande,. The remaining parameter there-
covariants in Table I. The spiiis buried there in the mag- fore determines the directions ef ande, in this plane. It is
netization(tensor or bivectgr The magnetizatioM can be  jiterally an angle of rotation in this plane and the spin bivec-

defined and related to the spin by tor S=e,e;=RiR is the generator of the rotation. Thus, in
e ~ ek . 8 e " full accord with PS theory we arrive atgeometrical inter-
M=o ¥reyigp= 7 —pe’ee,=_—_pSer. (219 pretation of the phase of the wave functibat isinherent in
the Dirac theory But all of this is invisible in the conven-

One source for the interpretation fas magnetization is the tional matrix formulation.
Gordon decomposition of the Dirac current given below. The purpose of Table | is to explicate the correspondence
Equation(219) reveals that in the Dirac theory the magnetic of the matrix formulation to the redSTA) formulation of
moment is not simply proportional to the spin as often asthe Dirac theory. Once it is understood that the two formu-
serted; the two are related bydaality rotationproduced by |ations are completely isomorphic, the matrix formulation
the factore'”. It may be appreciated that this relationMfto  can be dispensed with and Table | becomes superfluous. By
Sis much simpler than any relation ®*# to S**# in the  revealing the geometrical meaning of the unit imaginary and
literature, another indication th& is the most appropriate the wave function phase along with this connection to spin,
representation for spin. By the way, note tk2t9 provides STA challenges us to ascertain the physical significance of
some justification for referring t@ henceforth as thduality ~ these geometrical facts.
parameter The name is nhoncommittal to the physical inter- .
pretation of3, a debatable issue discussed later. E. Conservation laws

We are now better able to assess the content of Table I. One of the miracles of the Dirac theory was the spontane-
There are +4+6+4+1=16 distinct bilinear covariants ous emergence of spin in the theory when nothing about spin
but only eight parameters in the wave function, so the variseemed to be included in the assumptions. This miracle has
ous covariants are not mutually independent. Their interdebeen attributed to Dirac’s derivation of his linearized relativ-
pendence has been expressed in the literature by a systemisfic wave equation, so spin has been said to be “a relativistic

The last expression shows that tB&# are simply tensor
components of the pseudovects Contraction of (217)
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phenomenon.” However, we have seen that the “Dirac op-Table Il. Observables of the energy-momentum operator, relating real and
erator” V=y*J, is a generic spacetime derivative equally Matrix versions.

suited to the formulation of Maxwell's equation, and we Energy-momentum tensor T =Tk y'— (y5iy p"d) o

have concluded that the Dirac algebra arises from spacetime = 0O

. - =W ytp"

geometry rather than anything special about quantum theor}éinetic energy density TOO— () )= ¥ pOW
The origin of spin must be elsewhere. Kineti . ok O L E

. L . . . inetic momentum density TH=(¢'p"d) (o)=Y "p¥

Our ultimate objective is to ascertain precisely what fea—,_\ngular momentum tensor  3**F=[TOx+i p(s0y")]- (#0y%)
tures of the Dirac theory are responsible for its extraordinary i
empirical success and to establish a coherent physical inter- :TWx/’—TVﬂxﬂ—Tﬁr%yﬂ%ﬂmﬂ
pretation that accounts for all its salient aspects. The geomet-
ric insights of STA provide us with a perspective from which Gordon current K#:E(}/}pﬂlm(o)zsﬁfpﬂqf
m = m -

to criticize some conventional beliefs about quantum me-
chanics and so leads us to some unconventional conclusions.
However, our purpose here is merely to raise significant is-
sues by introducing suggestive interpretations. Much more
will be required to claim definitive conclusions.

The physical interpretation of standard quantum mechan-  T#*=T#. y"=(yogry*p*1)0)= (¥ ¥ ¥*P" ) (0) -

ics is centered on meaning ascribed to Kieetic energy- (226)
momentum operators pdefined in the conventional matrix lts matrix equivalent is ai . . .
quivalent is given in Table Il. As mentioned in
theory by the discussion of the electromagnetic energy-momentum ten-
p.=i'hd,—eA,. (2220 sor,
In the STA formulation they are defined by TE=T(y") =Ty, (227)
p,=ihd,—eA,, (223 is the energy-momentum flux through a hyperplane with nor-

mal y*. The energy-momentum density in the electron rest
where the underbar signifies a “linear operator” and the op-system is
erator i signifies right multiplication by the bivector T(v)=v,T#=pp. (228

=7v,71, as defined by

i = yi (224) This defines théexpected” proper momentum=pp(x). The

- ’ observablgp=p(x) is a statistical prediction for the momen-
The importance of(223 can hardly be overemphasized. tum of the electron ax. In general, the momentumis not
Above all, it embodies the fruitful “minimal coupling” rule, collinear with the velocity, because it includes a contribution
a fundamental principle of gauge theory that fixes the formfrom the spin. A measure of this noncollinearity v,
of electromagnetic interactions. In this capacity it plays awhich should be recognized as defining thkative momen-
crucial heuristic role in the original formulation of the Dirac tum in the electron rest frame.
equation, as is clear when the equation is written in the form gErom the definition(226) of T#* in terms of the Dirac

YHP L= ryom. (225  wave function, momentum and angular momentum conser-

- vation laws can be established by direct calculation from the

However, the STA formulation tells us even more. It revealsDirac equation. First, it is found thst
geometrical properties of thp, that provide clues to a 9 TH=F.] (229
deeper physical meaning. We have already noted a connec- “ ’_ o
tion of the factori# with spin. We establish below that this WhereF=V[A is the electromagnetic field and
connection is a consequence of the form and interpretation of ~ ;_ eryel=epv (230

the p,. Thus, spin was inadvertently smuggled into the ! .
Dirac theory by the p, hidden in the innocent looking fac- is identified as theharge current(density, so charge con-
- ervationV-J=0 is an immediate consequence of probabil-

tor i,ﬁ'. I.tS sut_jden appearance was .or'lly.incider?tally relateiy conservation. The right side @229 is exactlythe clas-

to relativity. History has shown that it is impossible to rec- gi5| | orentz force. so using169 and denoting the

ognize this fact in the conventional formulation of the Dirac electromagnetic ene;gy momentum ten&d8) by T, . we
b EM»

theory. The connection af# with spin is not inherent in the can rephrasé229 asthe total energy-momentum conserva-
p, alone. It appears only when tigg, operate on the wave tion law

function, as is evident froni212). This leads to the conclu-
sion that the significance of the, lies in what they imply Iu(TH+TEW) =0. (23D
about the physical meaning of the wave function. Indeed, th@his justifies identifying the Dirac current with the charge
STA formulation reveals that the, have something impor- current of the electron.
tant to tell us about the kinematics of electron motion.

G. Angular momentum conservation

F. Energy-momentum tensor ) .
To derive the angular momentum conservation law, we

The operatorp,, or, equivalentlyp”=y*. y*p, acquire & jdentify T“0x as the orbital angular momentum teng@ee
physical meaning when used to define the componé&fits  Table Il for comparison with more conventional expres-
of the electrorenergy-momentum tensor sions) Noting thatd, x=1, , we calculate

707 Am. J. Phys., Vol. 71, No. 7, July 2003 David Hestenes 707



a,(THOx)=T#0Oy,+ 3, THOX. (232 Now, with the help 0f(212), the effect ofp, on ¢ can be

To evaluate the first term on the right, we return to the defiPut in the form

nition (226) and find leﬁ:[av(mp+i,3)+Qy]3¢—eAy¢, (243
Y T =1(R" ) Yol i1)= (P 1) yolr + ¥yvo(p 1) ] whence
=(p"¥) oy — 9" (3h i yi). (D) vol=[0,(INp+iB)+Q,Jips—eApv. (244
(233

Inserting this in the definition(226) for the energy-
Summing with y, and using the Dirac equatio(225 to =~ momentum tensor, after some manipulations beginning with
evaluate the first term on the right while recognizing the spins=Sv, we get the explicit expression

vector(211) in the second term, we obtain
T/.LV:p[U,u(QV' S— EAV) —( ’)/,U.DU) : (071/8) - S,LLO')VB]'

Yoy T =M+ V(psi). (234 (245
The scalar part gives the curious result From this we find, by(228), the momentum components
Th=T#.y,=mpCcosp. (239 p,=(, S—eA,. (246
However, the bivector part gives the relation we are lookingThis reveals thatapart from theA, contribution the mo-
for: mentum has a kinematical meaning related to the:spiis
TFOy,=T#"y,0y,=V-(psi)=—3,(pS"), (236) completely determined by the component(®f in the spin

plane. In other words, it describes thatation rate of the
frame{e,} in the spin plane or, if you will, “about the spin
St=(is)- y*=i(sOy*) (237  axis.” But we have identified the angle of rotation in this
lane with the phase of the wave function. Thus, the momen-
um describes the phase change in all directions of the wave
function or, equivalently, of the framge,}. A physical in-
terpretation for this geometrical fact will be offered in the
d,J*=(F-J)0x, (238 next section.
The kinematical import of the operatpt, is derived from
its action on the rotoR. To make that explicit, writ€241) in
J(y*)=I*=THDOx+ pS* (239  the form
is the bivector-valued angular momentum tensor, represent- o~
ing the total angular momentum flux in the" direction. In (0,R)IRR=0,5=0Q,-5+0,0S+4,5, (247)
the electron rest system, therefore, the angular momentuhere (212 was used to establish that

where

is the spin angular momentum tensor already identified i
(213 and (217). Thus from(232 and (229 we obtain the
angular momentum conservation law

where

density is
9,5=39Q,,8]=3Q,5-8Q,). (248
J(v)=p(pOx+9), (240 _ o
where, recalling(199), plx is recognized as the expected Introducing the abbreviation
orbital angular momentum and, as already advertised in iq,=Q,0S (249

(212, S=isv can be identified as an intrinsic angular mo-
mentum or spin. This completes the justification for inter-
preting S as spin. The task remaining is to dig deeper and (p,RR=p,+iq,+3,S (250
understand its origin. v ooy o

and using(246) we can put(247) in the form

This shows explicitly how the operatq, relates to kine-

matical observables, although the physical significanag, of
is obscure. Note that both, and 4,S contribute toT,, in
We now have a complete set of conservation laws for th&245), but g, does not. By the way, it should be noted that
local observableg, v, S, andp, but we still need to ascertain the last two terms {245 describe energy-momentum flux
precisely how th&inetic momentum s related to the wave orthogonal to the direction. It is altogether natural that this
function. For that purpose we employ the invariant decom{lux should depend on the componentigs as shown. How-
position = (pe'#)Y?R. First we need some kinematics. By ever, the significance of the paramefein the last term of

differentiatingRR=1, it is easy to prove that the derivatives (245 remains obscure.

H. Local observables

of the rotorR must have the form An auxiliary conservation law can be derived from the
L Dirac equation by decomposing the Dirac current as follows.

d,R=3Q,R, (241 solving (225 for the Dirac charge current, we have

where() , = ,(x) is a bivector field. Consequently the de- e 3

rivatives of thee, defined by(205 have the form J=eyy= = YHPLP) (251
Ouy =0y 8y (242 The identity(250) is easily generalized to

Thus (), is therotation rate of the frame{e,} as it is dis- - _ _ _

placed in the directiory,, . (Pu) b= (p,+ig,)pe'P+0,(pSEP). (252
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The right side exhibits the scalar, pseudoscalar, and bivect@mommentators, he concludes that the causal theory is per-
parts, explicitly. From the scalar part we define therdon  fectly viable, and every objection from the Copenhagen

current camp has been adequately answered in the literature. He
e e traces the dispute from the inception of quantum mechanics

K =— Won=— (4 and comes to the surprising conclusion that the dominance of
=l Ru Vo= R the Copenhagen theory in the physics literature is a historical

e accident that could easily have been deflected in favor of the
= cosB— sing), causal theory instead.
m (Pup COSB=0,p Sinf) Our real formulation of Schroedinger—Pauli—Dirac theory
(253 puts the causal-Copenhagen dispute in new light by making
the geometric structure of the equations more explicit. The

or, in vector form, causal theory admits to a much more detailed physical inter-
e _ pretation of this structure than the Copenhagen theory, in-
K=ap(p cosB—qgsing). (259 cluding hidden structure revealed by the real formulation.

However, since real QM is mathematically isomorphic with
When (252 is inserted into(251), the pseudovector part standard QM, our analysis does not contradict successes of
must vanish, and the vector part gives us the so-cali@dr*  the Copenhagen theory.
don decompositidn Real QM does raise some questions for Copenhagen
J=K+V-M (255 theory though. First, questions about the relation of observ-
' ables to operators in QM are raised by the realization that
where the definitiori219) of the magnetization tensdf has  both hermiticity and noncommutivity of Pauli and Dirac ma-
been introduced for the last term (B852). This is ostensibly trices have clear geometric meanings with no necessary con-
a decomposition into aonduction current Kand amagneti- nection to QM. Second, any interpretation of uncertainty re-
zation currentV - M, both of which are separately conserved. lations should account for the fact that Planck’s constant
But how does this square with the physical interpretatiorenters the Dirac equation only as the magnitude of the spin.
already ascribed td? The possibility that it arises from a What indeed does spin have to do with limitations on observ-
substructure in the charge flow is considered in the next se@bility?
tion. The causal theory does not resolve all the mysteries of
So far we have supplied a physical interpretation for allQM. Rather it replaces the mysteries of Copenhagen theory
parameters in the wave functiq@04) except the tuality  with a different set of mysteries. As the two theories are
parametet B3. To date, this parameter has defied all efforts atmathematically equivalent, the choice between them could
physical interpretation, because of its peculiar “duality role.” be regarded as a matter of taste. However, they suggest very
For example, a straightforward interpretation of the Gordordifferent directions for research that could lead to testable
current in(254) as a conduction current is confounded by differences between them.
B+#0. Similarly, Eq. (219 tells us that the magnetization ~ Our discussion here is concentrated on the geometry of the
(magnetic moment densjt\ is not directly proportional to ~ single particle Dirac theory as a guide to physical interpreta-
the spin(as commonly supposgtut “dually proportional.”  tion. Many part|c!e theory raises new issues. We merely note
The duality factore'® has the effect of generating an effec- that Bohm and his foIIowergshave extended the causal theory
tive electric dipole moment for the electron, as is easilylo the many particle ca¥&”® and demonstrated its use in
shown by applying the spacetime spiit81) to M. This €Xplaining such mysterious QM effects as entanglement. As
seems to conflict with experimental evidence that the elect®@ QM is so similar to Bohm's theory in the one-particle
tron has no detectable electric moment, but the issue i§2S€; it has a straightforward extension to the many-particle
subtle. We are forced to leave the problem of interpreing ¢ase by following Bohm. No position on the validity of that
as unresolved, though it rises again in the next section, ~ €xtension is taken here.

A. Electron trajectories
VIII. INTERPRETATION OF QUANTUM _ _
MECHANICS In classical theory the concept pérticle refers to an ob-

ject of negligible size with a continuous trajectory. Copen-
Quantum mechanics has been spectacularly successfahgen theory asserts that it is meaningless or impossible in
over an immense range of applications, so there is littleqguantum mechanics to regard the electron as a particle in this
doubt about the efficacy of its mathematical formulation.sense. On the contrary, Bohm argues that the difference be-
However, the physical interpretation of quantum mechanicéween classical and quantum mechanics is not in the concept
has remained a matter of intense debate. Two prominent abf particle itself but in the equation for particle trajectories.
ternatives have emerged in the literature: ®epenhagen From Schroedinger’s equation he derived an equation of mo-
interpretationchampioned by Niels Bohr, and tlzausal in-  tion for the electron that differs from the classical equation
terpretation championed by David Bohm. These two inter- only in a statistical term called the “quantum force.” He was
pretations are so radically different as to constitdiféerent  careful, however, not to commit himself to any special hy-
physical theoriesthough they share the same mathematicapothesis about the origins of the quantum force. He accepted
formulation. The essential difference is that the causal theorthe form of the force dictated by Schroedinger’s equation,
asserts thatlectrons have continuous paths in spacetimeand he took pains to show that all implications of Schro-
whereas the Copenhagen theory denies that. edinger theory are compatible with a strict particle interpre-
James Cushirfg has traced the history of the dispute be-tation. Adopting the same general particle interpretation of
tween these theories and critically reviewed arguments ithe Dirac theory, we find a generalization of Bohm’s equa-
support of the causal theory. In agreement with many othetion that provides a new perspective on the quantum force.
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The Dirac currenpv assigns a unit timelike vectar(x) e,=Ry,R (258
to each spacetime point where p#0. In accordance with
the causal theory, we interpre{x) as theexpectedproper
velocityof the electron ax, that is, the velocity predicted for
the electron if it happens to bexatThe velocityv (x) defines
a local reference frame at called theelectron rest frame R=v-VR=10R, (259
The proper probability density=(pv)-v can be interpreted o . . )
as the probability density in the rest frame. By a well-knownWhere the overdot indicates differentiation with respect to
theorem, the probability conservation 14208 implies that ~ Proper time, and
through each spacetime point there passasique integral Q=0"Q,=Q(x(7)) (260
curvethat is tangent ta at each of its points. Let us call . ) ) )
these curvegelectron streamlinesIn any spacetime region S the rotational velocity of the framfe, }. Accordingly,
where p#0, a solution of the Dirac equation determines a e,=v-Ve,=Q-e,. (261
family of streamlinedhat fills the region with exactly one t th i identical in f o th in Sec. V
streamline through each point. The streamline through a speg2Yt (N€SE €quations are iaentical in form 1o those in Sec.

or the classical theory of a relativistic rigid body with neg-

cific pointx, is the expected history of an electroncgt that ligible size. This is a consequence of the particle interpreta-

s, itis the op.t|mal pred!ct|on for the h|stor.y' of an electron tion. In Bohmian terms, the only difference between classical
that actually is a,txo [with relat|ve. probab|I|typ(x0)., of and quantum theory is in the functional form@f Our main
coursg. Parametrized by proper time the streamlinex (45K therefore, is to investigate what the Dirac theory tells us

on the streamline with velocity =e;, while the spin vector
s and bivectorS are given as before b{211) and (212). In
accordance with241), differentiation of(257) leads to

=X(7) is determined by the equation aboutQ.
dx We begin by examining the special case of a free particle
d—=v(X(7’)). (256) and the simplest approach to the classical limit. Then we
,

formulate the causal theory in the most general terms and

The main objection to a strict particle interpretation of thediscuss its extension to a more detailed interpretation of
Schroedinger and Dirac theories is the Copenhagen claifRirac theory.
that a wave interpretation is essential to explain diffraction.
The causal theory claims otherwise, based orfahethat the
wave function determines a unique family of electron trajec-B. Solutions of the Dirac equation
tories. For double slit diffraction these trajectories have been o ] )
calculated from Schroedinger’s equatfdrf® and, recently, This is not the place for a systematic study of solutions to
from the Dirac equatio’ Sure enough, after flowing uni- the Dirac equation. Suffice it to say that_eve_ry solution in the
formly through the slits, the trajectories bunch up at diffrac-matrix theory has a corresponding solution in the real theory.
tion maxima and thin out at the minima. According to Bohm, T0 show what a “real solution” looks like and the physical
the cause of this phenomenon is the quantum force rathdpsight that it offers, we consider the simplest example of a
than wave interference. This shows at least that the particife€€ particle. _ ]
interpretation is not inconsistent with diffraction phenomena, For a free particle with proper momentum the wave
though the origin of the quantum force remains to be exfunctiony is an eigenstate of the “proper momentum opera-
plained. The obvious objections to this account of diffractiontor” (223, that is,
have been adequately refuted in the literafdrt.is worth pY=pi, (262
noting, though, that this account has the decided advantage -
of avoiding the paradoxical “collapse of the wave function” so the Dirac equatiof225) reduces to the algebraic equation
inherent in the “dualist” Copenhagen explanation of diffrac- _
tion. At no time is it claimed that the electron spreads out PY=4yom. (263
like a wave to interfere with itself and then “collapses” when The solution is glane waveof the form
it is detected in a localized region. The claim is only that the B2 124 B2 ~—ip-x/h
electron is likely to travel on one of a family of possible y=(pe) " R=pe PRoe P, (264
trajectories consistent with experimental constraints; whictwhere the kinematical factd® has been decomposed to ex-
trajectory is known initially only with a certain probability, plicitly exhibit its spacetime dependence on a phase satisfy-
though it can be inferred more precisely after detection in théng Vp-x=p. Inserting this into(223) and solving forp we
final state. Indeed, it is possible then to infer which slit theget
electron passed througfiThese remarks apply to the Dirac ) ~ .
theory as well as to the Schroedinger theory, though there are  P=me”RyR=mve %, (269
some differences in th_e predicted tra_lj(_act_o '_ b!acause the This impliese'#=+1, so
Schroedinger current is the nonrelativistic limit of the Gor- ,
don current rather than the Dirac curréht. e'f2=1 ori, (266)
Now let us investigate the equations for motion along
Dirac streamlinex=x(7). On this curve the kinematical fac-
tor in the Dirac wave functiori204) can be expressed as a
function of proper time:

%nd p=*=muv corresponding to two distinct solutions. One
solution appears to have negative enelgyp- y,, but that
can be rectified by changing the sign in the phase of the
“trial solution” (264).

R=R(x(7)). (257 Thus we obtain two distinct kinds of plane wave solutions
By (205), (207), and (256), this determines acomoving with positive energﬁ: P Yo:
frame W =pYR e P X, (267
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¢, =pYiRe P ¥, (268  This defines a family of classical histories in spacetime. For

. . . . a given external potentiah=A(x), the phase¢ can be
We identify these aglectronand positron wave functions. found by solving the “Hamilton-Jacobi equation”

Indeed, the two solutions are related by charge conjugation.

According to(202), the charge conjugate ¢267) is (Vo—eA?=m?, (279
YC=y o,=pY4Re" P XA (269 obtained by squaring277). On the other hand, the curl of
(277 gives
where
, . mVOv=—-eVIOA=—eF. (279
RO:RO(_IO-Z)' (270)
. ) . . . Dotting this withv and using the identity
The factor—i o, represents a spatial rotation that just “flips” )
the direction of the spin vector. Evident|268) and(269) are v=v-(Vlv)=v-Vo, (280

both positron solutions, but with oppositely directed spins. e obtain exactly the classical Lorentz force for each stream-
Determining the comoving fram&58) for the electron |ine. Inserting(279) into (287), we obtain

solution (267), we find that the velocity = RyyoR, and the

~ e
spins= 11 R,yy3R, are constant, but, fdt=1,2, Q= —FH(m+eA: v)S 4, (281
— —p-x/S— e w7
e =ex0)e e(0)emm, @70 \yhence the rotor equatiof259 assumes the explicit form
where 7=v -x is the proper time along the streamline and e
frequencyw is given by R=5—FR-Ri(m+eAv)/f. (282
2m

w=—2—= 1.6x 1071 s (272 This admits a solution by separation of variables:

R=Rge ¥ (283

Thus, the streamlines are straight lines along which the
spin is constant, and; ande, rotate about the “spin axis” Where
with the ultrahigh frequency272 as the electron moves _ e
along the streamline. A similar result is found for the posi- R,=-—FR, (284)
tron solution. 2m
For applications, the constants in the solution must bend
specified in more detail. If the wave functions are normalized

to one particle per unit volum¥ in the y,-system, then we ¢=v-Vo=m+eAuv. (289
have Equation(284) is identical to the classical rotor equati(99)
1 m 1 with Lorentz torquewhile (285 can _be obtained fron277). _
Po=7o (pO)=< oOr p=——= . (273 Thus, in the eikonal approximation the quantum equation
\Y EV  ye-vV for a comoving frame differs from the classical equation only
To separate velocity and spin variables, we follow the proJn having additional rotation in the spin plane. Quantum me-
cedure beginning witlig0) to make the spacetime split chanics also assigns energy to this rotation, and an explicit
B B ol expression for it is obtained by insertir{g81) into (246),
R=LU where U=Ugse ™", (274 with the interesting result
Inserting this inta(263), we can expresk in terms ofp and e
vo, as already shown i88). The rotorU describes the spin p-v=m+ = F-S (286

direction in the same way as in the Pauli theory in GAL.

This is what one would expect classically if there were some
sort of localized motion in the spin plane. Note that the high
frequency rotation rat€272 due to the mass is shifted by a
magnetic type interaction. That possibility is considered be-

One way to get a classical limit is through an “eikonal low. ) ) o )

C. The classical limit

function is set is the form Bin (266) and (276) suggest thap parametrizes an admix-
el ture of particle—antiparticle states. Unfortunately, that is in-
b=t . (279 consistent with more general solutions of the Dirac equation,

such as the Darwin solutions for the hydrogen atom. One
way out of the dilemma is simply to assert that it shows the
nneed for second quantization, but that solution is too facile
Wwithout further argument.

Then the “amplitude”y, is assumed to be slowly varying
compared to the “phaseg, so the derivatives ofl, in the
Dirac equation can be neglected to a good approximatio
Thus, inserting275) into the Dirac equation, say in the form
(192), we obtain

(V,—eAef=my. (276

As in the plane wave cag@65) this impliese'’”=+1, and
the two values correspond to electron and positron solution
For the electron case,

D. Quantum torque

Having gained some physical insight from special cases,
get us turn to the derivation of a general equation for a Dirac
streamline. For this purpose, we know that the rotor equation
(259 is optimal. All we need is an explicit form for the
Vo—eA=mu. (277) rotational velocityQ) defined by(260). A general expression
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for Q) in terms of observables has been derived from theE. Zitterbewegung

Dirac equation in two step.The first step yields the inter- . . )
esting result Many students of the Dirac theory including

_ B Schroedinge¥ ?®and Bohmi? have suggested that the spin of
Q=-VOv+v-(iVB)+(mcosp+eA-v)S *. (287  a Dirac electron is generated by localized particle circulation

But this tells us nothing about particle streamlines, because iFat Schroedinger calleditterbewegung= trembling mo-

: X . . on). Schroedinger’s original analysis applied only to free
gives us the identity280) for the velocity. The second step particles. However, the real Dirac theory provides a natural

yields extension of the interpretation to all solutions of the Dirac
~Vv+v-(iVB)=m L(eFef+Q), (289  equation. Since the Dirac equation is the prototypical equa-
tion for all fermions, the interpretation extends broadly to

whereQ has the complicated form guantum mechanics. It has been dubliesl zitterbewegung

(zbw) interpretation of quantum mechanfds
The zbw interpretation can be regarded as a refinement of
(289 the causal interpretation of QM, so it needs to be evaluated
whereAx B is the commutator product and in the same light. Its main advantage is the simple, coherent
_ _ picture it gives for electron motion. Here is a brief introduc-
W, =(pe'#)"19,(pe'#S)=3,S+Sd,(Inp+iB). (290  tion to the idea.
We have seen that the kinematics of electron motion is

Q=—e"{9, W+ 3(y, 0y, )LWHXW)S T} ),

Hence, completely characterized by the “Dirac rotoR in the in-
e variant decompositiof204) of the wave function. The Dirac
Q== Fe'’+m ™ 'Q+(mcosp+eA v)S . (291 rotor determines a comoving franie, =Ry,R} that rotates
at high frequency in the,e;-plane, the “spin plane,” as the
This is the desired result in its most general form. electron moves along a streamline. Moreover, according to

Again we see the Lorentz torque (891), but multiplied  (286) there is energy associated with this rotation, indeed, all
by the duality factore'”. Again the cases with opposite the rest energp-v of the electron. These facts suggest that
charge are covered by cBs-*+1, and that assignment sim- the electron mass, spin and magnetic moment are manifesta-
plifies the other terms if291) as well. However, the value of tions of a local circular motion of the electroMindful that
B is set by solving the Dirac equation, and in solutions forthe velocity attributed to the electron is an independent as-
the hydrogen atom, for examplg,is a variable function of sumption imposed on the Dirac theory from physical consid-
position that so far has defied physical interpretation. erations, we recognize that this suggestion can be accommo-

The termQ in (291) generalizes the “quantum force” term dated by giving the electron a component of velocity in the
that Bohm identifies in Schroedinger theory as responsiblspin plane. Accordingly, we nowefine the electron velocity
for quantum effects on particle motihLike the “Lorentz  u by
torque” it exerts a torque on the spin as well as a force on the
motion, so let us cal the quantum torqueFrom (290) we U=v—€=€~&. (294
see thaQ is independent of normalization on the probability The choiceu?=0 has the advantage that the electron mass
density p, as Bohm has observed for the quantum forcecan pe attributed to kinetic energy of self-interaction while
However, the striking new insight brought by the Dirac he spin is the corresponding angular momentdm.
theory and made explicit b289) and(290 is that the quan- This new identification of electron velocity makes the
tum torque is derived from spin. To put it baldly: No spin! plane wave solutions more physically meaningful. ox

No quantum torque! No quantum force! No quantum effects!_ _ . ; :
: . ) o =mv-X=mr, the kinematical factor for the solutiof267)
This may be the strongest theoretical evidencedpat is an can be written in the form

essential ingredient of QMhot simply an “add-on” to more
basic quantum behavior. R=e1207R, (295
Though Bohm never noticed it, the quantum force is spin _ )
dependent even in Schroedinger theory, provided it is dewhere{l is the constant bivector
rived from Dirac theon?’ om
The expressioni291) for {2 may be the best starting place Q=mSl=—~ee,. (296)
for studying the classical limit. Thelassical limitcan be h

characterized firgt by, In p—0 and, say, cof=1, and, sec- fgrom (295) it follows thatv is constant and
ond, byd,S=v,S, which comes from assuming that only _ ar
the variation ofS along the history can affect the motion. &y(7)=e""e;(0). (297)

Accordingly, (289 reduces toQ=S, and for the limiting So u=z can be integrated immediately to get the electron
classical equations of motion for a particle with intrinsic spinhistory

we obtain o)
zZ(r)=vr+(e*"=1)rg+zp, (298

mo =(eF=3S)-v, (292 wherery,=Q"1e,(0). This is a lightlike helix centered on
mS=(eF-$)xS. (293 the Dira}’c str.eamline}('r) = v.T+ Zyg—Tyg. .In the elegtron “re§t
system” defined by, it projects to a circular orbit of radius
These coupled equations have not been seriously studied. Of 5
course, they should be studied in conjunction with the spinor —l0-Y= — — -13
equation(259). Irol=1Q7Y >m 1.9x10° % m. (299
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The diameter of the orbit is thus equal to an electron Compthe electron’s circular orbit in the spin plane. Operating on
ton wavelength. For(7) =e“"r,, the angular momentum of the phase factor, the, computes the phase rotation rates in

this circular motion is, as intended, the spin all spacetime directions and associates them with the elec-
. . 5 1 tron energy-momentum. Thus, thebw interpretation ex-
(mnOr=mir=mreQ=mO""=S. (300 plains the physical significance of the mysterious “quantum

mechanical operatorsy,, .

The key ingredients of thebwinterpretation are preserved
in the nonrelativistic limit and so provide #tterbewegung
(?nterpretation of Paul-Schroedinger theoryrhe nonrelativ-
Sstic approximation to the STA version of the Dirac theory,
rT]eading through the Pauli theory to the Schroedinger theory,
has been treated in detail elsewh&8ut the essential point
can be seen by a split of the Dirac wave functiginto the
factors

Finally, if zy is varied parametrically over a hyperplane nor-
mal to v, Eq. (298 describes a three-parameter family of
spacetime filling lightlike helixes, each centered on a uniqu
Dirac streamline. According to the causal interpretation, th
electron can be on any one of these helixes with unifor
probability.

Let us refer to this localized helical motion of the electron
by the namezitterbewegungzbw) originally introduced by
Schroedinger. Accordingly, we calb=-S the zbw fre- _ _
quencyand\ = w ! the zbw radius The phase of the wave y=p'%eFPLue MA, (302

function can now be interpreted literally as the phase in thg, the nonrelativistic approximation three of these factors are
circular motion, so we can refer to that as #iev phase neglected or eliminated ang is reduced to the Pauli wave

Although the frequency and radius ascribed tozb&are ¢ qction = p2U, where the rotob) retains the portion of
the same here as in Schroedinger's work, its role in th%he phase that is influenced by external interactions.

theory is quite different. Schroedinger attributed it to inter- It follows that even in the Schroedinger theory the phase

ference between positive and negative energy components of, : :
a wave packet’?8whereas here it is associated directly with ¢/fi describes thebw andJ,, ¢ describes thebwenergy and

the complex phase factor of a plane wave. From the Iorese'[]Tgomentum. This implies that the physical significance of the

point of view, wave packets and interference are not essenti§|Omplex p_hase facta (<) s k|_nemat|cal rather than logi-
ingredients of thebw although the phenomenon noticed by C@l Or statistical as so often claimed. .
Schroedinger certainly appears when wave packets are con- | N€ Zbw interpretation has the potential to explain much
structed. Of course, the present interpretation was not an Olgljore_than the electrc_)n Spin and magnetic morﬁ%ﬁ&b“‘ It
tion open to Schroedinger, because the association of the ufgMains to be seen if that is a fruitful direction for research.

imaginary with spin was not establishédr even dreamed One interesting direction for future research is application
of), and the vectoe, needed to form the spacelike compo- of Feynman'’s path integral methods in real quantum theory.

nent of thezbw velocity uwas buried out of sight in the _Suppose that thg electron state at each poiilstcharacte_r-
matrix formalism. Now that it has been exhumed, we can se ed by a, spacetime rotd(x) for each path t(.) the point. .
that thezbwmay play a ubiquitous role in quantum mechan--€ynman's complex phase factor can then be incorporated in
ics. The present approach associateszthe phase and fre- theRk(x) as part of the zbw path, and spin will be included
quency with the phase and frequency of the complex phas@utomatically. Itis easy to prove that the sum over paths will
factor in the electron wave function. This is the central fea-theén produce a wave function of the general form
ture of thethe zitterbewegung interpretatiaf quantum me- )
chanics. P(X)= 2, R(X)=(pe'P)IR. (303

The strength of thebw interpretation lies first in its co- k
herence and completeness in the Dirac theory and second ¥hus, the factor ge'#)*? arises from superposition, which
the intimations it gives of more fundamental physics. It will sypports its interpretation as a statistical factor and may

be noted that thebw interpretation is completely general, thereby explain the origin of the troublesome paramgter
because the definitio294) of the zbw velocity is well de-

fined for any solution of the Dirac equation. It is also per-
fectly compatible with everything said about the causal in-IX. STA IN THE PHYSICS CURRICULUM
terpretation of the Dirac theory. One need only recognize that
the Dirac velocity can be interpreted as the average of then
electron velocity over abwperiod, as expressed by writing t

| claim that the physics curriculum at all levels can be
oroughly unified and considerably simplified by adopting
STA as the core mathematical language of physics. The lan-
v=u. (309 guage is fully developed and ready to use. Setting the politics
of curriculum reform aside, let us consider how a forward-
Since the period is on the order of 18 s, it isv rather than  |ooking physics department could incorporate STA into its
u that best describes electron motion in most experiments. curriculum.

Perhaps the strongest theoretical support forztheinter- In GA1 | made the case for adopting GA as the math-
pretation is the fact that it is fundamentally geometrical; itematical language of physics from the outset of the first
completes the kinematical interpretationRifso all compo-  course. For the sake of argument, let us suppose that has
nents ofR, even the complex phase factor, characterize feabeen done. Presumably, the students will have developed
tures of the electron history. some proficiency with GA by the end of the first semester, or

Thekey ingredient®f the zbwinterpretation are the com- the first year, at least. That, | propose, is the ideal time to
plex phase factor and the energy-momentum opergigrs introduce the rudiments of STA, with the objective of devel-
defined by(223). The unit imaginaryi appearing in both of oping student capacity for spacetime thinking as early as
these has the dual properties of representing the plane ossible. This step is not so radical as might be supposed, for
which zbwecirculation takes place and generating rotations inthe fundamental geometric product defining STA in Sec. Il is
that plane. The phase factor literally represents a rotation onearly the same as the defining product introduced in GAl
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