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This is an introduction tospacetime algebra~STA! as a unified mathematical language for physics.
STA simplifies, extends, and integrates the mathematical methods of classical, relativistic, and
quantum physics while elucidating geometric structure of the theory. For example, STA provides a
single, matrix-free spinor method for rotational dynamics with applications from classical rigid body
mechanics to relativistic quantum theory—thus significantly reducing the mathematical and
conceptual barriers between classical and quantum mechanics. The entire physics curriculum can be
unified and simplified by adopting STA as the standard mathematical language. This would enable
early infusion of spacetime physics and give it the prominent place it deserves in the curriculum.
© 2003 American Association of Physics Teachers.
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I. INTRODUCTION

Einstein’s special theory of relativity has been incorp
rated into the foundations of theoretical physics for the be
part of a century, yet it is still treated as an add-on in
physics curriculum. Even today, a student can get a Ph.D
physics with only a superficial knowledge of relativity theo
and its import. I submit that this sorry state of affairs is du
in large part, to serious language barriers. The standard
sor algebra of relativity theory so differs from ordinary ve
tor algebra that it amounts to a new language for student
learn. Moreover, it is not adequate for relativistic quantu
theory, which introduces a whole new language to deal w
spin and quantization. The learning curve for this languag
so steep that only graduate students in theoretical phy
ordinarily attempt it. Thus, most physicists are effective
barred from a working knowledge of what is purported to
the most fundamental part of physics. Little wonder that
majority is content with the nonrelativistic domain for the
research and teaching.

Beyond the daunting language barrier, tensor algebra
certain practical limitations as a conceptual tool. Aside fro
its inability to deal with spinors, standard tensor algebra
coordinate-based in an essential way, so much time mus
devoted to proving covariance of physical quantities a
equations. This reinforces reliance on coordinates in
physics curriculum, and it obscures the fundamental role
geometric invariants in physics. We can do better—mu
better!

This is the second in a series of articles introducinggeo-
metric algebra~GA! as a unified mathematical language f
physics. The first article1 ~hereafter referred to as GA1!
shows how GA simplifies and unifies the mathematical me
ods of classical physics and nonrelativistic quantum mech
ics. This article extends that unification to spacetime phys
by developing aspacetime algebra~STA! expressly designed
for that purpose. A third article is planned to present a p
found and surprising extension of the language to incor
rate general relativity.2

Although this article provides a self-contained introdu
tion to STA, the serious reader is advised to study GA1 fi
for background and motivation. This is not a primer on re
tivity and quantum mechanics. Readers are expected t
familiar with those subjects so they can make their own co
parisons of standard approaches to the topics treated
691 Am. J. Phys.71 ~7!, July 2003 http://ojps.aip.org/aj
-
r

e
in

,
n-

to

h
is
cs

e

as

s
be
d
e
f

h

-
n-
s

-
-

-
t
-
be
-
re.

Topics have been selected to showcase unique advantag
STA rather than for balanced coverage of every subject. N
ertheless, topics are developed in sufficient detail to m
STA useful in instruction and research, at least after so
practice and consultation with the literature. The general
jectives of each section in the article can be summarized
follows:

Section II presents the defining grammar for STA and
troduces basic definitions and theorems needed
coordinate-free formulation and application of spacetime
ometry to physics.

Section III distinguishes betweenproper ~invariant! and
relative formulations of physics. It introduces a simple alg
braic device called thespacetime splitto relate proper de-
scriptions of physical properties to relative descriptions w
respect to inertial systems. This provides a seamless con
tion of STA to the GA of classical physics in GA1.

Section IV extends the treatment of rotations and refl
tions in GA1 to a coordinate-free treatment of Lorentz tra
formations on spacetime. The method is more versatile t
standard methods, because it applies to spinors as we
vectors, and it reduces the composition of Lorentz trans
mations to the geometric product.

Lorentz invariant physics with STA obviates any need fo
the passive Lorentz transformations between coordinate
tems that are required by standardcovariant formulations.
Instead, Sec. V uses the spinor form of an active Lore
transformation to characterize change of state along w
lines. This generalizes the spinor treatment of classical r
body mechanics in GA1, so it articulates smoothly with no
relativistic theory. It has the dual advantages of simplifyi
solutions of the classical Lorentz force equation while ge
eralizing it to a classical model of an electron with spin th
is shown to be a classical limit of the Dirac equation in S
VIII.

Section VI shows how STA simplifies electromagne
field theory, including reduction of Maxwell’s equations to
single invertible field equation. It is most notable that th
simplification comes from recognizing that the famo
‘‘Dirac operator’’ is just the STA derivative with respect to
spacetime point, so it is as significant for Maxwell’s equati
as for Dirac’s equation.

Section VII reformulates Dirac’s famous equation for t
electron in terms of the real STA, thereby showing that co
691p/ © 2003 American Association of Physics Teachers
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plex numbers are superfluous in relativistic quantum the
STA reveals geometric structure in the Dirac wave funct
that has long gone unrecognized in the standard ma
theory. That structure is explicated and analyzed at lengt
ascertain implications for the interpretation of quantu
theory.

Section VIII discusses alternatives to the Copenhagen
terpretation of quantum mechanics that are motivated
geometric analysis of the Dirac theory. The questions rai
by this analysis may be more important than the conclusio
My own view is that the Copenhagen interpretation can
account for the structure of the Dirac theory, but a fu
satisfactory alternative remains to be found.

Finally, Sec. IX outlines how STA can streamline th
physics curriculum to give the powerful ideas of relativis
field theory and quantum mechanics roles that are comm
surate with their importance.

II. SPACETIME ALGEBRA

The standard model for spacetime is a real 4DMinkowski
vector spaceM4 called Minkowski spacetimeor ~by sup-
pressing the distinction between the model and the phys
reality it is supposed to represent! simply spacetime. With
vector addition and scalar multiplication taken for grante
we impose the geometry of spacetime onM4 by defining the
geometric product uv for vectorsu, v, w by the following
rules:

~uv !w5u~vw!, associative ~1!

u~v1w!5uv1uw, left distributive ~2!

~v1w!u5vu1wu, right distributive ~3!

v25evuvu2, contraction ~4!

whereev is thesignatureof v and themagnitudeuvu is a real
positive scalar. As usual in spacetime physics, we say thv
is timelike if its signature is positive ifev51, spacelikeif
ev521, or lightlike if uvu50, which is equivalent to null
signature (ev50).

It should be noted that these are the same rules defi
the ‘‘classical geometric algebra’’ in GA1, except for th
signature in the contraction rule~4! that allows vectors to
have negative or null square.~This modification was the
great innovation of Minkowski that we honor by invokin
his name!!

Spacetime vectors are denoted by italic letters to dis
guish them from the 3D vectors denoted by boldface let
in GA1. This convention is especially helpful when we fo
mulate relations between the two kinds of vector in Sec.

By successive multiplications and additions, the vectors
M4 generate a geometric algebraG45G(M4) calledspace-
time algebra~STA!. As usual in a geometric algebra, th
elements ofG4 are calledmultivectors. The above rules de
fining the geometric product are the basic grammar rule
STA.

In reviewing its manifold applications to physics, one c
see that STA derives astounding power and versatility fro

d the simplicity of its grammar,
d the geometric meaning of multiplication,
d the waygeometry links the algebra to the physical worl.
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As we have seen before, the geometric productuv can be
decomposed into a symmetricinner product

u•v5 1
2~uv1vu!5v•u, ~5!

and an antisymmetricouter product

u∧v5 1
2~uv2vu!52v∧u, ~6!

so that

uv5u•v1u∧v. ~7!

To facilitate coordinate-free manipulations in STA, it
useful to generalize the inner and outer products of vector
arbitrary multivectors. We define the outer product alo
with the notion ofk-vectoriteratively as follows: Scalars ar
defined to be 0-vectors, vectors are 1-vectors, and bivec
such asu∧v, are 2-vectors. For a givenk-vectorK, the in-
tegerk is called thestep~or grade! of K. For k>1, the outer
product of a vectorv with a k-vector K is a (k11)-vector
defined in terms of the geometric product by

v∧K5 1
2~vK1~21!kKv !5~21!kK∧v. ~8!

The corresponding inner product is defined by

v•k5 1
2~vK1~21!k11Kv !5~21!k11K•v, ~9!

and it can be proved that the result is a (k21)-vector. Add-
ing ~8! and ~9! we obtain

vK5v•K1v∧K, ~10!

which obviously generalizes~7!. The important thing abou
~10! is that it decomposesvK into (k21)-vector and (k
11)-vector parts.

A basis for STA can be generated by astandard frame
$gm ;0,1,2,3% of orthonormal vectors, with timelike vectorg0

in the forward light cone and componentsgmn of the usual
metric tensor given by

gmn5gm•gn5 1
2~gmgn1ggngm!. ~11!

~We usec51 so spacelike and timelike intervals are me
sured in the same unit.! The gm determine a uniqueright-
handed unit pseudoscalar

i 5g0g1g2g35g0∧g1∧g2∧g3 . ~12!

It follows that

i 2521 and gmi 52 igm . ~13!

Thus, i is a geometricalA21, but it anticommutes with all
spacetime vectors. By forming all distinct products of thegm

we obtain a complete basis for the STAG4 consisting of the
24516 linearly independent elements

1, gm , gm∧ggn , gmi , i . ~14!

To facilitate algebraic manipulations it is convenient
introduce thereciprocal frame$gm% defined by the equation

gm5gmngn or gm•gn5dm
n ~15!

~summation convention in force!!. Now, any multivector can
be expressed as a linear combination of the basis elem
~14!. For example, a bivectorF has the expansion

F5 1
2F

mngm∧gn , ~16!

with its ‘‘scalar components’’Fmn given by

Fmn5gm
•F•gn5gn

•~gm
•F !5~gn∧gm!•F. ~17!
692David Hestenes
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Note that the two inner products in the second form can
performed in either order, so a parenthesis is not needed

The entire spacetime algebra is obtained by taking lin
combinations of basisk-vectors in~14!.

A generic elementM of the STA, called amultivector, can
therefore be written in theexpanded form

M5a1a1F1bi1b i , ~18!

wherea and b are scalars,a and b are vectors, andF is a
bivector. This is a decomposition ofM into its k-vector parts,
with k50,1,2,3,4, as is expressed more explicitly by putti
~18! in the form

M5 (
k50

4

M ~k! , ~19!

where the subscript~k! means ‘‘k-vector part.’’ Of course,
M (0)5a, M (1)5a, M (2)5F, M (3)5bi, M (4)5b i . Alterna-
tive notations includeMS5^M &5M (0) for the scalar part of
a multivector. The scalar part of a product behaves much
the ‘‘trace’’ in matrix algebra. For example, we have the ve
useful theorem̂ MN&5^NM& for arbitraryM andN.

Computations are also facilitated by the operation ofre-
version, the name indicating reversal in the order of geom
ric products. ForM in the expanded form~18! the reverse M̃
can be defined by

M̃5a1a2F2bi1b i . ~20!

Note, in particular, the effect of reversion on the vario
k-vector parts:

ã5a, ã5a, F̃52F, ĩ 5 i . ~21!

It is not difficult to prove that

~MN! 5ÑM̃ , ~22!

for arbitrary M and N. For example, in~20! we have (bi)
5 ib52bi, where the last sign follows from~13!.

A positive definite magnitudeuMu for any multivectorM
can now be defined by

uM u25u^MM̃ &u. ~23!

Any multivectorM can be decomposed into the sum of
evenpart M 1 and anodd part M 2 defined in terms of the
expanded form~18! by

M 15a1F1b i , ~24!

M 25a1bi, ~25!

or, equivalently, by

M 65 1
2~M7 iM i !. ~26!

The set$M 1% of all even multivectors forms an importan
subalgebra of STA called theeven subalgebra.

If c is an even multivector, thencc̃ is also even, but its

bivector part must vanish according to~20!, since (cc̃)

5cc̃. Therefore, cc̃ has only scalar and pseudosca
parts, as expressed by writing

cc̃5reib5r~cosb1 i sinb!, ~27!

wherer>0 andb are scalars. IfrÞ0, we can derive fromc

an even multivectorR5c(cc̃)21/2 satisfying
693 Am. J. Phys., Vol. 71, No. 7, July 2003
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Thenc can be put in thecanonical form

c5~reib!1/2R. ~29!

We shall see that thisinvariant decompositionhas a funda-
mental physical significance in the Dirac theory.

An important special case of the decomposition~29! is its
application to a bivectorF, for which it is convenient to
replaceb/2 by b1p/2 and write f 5r1/2Ri. Thus, for any
bivector F that is not null (F2Þ0) we have the invarian
canonical form

F5 f eib5 f ~cosb1 i sinb!, ~30!

where f 252 f f̃ 5u f u2, so f is said to be atimelike bivector
with magnitudeu f u. Similarly, the dualif is said to be a
spacelike bivector, since (i f )252u f u2. Thus the right side
of ~30! is the unique decomposition ofF into a sum of mu-
tually commuting timelike and spacelike parts.

WhenF250, F is said to be alightlike bivector, and it can
still be written in the form~30! with

f 5k∧e5ke, ~31!

wherek is a null vector ande is a spacelike vector orthogona
to k. In this case, the decomposition is not unique, and
exponential factor can always be absorbed in the defini
of f.

To extend spacetime algebra into a completespacetime
calculus, suitable definitions for derivatives and integrals a
required. Though that can be done in a complet
coordinate-free way,3 it is more expedient here to explo
one’s prior knowledge about coordinates.

For each spacetime pointx a standard frame$gm% deter-
mines a set of ‘‘rectangular coordinates’’$xm% given by

xm5gm
•x and x5xmgm . ~32!

In terms of these coordinates the derivative with respect
spacetime pointx is an operator¹[]x that can be defined by

¹5gm]m , ~33!

where]m is given by

]m5
]

]xm 5gm•¹. ~34!

The square of¹ is the usual d’Alembertian

¹25gmn]m]n where gmn5gm
•gn. ~35!

The matrix representation of thevector derivative¹ can be
recognized as the so-called ‘‘Dirac operator,’’ originally di
covered by Dirac by seeking a ‘‘square root’’ of th
d’Alembertian~35! in order to find a first order ‘‘relativisti-
cally invariant’’ wave equation for the electron. In STA
however, where thegm are vectors rather than matrices, it
clear that¹ is a vector operator; indeed, it provides an a
propriate definition for the derivative with respect to a
spacetime vector variable.

Contrary to the impression given by conventional accou
of relativistic quantum theory, the operator¹ is not specially
adapted to spin-1

2 wave equations. It is equally apt for elec
tromagnetic field equations, as seen in Sec. VI.

This is a good point to describe the relation of STA to t
standard Dirac algebra. TheDirac matricesare representa
tions of the vectorsgm in STA by 434 matrices, and to
693David Hestenes
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emphasize this correspondence the vectors here are de
with the same symbolsgm ordinarily used to represent th
Dirac matrices. In view of what we know about STA, th
correspondence reveals the physical significance of the D
matrices, appearing so mysteriously in relativistic quant
mechanics:The Dirac matrices are no more and no less th
matrix representations of an orthonormal frame of spaceti
vectorsand thereby they characterize spacetime geome
But how can this be? Dirac never said any such thing! A
physicists today regard the set$gm% as a single vector with
matrices for components. Nevertheless, their practice sh
that the ‘‘frame interpretation’’ is the correct one, though w
shall see later that the ‘‘component interpretation’’ is actua
equivalent to it in certain circumstances. The correct in
pretation was actually inherent in Dirac’s argument to der
the matrices in the first place: First he put thegm in one-to-
one correspondence with orthogonal directions in space
by indexing them. Second, he related thegm to the metric
tensor by imposing the ‘‘peculiar condition’’~11! on the ma-
trices for formal algebraic reasons. But we see in~11! that
this condition has a clear geometric meaning in STA as
inner product of vectors in the frame. Finally, Dirac intr
duced associativity automatically by employing matrix alg
bra, without realizing that it has a geometric meaning in t
context. If indeed the physical significance of the Dirac m
trices derives entirely from their interpretation as a frame
vectors, then their specific matrix properties must be irr
evant to physics. That is proved in Sec. VII by dispens
with matrices altogether and formulating the Dirac theo
entirely in terms of STA.

In relativistic quantum mechanics one often encounters
notationg•p5gmpm , whereg is regarded formally as a vec
tor with matricesgm as components andp is an ordinary
vector. Likewise, the Dirac operator is denoted byg•]
5gm]m without recognizing it as a generic vector derivati
with components]m . The notationg•p has the same defi
ciencies as the notations"a criticized in GA1. In STA it is
inconsistent with identification of$gm% as an orthonorma
frame.

III. PROPER PHYSICS AND SPACETIME SPLITS

STA makes it possible to formulate and analyze conv
tional relativistic physics in invariant form without referenc
to a coordinate system. To emphasize the distinctive feat
of this formulation, I like to call it ‘proper physics.’ From the
proper point of view, the term ‘‘relativistic mechanics’’ is
misnomer, because the theory is less rather than more
tivistic than the so-called ‘‘nonrelativistic’’ mechanics o
Newton. The equations describing a particle in Newton
mechanics depend on the motion of the particlerelative to
some observer; in Einstein’s mechanics they do not. Eins
originally formulated his mechanics in terms of ‘‘relativ
variables’’ ~such as the position and velocity of a partic
relative to a given observer!, but he eliminated dependenc
of the equations on the observer’s motion by the ‘‘relativ
postulate,’’ which requires that the form of the equations
invariant under a change of relative variables from those
one inertial observer to those of another. Despite the tain
misnomer, the terms ‘‘relativistic’’ and ‘‘nonrelativistic’’ are
so ensconced in the literature that it is awkward to av
them.
694 Am. J. Phys., Vol. 71, No. 7, July 2003
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Minkowski’s covariant formulation of Einstein’s theor
replaced the explicit use of variables relative to inertial o
servers by components relative to an arbitrary coordin
system for spacetime. The ‘‘proper formulation’’ given here
takes another step to move from covariance to invariance
relating particle motion directly to Minkowski’s ‘‘absolute
spacetime’’ without reference to any coordinate syste
Minkowski had the great idea of interpreting Einstein
theory of relativity as a prescription for fusing space a
time into a single entity ‘‘spacetime.’’4 The straightforward
algebraic characterization of ‘‘Minkowski spacetime’’ b
spacetime algebra makes a proper formulation of phy
possible.

The history or world line of a material particle is a time
like curvex5x(t) in spacetime. Particle conservation is e
pressed by assuming that the functionx(t) is single-valued
and continuous except possibly at discrete points where
ticle creation and/or annihilation occurs. Only differentiab
particle histories are considered here, andt always refers to
theproper time~arc length! of a particle history. After a unit
of length ~say centimeters! has been chosen, the physic
significance of the spacetime metric is fixed by the assum
tion that the proper time of a material particle is equal to
time ~in centimeters! recorded on a~perhaps hypothetical!
clock traveling with the particle.

The unit tangentv5v(t)5dx/dt[ ẋ of a particle history
will be called the(proper) velocityof the particle. By the
definition of proper time, we havedt5udxu5u(dx)2u1/2, and

v251. ~36!

The term ‘‘proper velocity’’ is preferable to the alternativ
terms ‘‘world velocity,’’ ‘‘invariant velocity,’’ and ‘‘four ve-
locity.’’ The adjective ‘‘proper’’ is used to emphasize that th
velocity v describes an intrinsic property of the particle, i
dependent of any observer or coordinate system. The ad
tive ‘‘absolute’’ would do the same, but it may not be fre
from undesirable connotations. Moreover, the word ‘‘prope
is shorter and has already been used in a similar sense i
terms ‘‘proper mass’’ and ‘‘proper time.’’ The adjective ‘‘in
variant’’ is inappropriate, because no coordinates or trans
mation group has been introduced. The velocity should
be called a ‘‘4-vector,’’ because that term means pseu
scalar in STA; besides, there is no need to refer to four co
ponents of the velocity.

Though STA enables us to describe physical processe
proper equations, observations and measurements are
expressed in terms of variables tied to a particular iner
system, so we need to know how to reformulate proper eq
tions in terms of those variables. STA provides a very sim
way to do that called aspacetime split.

In STA a given inertial system is completely characteriz
by a single future-pointing, timelike unit vector. Refer to th
inertial system characterized by the vectorg0 as the
g0-system. The vectorg0 is tangent to the world line of an
observer at rest in theg0-system, so it is convenient to us
g0 as a name for the observer. The observerg0 is repre-
sented algebraically in STA in the same way as any ot
physical system, and the spacetime split amounts to no m
than comparing the motion of a given system~the observer!
to other physical systems. Indeed, the world line of an in
tial observer is the straight world line of a free particle,
inertial frames can be characterized by free particles with
the anthropomorphic reference to observers.
694David Hestenes
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An inertial observerg0 determines a unique mapping o
spacetime into the even subalgebra of STA. For each sp
time point ~or event! x the mapping is specified by

xg05t1x, ~37!

where

t5x•g0 ~38!

and

x5x∧g0 . ~39!

This defines theg0-split of spacetime. Equation~38! assigns
a unique timet to every eventx; indeed,~38! is the equation
for a one-parameter family of spacelike hyperplanes w
normalg0 .

Equation~39! assigns to each eventx a uniqueposition
vector x in the g0 system. Thus, to each eventx the single
equation ~37! assigns a unique time and position in t
g0-system. Note that the reverse of~37! is

g0x5g0•x1g0∧x5t2x, ~40!

so, sinceg0
251,

x25~xg0!~g0x!5~ t2x!~ t1x!5t22x2. ~41!

The form and value of this equation are independent of
chosen observer; thus we have proved that the expres
t22x2 is Lorentz invariantwithout even mentioning a Lor
entz transformation. Thus, the term ‘‘Lorentz invariant’’ ca
be construed as meaning ‘‘independent of a chosen sp
time split.’’ In contrast to~41!, Eq. ~37! is not Lorentz in-
variant; indeed, for a different observerg08 we get the split

xg085t81x8. ~42!

Mostly we shall work with manifestly Lorentz invarian
equations, which are independent of even an indirect re
ence to an inertial system.

The set of all position vectors~39! is the three-
dimensionalposition space of the observerg0 , which we
designate byP35P3(g0)5$x5x∧g0%. Note thatP3 con-
sists of all bivectors in STA withg0 as a common factor. In
agreement with common parlance, we refer to the elem
of P3 as vectors. Thus, we have two kinds of vectors, th
in M4 and those inP3. To distinguish between them, w
refer to elements ofM4 asproper vectorsand to elements o
P3 as relative vectors~relative tog0 , of course!!. To keep
the discussion clear, relative vectors are designated in b
face, while proper vectors are not.

By the geometric product and sum, the vectors inP3 gen-
erate the entire even subalgebra of STA as the geom
algebraG35G(P3) employed for classical physics in GA1
This is made obvious by constructing a basis. Correspond
to a standard basis$gm% for M4, we have a standard bas
$sk ;k51,2,3% for P3, where

sk5gk∧g05gkg0 . ~43!

These generate a basis for the relative bivectors:

si∧sj5sisj5 i sk5g jg i , ~44!

where the allowed values of the indices$i, j, k% are cyclic
permutations of 1, 2, 3, and the wedge is the outer produc
relative vectors@not to be confused with the outer product
proper vectors as in~43!#. The right sides of~43! and ~44!
695 Am. J. Phys., Vol. 71, No. 7, July 2003
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show how the bivectors for spacetime are split into vect
and bivectors forP3. Comparison with~14! shows that the
sk generate the entire even subalgebra, which can there
be identified withG35G(P3). Remarkably, the right-hande
pseudoscalar forP3 is identical to that forM4, that is,

s1s2s35 i 5g0g1g2g3 . ~45!

To be consistent with the operation ofreversiondefined in
GA1 for the algebraG3 we require

sk
†5sk and ~sisj !

†5sjsi . ~46!

This can be extended to the entire STA by defining

M†[g0M̃g0 ~47!

for an arbitrary multivectorM. The explicit appearance of th
timelike vectorg0 here shows the dependence ofM† on a
particular spacetime split. The definitions in this paragra
guarantee smooth articulation of proper physics with phy
cal descriptions relative to inertial frames.

Now let us rapidly survey the spacetime splits of som
important physical quantities. Letx5x(t) be the history of a
particle with proper timet and proper velocityv5dx/dt.
The spacetime split ofv is obtained by differentiating~37!;
whence

vg05v0~11v!, ~48!

where

v05v•g05
dt

dt
5~12v2!21/2 ~49!

is the ‘‘time dilation’’ factor, and

v5
dx

dt
5

dt

dt

dx

dt
5

u∧g0

v•g0
~50!

is the relative velocityin the g0-system. The last equality in
~49! was obtained from

15v25~vg0!~g0v !5v0~11v!v0~12v!5v0
2~12v2!.

~51!

Let p be theproper momentum~i.e., energy-momentum
vector! of a particle. The spacetime split ofp into energy~or
relative mass! E and relative momentump is given by

pg05E1p, ~52!

where

E5p•g0 and p5p∧g0 . ~53!

Of course

p25~E1p!~E2p!5E22p25m2, ~54!

wherem is theproper massof the particle.
The proper angular momentum of a particle relates

proper momentump to its location at a spacetime pointx.
Performing the splits as before, we find

px5~E1p!~ t2x!5Et1pt2Ex2px. ~55!

The scalar part of this gives the familiar split

p•x5Et2p"x, ~56!

so often employed in the phase of a wave function. T
bivector part gives us the proper angular momentum

p∧x5pt2Ex1 i ~x3p!, ~57!
695David Hestenes
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where, as explained in GA1,x3p is the standard vecto
cross product.

An electromagnetic field is a bivector-valued functionF
5F(x) on spacetime. An observerg0 splits it into an electric
~relative vector! part E and a magnetic~relative bivector!
part iB; thus

F5E1 iB, ~58!

where

E5~F•g0!g05 1
2~F1F†! ~59!

is the part ofF that anticommutes withg0 , and

iB5~F∧g0!g05 1
2~F2F†! ~60!

is the part that commutes. Also, in accordance with~47!,
F†5E2 iB. Note that the split of the electromagnetic field
~58! corresponds exactly to the split of the angular mom
tum ~57! into relative vector and bivector parts.

A different kind of spacetime split is most appropriate f
Lorentz transformations, as explained in the next section

IV. LORENTZ TRANSFORMATIONS

Orthogonal transformations on spacetime are calledLor-
entz transformations. With due attention to the indefinite sig
nature of spacetime~11!, geometric algebra enables us t
treat Lorentz transformations by the same coordinate-f
methods used in GA1 for 3D rotations and reflections. Again,
the method has the great advantage of reducing the com
sition of transformations to simple versor multiplication. T
method is developed here in complete generality to incl
space and time inversion, but the emphasis is on rotors
rotations as a foundation for classical spinor mechanics
the next section and subsequent connection to relativ
quantum mechanics in Sec. VIII.

The main theorem is that any Lorentz transformation o
spacetime vectora can be expressed in thecanonical form

LI a5eLLaL21, ~61!

where eL51 if versor L is an even multivector andeL

521 if L is odd. The condition

LL2151 ~62!

allows L to have any nonzero magnitude, but normalizat
to uLu51 is often convenient. The Lorentz transformationLI
is said to beproper if eL51, andimproper if eL521. It is
said to beorthochronousif, for any timelike vectorv,

v•LI ~v !.0. ~63!

A proper, orthochronousLorentz transformation is called
Lorentz rotation~or a restrictedLorentz transformation!. For
a Lorentz rotationRI the canonical form can be written

RI ~a!5RaR̃, ~64!

where the even multivectorR is called arotor and is normal-
ized by the condition

RR̃51. ~65!

The rotors form a multiplicative group called therotor
group, which is a double-valued representation of the L
entz rotation group~also called the restricted Lorentz group!.
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As in the 3D case, the canonical form~61! simplifies the
whole treatment of Lorentz transformations. In particular,
main advantage is that it reduces the composition law
Lorentz transformations,

LI 2LI 15LI 3 , ~66!

to the versor product

L2L15L3 . ~67!

It follows from the rotor form~64!, that, for any vectorsa
andb,

~RI a!~RI b!5RabR̃5RI ~ab!. ~68!

Thus, Lorentz rotations preserve the geometric product. T
implies that the Lorentz rotation~64! can be extended to an
multivectorM as

RI M5RMR̃. ~69!

The most elementary kind of Lorentz transformation is
reflection nI by a ~non-null! vectorn, according to

nI ~a!52nan21. ~70!

This is a reflection with respect to a hyperplane with norm
n. Even ifn is normalized tounu51, if it is spacelike we need
n2152n in ~70! to account for its negative signature.
reflection

vI ~a!52vav ~71!

with respect to a timelike vectorv5v21 is called atime
reflection. Let n1 , n2 , n3 be spacelike vectors that compo
the trivector

n3n2n15 iv. ~72!

A space inversionvI s can then be defined as the composite
reflections with respect to these three vectors, so it can
written

vI s~a!5n3n2n1an1n2n35 ivav i 5vav. ~73!

Note the difference in sign between the right sides of~71!
and ~73!. The composite of the time reflection~71! with the
space inversion~73! is thespacetime inversion

vI st~a!5vI sv~a!5 iai 2152a, ~74!

which is represented by the pseudoscalari. Note that space-
time inversion is proper but not orthochronous, so it is no
rotation despite the fact thati is even.

Two basic types of Lorentz rotation can be obtained fro
the product of two reflections, namelytimelike rotations~or
boosts! andspacelike rotations. For aboost

LI ~a!5LaL̃, ~75!

the rotorL can be factored into a product

L5v2v1 ~76!

of two unit timelike vectorsv1 andv2 . The boost is a rota-
tion in the timelike plane containingv1 andv2 . The factor-
ization ~76! is not unique. Indeed, for a givenL any timelike
vector in the plane can be chosen asv1 , andv2 can then be
computed from~76!. Similarly, for aspacelike rotation

UI ~a!5UaŨ, ~77!

the rotorU can be factored into a product
696David Hestenes
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U5n2n1 ~78!

of two unit spacelike vectors in thespacelike planeof the
rotation. Note that the product, sayn2v1 , of a spacelike vec-
tor with a timelike vector is not a rotor, because the cor
sponding Lorentz transformation is not orthochronous. Li
wise, the pseudoscalari is not a rotor, even though it can b
expressed as the product of two bivectors, for it does
satisfy the rotor conditionRR̃51.

The Lorentz rotation~64! can be applied to a standar
frame$gm%, transforming it into a new frame of vectors$em%
given by

em5RgmR̃. ~79!

A spacetime rotor splitof this Lorentz rotation is accom
plished by a split of the rotorR into the product

R5LU, ~80!

whereU†5g0Ũg05Ũ or

Ug0Ũ5g0 ~81!

andL†5g0L̃g05L or

g0L̃5Lg0 . ~82!

This determines a split of~79! into a sequence of two Lor
entz rotations determined byU andL, respectively; thus,

em5RgmR̃5L~UgmŨ !L̃. ~83!

In particular, by~81! and ~82!,

e05Rg0R̃5Lg0L̃5L2g0 . ~84!

Hence,

L25e0g0 . ~85!

This determinesL uniquely in terms of the timelike vector
e0 andg0 , which, in turn, uniquely determines the split~80!

of R, sinceU can be computed fromU5L̃R.
It is essential to note that the ‘‘spacetime rotor split’’~80!

is quite different from the ‘‘spacetime split’’ introduced i
the preceding section, for example in~58!. The terminology
is motivated by the expression of rotorsU andL in terms of
relative vectors, to which we now turn.

Equation~81! for variableU defines the ‘‘little group’’ of
Lorentz rotations that leaveg0 invariant. This is the group o
‘‘ spatial rotations’’ in the g0-system. Each such rotatio
takes a frame of proper vectorsgk ~for k51,2,3) into a new

frame of vectorsUgkŨ in the g0-system. Multiplication by
g0 expresses this as a rotation of relative vectorssk5gkg0

into relative vectorsek ; thus, we get

ek5UskU
†5UskŨ, ~86!

in exact agreement with the equation for 3D rotations
GA1.

Equation~84! can be solved forL, in particular, for the
case wheree05v is the proper velocity of a particle of mas
m. Then~48! enables us to write~85! in the alternative forms

L25vg05
pg0

m
5

E1p

m
. ~87!

It is easily verified that this has the solution
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L5~vg0!1/25
11vg0

@2~11v•g0!#1/2

5
m1pg0

@2m~m1p•g0!#1/25
m1E1p

@2m~m1E!#1/2.

~88!

This displaysL as a boost of a particle from rest in th
g0-system to a relative momentump.

Generalizing the treatment of rotating frames in GA1, t
Lorentz rotation of a frame~79! can be related to the stan
dard matrix form by writing

em5RgmR̃5am
n gn . ~89!

As in GA1, this can be solved for the matrix elements

am
n 5em•gn5~gnRgmR̃!~0! . ~90!

Or it can be solved for the rotor,5 with the result

R56~AÃ!21/2A, ~91!

where

A[emgm5am
n gngm. ~92!

Equation~89! can be used to describe a change of coordin
frames.

In the tensorial approach to Lorentz rotations, the coor
natesxm5gm

•x of a pointx transform according to

xm→x8m5an
mxn, with an

mal
n5dl

m ~93!

as the orthogonality condition on the transformation. T
can be interpreted either as apassiveor an active transfor-
mation. In the passive case, it is accompanied by a~usually
implicit! transformation of coordinate frame:

gm→gm8 5am
l gl , ~94!

so that each spacetime pointx5xmgm5x8mgm8 is left un-
changed.

In the active case, each spacetime pointx5xmgm is
mapped to a new spacetime point

x85x8mgm5xmgm8 5RxR̃, ~95!

where the last form was obtained by identifyinggm8 with em

in ~89!. This shows that STA enables us to dispense w
coordinates entirely in the treatment of Lorentz transform
tions. Consequently, we deal with active Lorentz transform
tions only in the coordinate-free form~64! or ~61!, and we
dispense with passive transformations entirely.

If all this seems rather obvious, just turn to any textbo
on relativistic quantum theory,6 where thegm are matrices
and~89! is introduced as a change in matrix representation
prove relativistic invariance of the ‘‘Dirac operator’’gm]m

5g8m]m8 . In STA this is recognized as a passive Loren
transformation, so it is superfluous. Consequently, this as
of Lorentz invariance need not be mentioned in our treatm
of the Dirac equation in Sec. VII.

V. SPINOR PARTICLE MECHANICS

Now we are prepared to exploit the unique advantage
STA with a spinor formulation of relativistic~or proper! me-
chanics. This approach has three major benefits. First, it
ticulates perfectly with the rotor formulation of nonrelativi
697David Hestenes
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tic rigid body mechanics in GA1. Second, it articulat
perfectly with Dirac’s quantum theory of the electron, pr
viding it with an informative and useful classical limit tha
includes a natural classical explanation for the gyromagn
ratio g52. Indeed, the spinor used here for particle mech
ics is an obvious special case of the real Dirac spinor in
duced in Sec. VII. Finally, the spinor formulation simplifie
the solution of problems in relativistic mechanics and au
matically generalizes particle mechanics to include spin p
cession.

The rotor equation for a frame

em5RgmR̃ ~96!

can be used to describe the relativistic kinematics of a r
body ~with negligible dimensions! traversing a world linex
5x(t) with proper timet, provided we identifye0 with the
proper velocityv of the body, so that

dx

dt
5 ẋ5v5e05Rg0R̃. ~97!

Then $em5em(t); m50,1,2,3% is a comoving frametravers-
ing the world line along with the particle, and the rotorR
must also be a function of proper time, so that, at each t
t, Eq. ~96! describes a Lorentz rotation of some arbitrar
chosen fixed frame$gm% into the comoving frame$em

5em(t)%. Thus, we have a rotor-valued function of prop
time R5R(t) determining a one-parameter family of Lo

entz rotationsem(t)5R(t)gmR̃(t). The rotorR is a unimo-

dular spinor, as it satisfies the unimodular conditionRR̃
51.

The spacelike vectorsek5RgkR̃ ~for k51,2,3) can be
identified with the principal axes of the body. But the sam
equations can be used for modeling a particle with an int
sic angular momentum orspin, wheree3 is identified with
the spin directionŝ; so we write

ŝ5e35Rg3R̃. ~98!

Later we see that this corresponds exactly to the spin ve
in the Dirac theory where the magnitude of the spin has
constant valueusu5\/2.

The rotor equation of motion for R5R(t) has the form

Ṙ5 1
2VR, ~99!

whereV5V(t) is a bivector-valued function. The fact tha

V52ṘR̃52Ṽ is necessarily a bivector is easily proved

differentiating RR̃51. Differentiating ~96! and using~99!,
we see that the equations of motion for the comoving fra
have the form

ėm5V•em . ~100!

Clearly V can be interpreted as a generalizedrotational ve-
locity of the comoving frame.

The dynamics of the rigid body, that is, the effect of e
ternal forces and torques on the body, is completely cha
terized by specifyingV as a definite function of proper time
The single rotor equation~99! is equivalent to the set of fou
frame equations~100!. Besides the theoretical advantage
being closely related to the Dirac equation, as we shall se
has the practical advantage of being simpler and easie
solve than the set of frame equations~100!. The correspond-
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ing nonrelativistic rotor equation for a spinning body w
introduced in GA1. It should be noted that the nonrelativis
rotor equation describes only rotational motion, while
relativistic generalization~99! describes rotational and trans
lational motion together.

For a classical particle with massm and chargee in an
electromagnetic fieldF, the dynamics is specified by

V5
e

m
F. ~101!

So ~100! gives the particle equation of motion

mv̇5eF•v. ~102!

This may be recognized as the classical Lorentz force w
tensor componentsmv̇m5eFmnvn , but note that tensor
theory does not admit the more powerful rotor equation
motion ~99!.

As demonstrated in specific examples that follow, even
one is interested in the motion of a structureless point cha
the rotor equation~99! is easier to solve than the Loren
force equation~102!. However, if one wants to extend th
model to an electron with spin, the same solution autom
cally describes the electron’s spin precession. The resu
physically meaningful, too, for, as we see later, the class
model of an electron with proper rotational velocity~101!
proportional to the fieldF gives the same gyromagnetic rat
as the Dirac equation. Indeed, it is a well-defined class
limit of the Dirac equation, though Planck’s constant rema
in the magnitude of the spin. This role of the electromagne
field F as a rotational velocity is so simple and natural tha
deserves a name. I propose to dub the relation~101! the
Lorentz torque, since it is a straightforward generalization
the Lorentz force~102!. It is noteworthy that this idea, which
is so natural in STA, seems never to have occurred to ph
cists using tensor theory. This is one more example of
influence of mathematical language on physical theory.

A. Motion in constant electric and magnetic fields

If F is a uniform field on spacetime, thenV̇50 and~99!
has the solution

R5e~1/2!VtR0 , ~103!

whereR05R(0) specifies the initial conditions. When this
substituted into~103! we get the explicitt dependence of the
proper velocityv. The integration of~97! for the historyx(t)
is most simply accomplished in the general case of arbitr
non-null F by exploiting the invariant decompositio
F5 f eiw determined in ~30!. This separatesV into
mutually commuting partsV15(e/m) f cosw and V2

5(e/m) i f sinw, so

e~1/2!Vt5e~1/2!~V11V2!t5e~1/2!V1te~1/2!V2t. ~104!

It also determines an invariant decomposition of the init
velocity v(0) into a componentv1 in the f-plane and a com-
ponentv2 orthogonal to thef-plane; thus,

v~0!5 f 21~ f •v~0!!1 f 21~ f ∧v~0!!5v11v2 . ~105!

When this is substituted in~97! and ~104! is used, we get

dx

dt
5v5eV1tv11eV2tv2 . ~106!
698David Hestenes
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Note that this is an invariant decomposition of the moti
into ‘‘electriclike’’ and ‘‘magneticlike’’ components. It inte-
grates easily to give the history

x~t!2x~0!52~eV1t21!V1
21v112~eV2t21!V2

21v2 .
~107!

This general result, which applies for arbitrary initial cond
tions and arbitrary uniform electric and magnetic fields, h
such a simple form because it is expressed in terms of
variants. It looks far more complicated when subjected t
space-time split and expressed directly as a function
‘‘laboratory fields’’ in an inertial system. Details are given
my mechanics book.7

B. Electron in the field of a plane wave

As a second example with important applications, we
tegrate the rotor equation for a ‘‘classical test charge’’ in
electromagnetic plane wave.8 This is useful for describing
the interaction of electrons with lasers. As explained at
end of Sec. VI in GA1, any plane wave fieldF5F(x) with
proper propagation vectork can be written in the canonica
form

F5 f z, ~108!

where f is a constant null bivector (f 250), and the
x-dependence ofF is exhibited explicitly by

z~k•x!5a1ei ~k•x!1a2e2 i ~k•x!, ~109!

with

a65r6e6 id6, ~110!

whered6 andr6>0 are scalars. It is crucial to note that th
‘‘imaginary’’ i here is the unit pseudoscalar, because it
dows these solutions with geometrical properties not p
sessed by conventional ‘‘complex solutions.’’ Indeed,
noted in GA1, the pseudoscalar property ofi implies that the
two terms on the right side of~109! describe right and left
circular polarizations. Thus, the orientation ofi determines
handedness of the solutions.

For the plane wave~108!, Maxwell’s equation reduces to
the algebraic condition,

k f50. ~111!

This impliesk250 as well asf 250. To integrate the rotor
equation of motion

Ṙ5
e

2m
FR, ~112!

it is necessary to expressF as a function oft. This can be
done by using special properties ofF to find constants of
motion. Multiplying ~112! by k and using~111! we find im-
mediately thatkR is a constant of the motion. So, with th
initial condition R(0)51, we obtain k5kR5Rk5kR̃,
whence

RkR̃5k. ~113!

Thus, the one-parameter family of Lorentz rotations rep
sented byR5R(t) lies in the little group of the lightlike
vectork. Multiplying ~113! by ~96!, we find the constants o
motion k•em5k•gm . This includes the constant

v5k•v, ~114!
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which can be interpreted as the frequency of the plane w
‘‘seen by the particle.’’ Sincev5dx/dt, we can integrate
~114! immediately to get

k•~x~t!2x~0!!5vt. ~115!

Inserting this into~109! and absorbingk•x(0) in the phase
factor, we getz(k•x)5z(vt), expressing the desiredt de-
pendence ofF. Equation ~112! can now be integrated di
rectly, with the result

R5expS e f z1

2m D511
e

2m
f z1 , ~116!

where

z15
2

v
sinS vt

2 D @a1eivt/21a2e2 ivt/2#. ~117!

This gives the velocityv and, by integrating~97!, the com-
plete particle history. Details are given elsewhere.8 It is of
practical interest to know that this solution is equivalent
the ‘‘Volkov solution’’ of the Dirac equation for an electro
in a plane wave field.9 In this case, the quantum mechanic
solution is equivalent to its classical limit. The solution h
practical applications to the interaction of electrons with
ser fields.10

The problem of motion in a Coulomb field has be
solved by the same spinor method,11 but no other exact so
lutions of the rotor equation~99! with Lorentz torque have
been published.

C. Spin precession

We have established that specification of kinematics by
rotor equation~99! and dynamics byV5(e/m)F is a geo-
metrically perspicuous and analytically efficient means
characterizing the motion of a classical charged particle,
noted that it automatically provides us with a classical mo
of spin precession. Now let us take a more general appro
to modeling and analyzing spin precession. Any dynamics
spin precession can be characterized by specifying a fu
tional form for V. That includes gravitational precession12

and electron spin precession in the Dirac theory. To facilit
the analysis for any given dynamical model, we first ca
the analysis as far as possible for arbitraryV. Then we give
a specific application to measurement of theg-factor for a
Dirac particle.

The rotor equation of motion~99! determines both trans
lational and rotational motions of the comoving frame~96!,
whatever the frame models physically. It is of interest
separate translational and rotational modes, though they
generally coupled. This can be done by a spacetime spli
the particle velocityv or by the reference vectorg0 . We
consider both ways and how they are related.

D. Larmor and Thomas precession

To split the rotational velocityV by the velocityv, we
write

V5Vv25~V•v !v1~V∧v !v. ~118!

This produces the split

V5V11V2 , ~119!

where
699David Hestenes
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V15 1
2~V1vṼv !5~V•v !v5 v̇v ~120!

and

V25 1
2~V2vṼv !5~V∧v !v. ~121!

Note thatV•v5 v̇ was used in~120! to expressV1 entirely
in terms of the proper accelerationv̇ and velocityv. This
split has exactly the same form as the split~58! of the elec-
tromagnetic bivector into electric and magnetic parts co
sponding here toV1 andV2 , respectively. However, it is a
split with respect to the instantaneous ‘‘rest frame’’ of t
particle rather than a fixed inertial frame. In the rest fra
the relative velocity of the particle itself vanishes, of cour
so the particle’s acceleration is entirely determined by
‘‘electriclike’’ part V1 , as ~120! shows explicitly. The
‘‘magneticlike’’ part V2 is completely independent of th
particle motion; it is theLarmor precession~frequency! of
the spin for a particle with a magnetic moment, so let us re
to it as the Larmor precession in the general case.

Unfortunately,~119! does not completely decouple prece
sion from translation becauseV1 contributes to both. Also
we need a way to compare precessions at different point
the particle history. These difficulties can be resolved
adopting theg0-split

R5LU, ~122!

exactly as defined by~80! and subsequent equations. At e
ery timet, this split determines a ‘‘deboost’’ of relative vec
tors eke05Rgkg0R̃5RskR̃ (k51,2,3) into relative vectors

ek5L̃~eke0!L5UskŨ ~123!

in the fixed reference system ofg0 . The particle is brought
to rest, so to speak, so we can watch it precess~or spin! in
one place. The precession is described by an equation o
form

dU

dt
52

1

2
i vU, ~124!

so, as already shown in GA1, differentiation of~123! yields
the familiar equations for a rotating frame:

dek

dt
5v3ek . ~125!

The problem now is to expressv in terms of the givenV and
determine the relative contributions of the partsV1 and
V2 . To do that, we use the time dilation factorv05v•g0

5dt/dt to change the time variable in~124! and write

v52 i vv0 ~126!

so ~124! becomesU̇5 1
2vU. Then differentiation of~122!

and use of~99! gives

V52ṘR̃52L̇L̃1LvL̃. ~127!

Solving for v and using the split~119!, we get

v5L̃V2L1L̃ v̇vL22L̃L̇. ~128!

Differentiation of ~87! leads to

L̃~ v̇v !L5L̃L̇1L̇L̃, ~129!

while differentiation of~88! gives
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2L̇L̃5
v̇∧~v1g0!

11v•g0
. ~130!

These terms combine to give the well-knownThomas pre-
cessionfrequency

vT5~~2L̇L̃ !∧g0!g05L̇L̃2L̃L̇5
~ v̇∧v∧g0!g0

11v•g0

5 i S v0
2

11v0
D v3 v̇. ~131!

The last step here, expressing the proper vectors in term
relative vectors, was derived from the split

v̇v5 v̇∧v5v0
2~ v̇1 i ~v3 v̇!!. ~132!

Finally, writing

vL5L̃V2L ~133!

for the transformed Larmor precession, we have the des
result

v5vT1vL . ~134!

The Thomas term describes the effect of motion on the p
cession explicitly and completely.

E. The g-factor in spin precession

Now let us apply the rotor approach to a practical probl
of spin precession. In general, for a charged particle with
intrinsic magnetic moment in auniformelectromagnetic field
F5F11F2 ,

V5
e

mc S F11
g

2
F2D5

e

mcFF1
1

2
~g22!F2G , ~135!

where as defined by~121!, F2 is the magnetic field in the
instantaneous rest frame of the particle, andg is the usual
gyromagnetic ratio. This yields the classical equation of m
tion ~102! for the velocity, but by~98! and~100! the equation
of motion for the spin is

ṡ5
e

m FF1
1

2
~g22!F2G•s. ~136!

This is the well-known Bargmann–Michel–Telegdi~BMT!
equation, which is used in high precision measurements
the g-factor for the electron and muon.

To apply the BMT equation, it must be solved for the ra
of spin precession. The general solution for an arbitrary co
binationF5E1 iB of uniform electric and magnetic fields i
most easily found by replacing the BMT equation by t
rotor equation

Ṙ5
e

2m
FR1R

1

2
~g22!S e

2mD iB0 , ~137!

where

iB05R̃F2R5 1
2@R̃FR2~R̃FR!†# ~138!

is an ‘‘effective magnetic field’’ in the ‘‘rest system’’ of the
particle. With initial conditionsR(0)5L0 , U(0)51, for a
boost without spatial rotation, a solution of~137! is

R5expF e

2m
FtGL0 expF1

2
~g22!S e

2mD iB0tG , ~139!
700David Hestenes



ec

t
in
a

r

su
n

se

or
stic

m-
rd
ed
ell
nits
ns.

t of

the

on

.

n
ing

-

at,

ific

lled

tion
whereB0 is defined by

B05
1

2i
@ L̃0FL02~ L̃0FL0!†#

5B1
v00

2

11v00
v03~B3v0!1v00E3v0 , ~140!

wherev005v(0)•g05(12v2)21/2. The first factor in~139!
has the same effect on both the velocityv and the spins, so
the last factor gives directly the change in the relative dir
tions of the relative velocityv and the spins. This can be
measured experimentally.7

To conclude this section, some general remarks about
description of spin will be helpful in applications and
comparisons with more conventional approaches. We h
represented the spin by the proper vectors5usue3 defined by
~98! and alternatively by the relative vectors5usue3 , where
e3 is defined by~123!. For a particle with proper velocityv
5L2g0 , these two representations are related by

sv5LsL̃ ~141!

or, equivalently, by

s5L̃~sv !L5L̃sLg0 . ~142!

A straightforward spacetime split of the proper spin vectos,
like ~48! for the velocity vector, gives

sg05s01s, ~143!

where

s5s∧g0 ~144!

is the relative spin vector, ands•v50 implies that

v0s05v"s. ~145!

From ~141! and ~143!, the relation ofs to s is found to be

s5s1~v021!~s"v̇!v̇, ~146!

where v05v•g0 and v̂5v/uvu. Both vectorss and s are
sometimes used in the literature, and some confusion re
from a failure to recognize that they come from two differe
kinds of spacetime split. Of course either one can be u
since one determines the other, buts is usually simpler be-
cause its magnitude is constant. Note from~146! that they
are indistinguishable in the nonrelativistic approximation.

VI. ELECTROMAGNETIC FIELD THEORY

In STA an electromagnetic field is represented by
bivector-valued functionF5F(x) on spacetime. The field
produced by a source with proper current densityJ5J(x) is
determined byMaxwell’s equation

¹F5J. ~147!

As explained in Sec. II, the differential operator¹5]x in
STA is regarded as the~vector! derivative with respect to a
spacetime pointx.

Since¹ is a vector operator the expansion~10! applies, so
we can write

¹F5¹•F1¹∧F, ~148!

where¹•F is thedivergenceof F and¹∧F is thecurl. We
can accordingly separate~147! into vector and trivector
parts:
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¹•F5J, ~149!

¹∧F50. ~150!

This is the coordinate-free form for the two covariant tens
equations for the electromagnetic field in standard relativi
theory.

As a pedagogical point, it is worth noting that the deco
position ~148! into divergence and curl is a straightforwa
generalization of the 3D vectorial decomposition introduc
in GA1. Also note that, as standard SI units are not w
suited for spacetime physics, we choose a system of u
that minimizes the number of constants in basic equatio
The reader can infer the choice from the spacetime spli
Maxwell’s equation given below.

The reduction of the two Maxwell equations~149! and
~150! to a single ‘‘Maxwell’s equation’’~147! brings many
simplifications to electromagnetic theory. For example,
operator¹ has an inverse so~147! can be solved for

F5¹21J, ~151!

Of course, ¹21 is an integral operator that depends
boundary conditions onF for the region on which it is de-
fined, so~151! is an integral form of Maxwell’s equation
However, if the ‘‘current’’J5J(x) is the sole source ofF,
then ~151! provides the unique solution to~147!.

Next we survey other simplifications to the formulatio
and analysis of electromagnetic equations. Differentiat
~147! we obtain

¹2F5¹J5¹•J1¹∧J, ~152!

where¹2 is the d’Alembertian~35!. Separately equating sca
lar and bivector parts of~152!, we obtain thecharge conser-
vation law

¹•J50 ~153!

and an alternative equation for the E-M field

¹2F5¹∧J. ~154!

A. Electromagnetic potentials

A different field equation is obtained by using the fact th
under general conditions, any continuous bivector fieldF
5F(x) can be expressed as a derivative with the spec
form

F5¹~A1Bi !, ~155!

whereA5A(x) and B5B(x) are vector fields, soF has a
‘‘vector potential’’ A and a ‘‘trivector potential’’Bi. This is a
generalization of the well-known ‘‘Helmholtz theorem’’ in
vector analysis.13 Since ¹A5¹•A1¹∧A with a similar
equation for¹B, the bivector part of~155! can be written

F5¹∧A1~¹∧B!i , ~156!

while the scalar and pseudoscalar parts yield the so-ca
‘‘Lorenz condition’’

¹•A5¹•B50. ~157!

Inserting~155! into Maxwell’s equation~147! and separating
vector and trivector parts, we obtain the usual wave equa
for the vector potential

¹2A5J, ~158!

as well as
701David Hestenes
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¹2Bi50. ~159!

The last equation shows thatB is independent of the sourc
J, so it can be set to zero in~155!. However, in a theory with
magnetic charges, Maxwell’s equation takes the form

¹F5J1 iK , ~160!

whereK5K(x) is a vector field, the ‘‘magnetic current den
sity.’’ On substituting~155! into ~160! we obtain in place of
~159!

¹2Bi5 iK . ~161!

The pseudoscalari can be factored out to make~161! appear
symmetrical with~157!, but this symmetry between the role
of electric and magnetic currents is deceptive, because o
vectorial while the other is actually trivectorial.

The separation of the generalized Maxwell’s equat
~160! into parts with electric and magnetic sources can
achieved by again using~148! and again getting~149! for the
vector part but getting

¹∧F5 iK ~162!

for the trivector part. This equation can be made to lo
similar to ~149! by duality to put it in the form

¹•~Fi !5K. ~163!

Note that the dualFi of the bivectorF is also a bivector.
Hereafter we restrict our attention to the ‘‘physical case’’K
50.

B. Maxwell’s equation for material media

Sometimes the source currentJ can be decomposed into
conduction current JC and a magnetization current¹•M ,
where the generalizedmagnetization M5M (x) is a bivector
field; thus

J5JC1¹•M . ~164!

The Gordon decomposition of the Dirac current is of this i
Because of the mathematical identity¹•(¹•M )5(¹∧¹)
•M50, the conservation law¹•J50 implies also that¹
•JC50. Using~164!, Eq. ~149! can be put in the form

¹•G5JC ~165!

where we have defined a new field

G5F2M . ~166!

A disadvantage of this approach is that it mixes up physic
different kinds of entities, an E-M fieldF and a matter field
M. However, in most materialsM is a function of the fieldF,
so when a ‘‘constitutive equation’’M5M (F) is known
~165! becomes a well-defined equation forF.

C. Energy-momentum tensor

STA enables us to write the usual Maxwell energ
momentum tensorT(n)5T(n(x),x) for the electromagnetic
field in the compact form

T~n!5 1
2FnF̃52 1

2FnF. ~167!

Recall that the tensor fieldT(n) is a vector-valued linea
function on the tangent space at each spacetime pointx de-
scribing the flow of energy-momentum through a surfa
702 Am. J. Phys., Vol. 71, No. 7, July 2003
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with normal n5n(x), By linearity T(n)5nmTm, wherenm

5n•gm and

Tm[T~gm!5 1
2FgmF̃. ~168!

The divergence ofT(n) can be evaluated by using Maxwell
equation~147!, with the result

]mTm5T~¹!5J•F. ~169!

Its value is the negative of theLorentz force~density! F•J,
which is the rate of energy-momentum transfer from t
sourceJ to the fieldF.

D. Eigenvectors of the Maxwell tensor

The compact, invariant form~167! enables us to solve
easily the eigenvector problem for the Maxwell energ
momentum tensor. IfF is not a null field, it has the invarian
decompositionF5 f eiw given by~30!, which, when inserted
in ~167!, gives

T~n!52 1
2 f n f . ~170!

This is simpler than~167! becausef is simpler thanF. Note
also that it implies that all fields differing only by an arb
trary ‘‘duality factor’’ eiw have the same energy-momentu
tensor. The eigenvalues can be found from~170! by inspec-
tion. The bivectorf determines a timelike plane. Any vectorn
in that plane satisfiesn∧ f 50 or, equivalently,n f52 f n. On
the other hand, ifn is orthogonal to the plane, thenn• f 50
andn f5 f n. For these two cases,~170! gives us

T~n!56 1
2 f 2n. ~171!

ThusT(n) has a pair of doubly degenerate eigenvalues6 1
2 f 2

corresponding to ‘‘eigenbivectors’’f and if, all expressible in
terms ofF by inverting ~30!. This approach should be com
pared with conventional matrix methods to appreciate
simplifications achieved by STA.

E. Relation to tensor formulations

The versatility of STA is also illustrated by the ease w
which the above invariant formulation of ‘‘Maxwell theory
can be related to more conventional formulations. The ten
componentsFmn of the E-M field F are given by ~17!,
whence, using~34!, we find

]mFmn5J•gn5Jn ~172!

for the tensor components of Maxwell’s equation~149!.
Similarly, the tensor components of~163! are

] [nFab]5Kmemnab , ~173!

where the brackets indicate antisymmetrization andemnab

5 i 21
•(gmgngagb). The tensor components of the energ

momentum tensor~168! are

Tmn5gm
•Tn52 1

2~gmFgnF !~0!

5~gm
•F !•~F•gn!2 1

2g
m
•gn~F2!~0!

5FmaFa
n 2 1

2g
mnFabFab. ~174!

F. Spacetime splits in E-M theory

To demonstrate how smoothly the proper formulation
E-M theory articulates with the relative formulation, w
quickly survey several spacetime splits. A spacetime spli
702David Hestenes
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Maxwell’s equation~147! puts it in the standard relative vec
tor form for an inertial system. Thus, following the proc
dure in Sec. IV,

Jg05J01J ~175!

splits the currentJ into a charge densityJ05J•g0 and a
relative currentJ5J∧g0 in the g0-system. Similarly,

g0¹5] t1“ ~176!

splits ¹5]x into a time derivative] t5g0•¹ and spatial de-
rivative “5g0∧¹5]x with respect to the relative positio
vector x5x∧g0 . Combining this with the split ofF into
electric and magnetic parts, we get Maxwell’s equation~147!
in the split form

~] t1“ !~E1 iB!5J02J, ~177!

in agreement with the formulation in GA1.
Note that~176! splits the D’Alembertian into

¹25~¹g0!~g0¹!5~] t2“ !~] t1“ !5] t
22“

2. ~178!

The vector field T05T(g0)5T(g0) is the energy-
momentum densityin the g0-system. The split

T0g05T0g05T001T0 ~179!

separates it into an energy densityT005T0
•g0 and a mo-

mentum densityT05T0∧g0. Using the fact thatg0 anticom-
mutes with relative vectors, from~168! we obtain

T0g05 1
2FF†5 1

2~E21B2!1E3B, ~180!

in agreement with GA1.
The spacetime split helps us with physical interpretati

Corresponding to the splitF5E1 iB, the magnetization
field M splits into

M52P1 iM , ~181!

where P is the electricpolarization densityand M is the
magnetic moment density. Writing

G5D1 iH, ~182!

we see that~166! gives us the familiar relations

D5E1P, ~183!

H5B2M . ~184!

Insertion of~182! into ~165! with a spacetime split yields th
usual set of Maxwell’s equations for a material medium.

VII. REAL RELATIVISTIC QUANTUM THEORY

The Dirac equation is the cornerstone of relativistic qu
tum theory, if not the single most important equation in all
quantum physics. This section shows how STA simplifies
entire Dirac theory, reveals hidden geometric structure w
implications for physical interpretation, and provides a co
mon spinor method for classical and quantum physics wi
more direct and transparent classical limit of the Dirac eq
tion.

First, we show how to reformulate the standard mat
version of Dirac theory in terms of the real STA. As th
reformulation eliminates superfluous complex numbers
matrices from the standard version, I call it thereal Dirac
theory.

Next we provide the real Dirac wave function with a ge
metric interpretation by relating it tolocal observables. The
703 Am. J. Phys., Vol. 71, No. 7, July 2003
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term ‘‘local observable’’ is nonstandard but the concept is
unprecedented. It refers to assignment of physical interpr
tion to some local quantity such as energy or charge den
rather than to global quantities such as expectation value
serves as a device for describing local geometric structur
the theory quite apart from claims of objective reality. I
bearing on the interpretation of quantum mechanics is
cussed in the next section.

For reference purposes, I provide a complete catalog
relations between local observables in the real theory and
so-called ‘‘bilinear covariants’’ in the matrix theory. This fa
cilitates translation between the two formulations. It will b
noted that the real version is substantially simpler, and
complexities of translation can be avoided by sticking to
real theory alone.

Finally, I provide a thorough analysis of local conservati
laws in the real Dirac theory to ascertain further what S
can tell us about geometric structure and physical interpr
tion. The analysis is much more complete than any treatm
in textbooks that I know.

This account is limited to the single particle Dirac theo
The tendency in textbooks is to forego a thorough study
single particle theory and leap at once to the second qu
tized many particle theory. I leave it to the reader to dec
what might be lost by that practice.

Space does not permit an adequate account of ‘‘real s
tions’’ of the Dirac equation in this article. Partial treatmen
are given elsewhere,14,15 but it is worth mentioning here tha
in some respects the real Dirac equation is easier to solve
analyze than the Schroedinger equation.

A. Derivation of the real Dirac theory

Derivation of the real STA version of the Dirac theo
from the standard matrix version is essentially the same
for the Pauli theory, but the differences are sufficient to ju
tify a quick review. To find a representation of the Dira
theory in terms of STA, we begin with a Dirac spinorC, a
column matrix of four complex numbers. Letu be a fixed
spinor with the properties

u†u51, ~185!

g0u5u, ~186!

g2g1u5 i 8u. ~187!

In writing this we regard thegm , for the moment, as 434
Dirac matrices, andi 8 as the unit imaginary in the comple
number field of the Dirac algebra. Now, we can write a
Dirac spinor

C5cu, ~188!

wherec is a matrix that can be expressed as a polynomia
the gm . The coefficients in this polynomial can be taken
real, for if there is a term with an imaginary coefficient, th
~187! enables us to make it real without altering~188! by
replacing i 8 in the term byg2g1 on the right of the term.
Furthermore, the polynomial can be taken to be an even m
tivector, for if any term is odd, then~186! allows us to make
it even by multiplying on the right byg0 . Thus, in~188! we
may assume thatc is a real even multivector, so we can
reinterpret thegm in c as vectors in STA instead of matrice
Thus, we have established a correspondence between D
spinors and even multivectors in STA. The corresponde
must be one-to-one, because the space of even multive
703David Hestenes
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~like the space of Dirac spinors! is exactly eight-dimensional
with one scalar, one pseudoscalar and six bivector dim
sions.

Finally, it should be noted that by eliminating the unge
metrical imaginaryi 8 from the base field we reduce the d
grees of freedom in the Dirac theory by half, with cons
quent simplification of the theory that shows up in the r
version. TheDirac algebra is generated by the Dirac matr
ces over the base field of complex numbers, so it has4

32532 degrees of freedom and can be identified with
algebra of 434 complex matrices. From~14! we see that
STA has 24516 degrees of freedom.

One immediate simplification brought by STA appears
the spacetime split. To write his equation in Hamiltoni
form, Dirac defined 434 matrices

ak5gkg0 ~189!

for k51,2,3. This is, in fact, a representation of the 232
Pauli matrices by 434 matrices. STA eliminates this awk
ward and irrelevant distinction between matrix represen
tions of different dimension, so theak can be identified with
the sk , as we have already done in the spacetime split~43!.

There are several ways to represent a Dirac spino
STA,16 but all representations are, of course, mathematic
equivalent. The representation chosen here has the ad
tages of simplicity and, as we shall see, ease of interpr
tion.

To distinguish a spinorc in STA from its matrix represen
tation C in the Dirac algebra, let us call it areal spinor to
emphasize the elimination of the ungeometrical imagin
i 8. Alternatively, we might refer toc as theoperator repre-
sentationof a Dirac spinor, because, as shown below, it pla
the role of an operator generating observables in the the

In terms of the real wave functionc, the Dirac equation
for an electron can be written in the form

gm~]mcg2g1\2eAmc!5mcg0 , ~190!

wherem is the mass ande52ueu is the charge of the elec
tron, while theAm5A•gm are components of the electro
magnetic vector potential. To prove that this is equivalen
the standard matrix form of the Dirac equation,5 we simply
interpret thegm as matrices, multiply byu on the right, and
use~186! and ~188! to get the standard form

gm~ i 8\]m2eAm!C5mC. ~191!

This completes the proof. Alternative proofs are giv
elsewhere.16–18 The original converse derivation of~190!
from ~191! was much more indirect.19

Henceforth, we can work with thereal Dirac equation
~190! without reference to its matrix representation~191!.
We know from previous sections that computations in S
can be carried out without introducing a basis, and we r
ognize the so-called ‘‘Dirac operator’’¹5gm]m as the vec-
tor derivative with respect to a spacetime point, so let
write the real Dirac equation in the coordinate-free form

¹c i\2eAc5mcg0 , ~192!

whereA5Amgm is the electromagnetic vector potential, a
the notation

i[g2g15 ig3g05 i s3 ~193!
704 Am. J. Phys., Vol. 71, No. 7, July 2003
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emphasizes that this bivector plays the role of the imagin
i 8 that appears explicitly in the matrix form~191! of the
Dirac equation. To interpret the theory, it is crucial to no
that the bivectori has a definite geometrical interpretatio
while i 8 does not.

B. Lorentz invariance

Equation ~192! is Lorentz invariant, despite the explic
appearance of the constantsg0 andi5g2g1 in it. These con-
stants need not be associated with vectors in a partic
reference frame, though it is often convenient to do so. I
only required thatg0 be a fixed, future-pointing, timelike
unit vector whilei is a spacelike unit bivector that commute
with g0 . The constants can be changed by a Lorentz rota

gm→gm8 5CgmC̃, ~194!

whereC is a constant rotor, soCC̃51,

g085Cg0C̃ and i85CiC̃. ~195!

A corresponding change in the wave function,

c→c85cC̃, ~196!

induces a mapping of the Dirac equation~192! into an equa-
tion of the same form:

¹c i8\2eAc85mc8g08 . ~197!

This transformation is no more than a change of constant
the Dirac equation. It need not be coupled to a change
reference frame. Indeed, in the matrix formulation it can
interpreted as a mere change in matrix representation, tha
a change in the particular matrices selected to be assoc
with the vectorsgm , for ~188! gives

C5cu5c8u8, ~198!

whereu85Cu.
For the special case

C5eiw0, ~199!

where w0 is a scalar constant,~195! gives g085g0 and i8
5 i, soc and

c85ceiw0 ~200!

are solutions of the same equation. In other words, the D
equation does not distinguish solutions differing by a co
stant phase factor.

C. Charge conjugation

Note that s25g2g0 anticommutes with bothg0 and i
5 i s3 , so multiplication of the Dirac equation~192! on the
right by s2 yields

¹cCi\1eAcC5mcCg0 , ~201!

where

cC5cs2 . ~202!

The net effect is to change the sign of the charge in the D
equation, therefore, the transformationc→cC can be inter-
preted ascharge conjugation. Of course, the definition of
charge conjugate is arbitrary up to a constant phase fa
such as in~200!. The main thing to notice here is that i
704David Hestenes
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~202! charge conjugation, like parity conjugation, is form
lated as a completely geometrical transformation, with
any reference to a complex conjugation operation of obsc
physical meaning. Its geometric meaning is determined
what it does to the ‘‘frame of observables’’ identified belo

D. Interpretation of the Dirac wave function

As explained in Sec. II, since the real Dirac wave functi
c5c(x) is an even multivector, we can write

cc̃5reib, ~203!

wherer andb are scalars. Hencec has theLorentz invariant
decomposition

c5~reib!1/2R, where RR̃5R̃R51. ~204!

At each spacetime pointx, the rotorR5R(x) determines a
Lorentz rotation of a given fixed frame of vectors$gm% into
a frame$em5em(x)% given by

em5RgmR̃. ~205!

In other words,R determines a unique frame field on spac
time.

The physical interpretation given to the frame field$em% is
a key to the interpretation of the entire Dirac theory. Spec
cally, theem can be interpreted directly as descriptors of t
kinematics of electron motion. It follows from~205!, there-
fore, that the rotor fieldR5R(x) is a descriptor of electron
kinematics.

It should be noted that~205! has the same algebraic form
as thecomoving frame~96! defined on classical partical his
tories. Thus,~205! is a direct generalization of~96! from
frames on curves to frame fields on spacetime. Convers
as we shall see, probability conservation in the Dirac the
permits a decomposition of the frame field into bundles
comoving frames on Dirac ‘‘streamlines.’’ This provides
direct connection to the classical spinor particle mechanic
Sec. V and thereby a natural approach to the classical lim
the Dirac equation, as discussed in the next section.

Anticipating that the factor (reib)1/2 can be given a statis
tical interpretation, the canonical form~204! can be regarded
as an invariant decomposition of the Dirac wave funct
into a two-parameterstatistical factor (reib)1/2 and a six-
parameterkinematical factor R.

From ~204!, ~205!, and~196! we find that

cgmc̃5c8gm8 c̃85rem . ~206!

Note that we have here a set of four linearly independ
vector fields which are invariant under the transformat
specified by~194! and~195!. Thus these fields do not depen
on any coordinate system, despite the appearance ofgm on
the left side of~206!. Note also that the factoreib/2 in ~204!
does not contribute to~206!, because the pseudoscalari an-
ticommutes with thegm .

Two of the vector fields in~206! are given physical inter-
pretations in the standard Dirac theory. First, the vector fi

cg0c̃5re05rv ~207!

is theDirac current, which, in accord with the standardBorn
interpretation, we interpret as aprobability current. Thus, at
each spacetime pointx the timelike vectorv5v(x)5e0(x)
is interpreted as theprobable ~proper! velocity of the elec-
705 Am. J. Phys., Vol. 71, No. 7, July 2003
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tron, and r5r(x) is the relative probability~i.e., proper
probability density! that the electron actually is atx. The
correspondence of~207! to the conventional definition of the
Dirac current is displayed in Table I.

The probability conservation law

¹•~cg0c̃ !5¹•~rv !50 ~208!

follows directly from the Dirac equation. To prove that w
can use~204! and~205! to put the Dirac equation~192! into
the form

\~¹c!g0c̃5mreibe1e21rAe1e2e0 , ~209!

from which it follows that

@~¹c!g0c̃#~0!5
1
2@~¹c!g0c̃1cg0~¹c! #~0!

5 1
2g

m
•~]mcg0c̃1wg0]mc̃!50. ~210!

The vector field

1
2\cg3c̃5r 1

2\e35rs ~211!

will be interpreted as thespin vectordensity, in exact corre-
spondence with the real PS theory. Justification for this
terpretation comes from angular momentum conserva
treated below. Note in Table I that this vector quantity
represented as a pseudovector~or axial vector! quantity in
the conventional matrix formulation. The spin pseudovec
is correctly identified asis, as shown below.

As we have noted before, angular momentum is actual
bivector quantity. Thespin angular momentum S5S(x) is a
bivector field related to the spin vector fields5s(x) by

S5 isv5 1
2\ ie3e05 1

2\Rg2g1R̃5 1
2R~ i\!R̃. ~212!

The right side of this chain of equivalent representatio
shows the relation of the spin to the unit imaginaryi appear-
ing in the Dirac equation~192!. Indeed, it shows thatthe
bivector 1

2i\ is a reference representationof the spin that is
rotated by the kinematical factorR into the local spin direc-
tion at each spacetime point. This establishes an explicit c
nection between spin and imaginary numbers that is inhe
in the Dirac theory but hidden in the conventional formu
tion, and, as we have already seen, remains even in
Schroedinger approximation.

Explicit equations relating spin to the unit imaginaryi 8 in
the PS theory are given in GA1. They apply without chan
in the Dirac theory, so the argument need not be repea
here. The important fact is that for every solution of t

Table I. Bilinear covariants.

Scalar C̃C5C†g0C5(cc̃)(0)5r cosb
Vector C̃gmC5C†g0gmC5(cg0c̃gm)(0)5(c†g0gmc)(0)

5(cg0c̃)•gm5(rv)•gm5rvm

Bivector
e

m

i8\

2
C̃

1

2
~gmgn2gngm!C5

e\

2m
~gmgncg2g1c̃!~0!

5~gm∧gn!•~M!5Mnm5
e

m
r~ieibsv!•~gm∧gn!

Pseudovectora 1
2i 8\C̃gmg5C5

1
2\(gmcg3c̃)(0)5gm•(rs)5rsm

Pseudoscalara
C̃g5C5( icc̃)(0)52r sinb

aHere we use the more conventional symbolg55g0g1g2g3 for the matrix
representation of the unit pseudoscalari.
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Dirac equation, at each spacetime pointx the bivectorS
5S(x) specifies a definite spacelike tangent plane, aspin
plane, if you will.

Explicit identification ofS with spin is not made in stan
dard accounts of the Dirac theory.6 Typically, they introduce
the spin~density! tensor

rSnab5
i 8\

2
C̃gn∧ga∧gbC5

i 8\

2
C̃gmg5Cemnab

5rsmemnab, ~213!

where use has been made of the identity

gn∧ga∧gb5gmg5emnab ~214!

and the expression forsm in Table I. Note that the ‘‘alternat-
ing tensor’’ emnab can bedefinedsimply as the product o
two pseudoscalars, thus

emnab52 i ~gm∧gn∧ga∧g2b!

52~ igmgngagb!~0!

52~g3∧g2∧g1∧g0!•~gm∧gn∧ga∧gb!, ~215!

gm∧gn∧ga∧gb5 i emnab. ~216!

From ~213! and ~215! we find

Snab5smemnab52 i ~s∧gn∧ga∧gb!

52 i ~ is!•~gn∧ga∧gb!. ~217!

The last expression shows that theSnab are simply tensor
components of the pseudovectoris. Contraction of ~217!
with vn5v•gn and use of duality gives the desired relati
betweenSnab andS:

vnSnab52 i ~s∧v∧ga∧gb!52@ i ~s∧v !#•~ga∧gb!

5S•~gb∧ga!5Sab. ~218!

Its significance will be made clear in the discussion of an
lar momentum conservation.

Note that the spin bivector and its relation to the u
imaginary is invisible in the standard version of the biline
covariants in Table I. The spinS is buried there in the mag
netization~tensor or bivector!. The magnetizationM can be
defined and related to the spin by

M5
e\

2m
cg2g1c̃5

e\

2m
reibe2e15

e

m
rSeib. ~219!

One source for the interpretation ofM as magnetization is the
Gordon decomposition of the Dirac current given belo
Equation~219! reveals that in the Dirac theory the magne
moment is not simply proportional to the spin as often
serted; the two are related by aduality rotationproduced by
the factoreib. It may be appreciated that this relation ofM to
S is much simpler than any relation ofMab to Snab in the
literature, another indication thatS is the most appropriate
representation for spin. By the way, note that~219! provides
some justification for referring tob henceforth as theduality
parameter. The name is noncommittal to the physical inte
pretation ofb, a debatable issue discussed later.

We are now better able to assess the content of Tab
There are 114161411516 distinct bilinear covariants
but only eight parameters in the wave function, so the v
ous covariants are not mutually independent. Their inter
pendence has been expressed in the literature by a syste
706 Am. J. Phys., Vol. 71, No. 7, July 2003
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algebraic relations known as ‘‘Fierz identities.’’20 However,
the invariant decomposition of the wave function~204! re-
duces the relations to their simplest common terms. Tab
shows exactly how the covariants are related by expres
them in terms ofr, b, vm , sm , which constitutes a set o
seven independent parameters, since the velocity and
vectors are constrained by the three conditions that they
orthogonal and have constant magnitudes. This paramet
tion reduces the derivation of any Fierz identity practically
inspection. Note, for example, that

r25~C̃C!21~C̃g5C!25~C̃gmC!~C̃gmC!

52~C̃gmg5C!~C̃gmg5C!. ~220!

Evidently Table I tells us all we need to know about t
bilinear covariants and makes further reference to Fierz id
tities superfluous.

Note that the factori 8\ occurs explicitly in Table I only in
those expressions involving electron spin. The conventio
justification for including thei 8 is to make anti-Hermitian
operators Hermitian so the bilinear covariants are real.
have seen, however, that this smuggles spin into the exp
sions. That can be made explicit by using~212! to derive the
general identity

i 8\C̃GC5C̃GgagbCSab, ~221!

whereG is any matrix operator.
Perhaps the most significant thing to note about Table

that only seven of the eight parameters in the wave func
are involved. The missing parameter is thephaseof the wave
function. To understand the significance of this, note a
that, in contrast to the vectorse0 ande3 representing velocity
and spin directions, the vectorse1 and e2 do not appear in
Table I except indirectly in the producte2e1 . The missing
parameter is one of the six parameters implicit in the rotoR
determining the Lorentz rotation~205!. We have already
noted that five of these parameters are needed to deter
the velocity and spin directionse0 ande3 . By duality, these
vectors also determine the directione2e15 ie3e0 of the ‘‘spin
plane’’ containinge1 ande2 . The remaining parameter there
fore determines the directions ofe1 ande2 in this plane. It is
literally an angle of rotation in this plane and the spin bive
tor Ŝ5e2e15RiR̃ is the generator of the rotation. Thus,
full accord with PS theory we arrive at ageometrical inter-
pretation of the phase of the wave functionthat isinherent in
the Dirac theory. But all of this is invisible in the conven-
tional matrix formulation.

The purpose of Table I is to explicate the corresponde
of the matrix formulation to the real~STA! formulation of
the Dirac theory. Once it is understood that the two form
lations are completely isomorphic, the matrix formulatio
can be dispensed with and Table I becomes superfluous
revealing the geometrical meaning of the unit imaginary a
the wave function phase along with this connection to sp
STA challenges us to ascertain the physical significance
these geometrical facts.

E. Conservation laws

One of the miracles of the Dirac theory was the sponta
ous emergence of spin in the theory when nothing about s
seemed to be included in the assumptions. This miracle
been attributed to Dirac’s derivation of his linearized relat
istic wave equation, so spin has been said to be ‘‘a relativi
706David Hestenes
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phenomenon.’’ However, we have seen that the ‘‘Dirac o
erator’’ ¹5gm]m is a generic spacetime derivative equa
suited to the formulation of Maxwell’s equation, and w
have concluded that the Dirac algebra arises from space
geometry rather than anything special about quantum the
The origin of spin must be elsewhere.

Our ultimate objective is to ascertain precisely what fe
tures of the Dirac theory are responsible for its extraordin
empirical success and to establish a coherent physical in
pretation that accounts for all its salient aspects. The geom
ric insights of STA provide us with a perspective from whi
to criticize some conventional beliefs about quantum m
chanics and so leads us to some unconventional conclus
However, our purpose here is merely to raise significant
sues by introducing suggestive interpretations. Much m
will be required to claim definitive conclusions.

The physical interpretation of standard quantum mech
ics is centered on meaning ascribed to thekinetic energy-
momentum operators pI m defined in the conventional matri
theory by

pI m5 i 8\]m2eAm . ~222!

In the STA formulation they are defined by

pI m5 iI\]m2eAm , ~223!

where the underbar signifies a ‘‘linear operator’’ and the o
erator i signifies right multiplication by the bivectori
5g2g1 , as defined by

iIc5c i. ~224!

The importance of~223! can hardly be overemphasize
Above all, it embodies the fruitful ‘‘minimal coupling’’ rule,
a fundamental principle of gauge theory that fixes the fo
of electromagnetic interactions. In this capacity it plays
crucial heuristic role in the original formulation of the Dira
equation, as is clear when the equation is written in the fo

gmpI mc5cg0m. ~225!

However, the STA formulation tells us even more. It reve
geometrical properties of thepI m that provide clues to a
deeper physical meaning. We have already noted a con
tion of the factori\ with spin. We establish below that thi
connection is a consequence of the form and interpretatio
the pI m . Thus, spin was inadvertently smuggled into th

Dirac theory by the pI m , hidden in the innocent looking fac

tor i 8\. Its sudden appearance was only incidentally rela
to relativity. History has shown that it is impossible to re
ognize this fact in the conventional formulation of the Dir
theory. The connection ofi 8\ with spin is not inherent in the
pI m alone. It appears only when thepI m operate on the wave
function, as is evident from~212!. This leads to the conclu
sion that the significance of thepI m lies in what they imply
about the physical meaning of the wave function. Indeed,
STA formulation reveals that thepI m have something impor
tant to tell us about the kinematics of electron motion.

F. Energy-momentum tensor

The operatorspI m or, equivalently,pI
m5gm

•gnpI n acquire a

physical meaning when used to define the componentsTmn

of the electronenergy-momentum tensor:
707 Am. J. Phys., Vol. 71, No. 7, July 2003
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Tmn5Tm
•gn5~g0c̃gmpI

nc!~0!5~c†g0gmpI
nc!~0! .

~226!

Its matrix equivalent is given in Table II. As mentioned
the discussion of the electromagnetic energy-momentum
sor,

Tm5T~gm!5Tmngn ~227!

is the energy-momentum flux through a hyperplane with n
mal gm. The energy-momentum density in the electron r
system is

T~v !5vmTm5rp. ~228!

This defines the‘‘expected’’ proper momentum p5p(x). The
observablep5p(x) is a statistical prediction for the momen
tum of the electron atx. In general, the momentump is not
collinear with the velocity, because it includes a contributi
from the spin. A measure of this noncollinearity isp∧v,
which should be recognized as defining therelative momen-
tum in the electron rest frame.

From the definition~226! of Tmn in terms of the Dirac
wave function, momentum and angular momentum con
vation laws can be established by direct calculation from
Dirac equation. First, it is found that17

]mTm5F•J, ~229!

whereF5¹∧A is the electromagnetic field and

J5ecg0c̃5erv ~230!

is identified as thecharge current~density!, so charge con-
servation¹•J50 is an immediate consequence of probab
ity conservation. The right side of~229! is exactlythe clas-
sical Lorentz force, so using~169! and denoting the
electromagnetic energy-momentum tensor~168! by TEM

m , we
can rephrase~229! as the total energy-momentum conserv
tion law

]m~Tm1TEM
m !50. ~231!

This justifies identifying the Dirac current with the charg
current of the electron.

G. Angular momentum conservation

To derive the angular momentum conservation law,
identify Tm∧x as the orbital angular momentum tensor.~See
Table II for comparison with more conventional expre
sions.! Noting that]mx5gm , we calculate

Table II. Observables of the energy-momentum operator, relating real
matrix versions.

Energy-momentum tensor Tmn5Tm
•gn5(g0c̃gmpI

nc)(0)

5C̃gmpI
nC

Kinetic energy density T005(c†pI
0c)(0)5C†pI

0C
Kinetic momentum density T0k5(c†pI

kc)(0)5C†pI
kC

Angular momentum tensor Jnab5@Tn∧x1 ir(s∧gn)#•(gb∧ga)

5Tnaxb2Tnbxa2
i8\

2
C̃g5gmCemnab

Gordon current Km5
e

m
~c̃pImc!~0!5

e

m
C̃pImC
707David Hestenes
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]m~Tm∧x!5Tm∧gm1]mTm∧x. ~232!

To evaluate the first term on the right, we return to the d
nition ~226! and find

gmTmn5@~pI
nc!g0c̃#~1!5

1
2@~pI

nc!g0c̃1cg0~pI
nc! #

5~pI
nc!g0c̃2]n~ 1

2\c ig3c̃ !.

~233!

Summing with gn and using the Dirac equation~225! to
evaluate the first term on the right while recognizing the s
vector ~211! in the second term, we obtain

gngmTmn5mcc̃1¹~rsi!. ~234!

The scalar part gives the curious result

Tm
m5Tm

•gm5mr cosb. ~235!

However, the bivector part gives the relation we are look
for:

Tm∧gm5Tmngn∧gm5¹•~rsi!52]m~rSm!, ~236!

where

Sm5~ is!•gm5 i ~s∧gm! ~237!

is the spin angular momentum tensor already identified
~213! and ~217!. Thus from~232! and ~229! we obtain the
angular momentum conservation law

]mJm5~F•J!∧x, ~238!

where

J~gm!5Jm5Tm∧x1rSm ~239!

is the bivector-valued angular momentum tensor, repres
ing the total angular momentum flux in thegm direction. In
the electron rest system, therefore, the angular momen
density is

J~v !5r~p∧x1S!, ~240!

where, recalling~199!, p∧x is recognized as the expecte
orbital angular momentum and, as already advertised
~212!, S5 isv can be identified as an intrinsic angular m
mentum or spin. This completes the justification for int
preting S as spin. The task remaining is to dig deeper a
understand its origin.

H. Local observables

We now have a complete set of conservation laws for
local observablesr, v, S, andp, but we still need to ascertai
precisely how thekinetic momentum pis related to the wave
function. For that purpose we employ the invariant deco
positionc5(reib)1/2R. First we need some kinematics. B

differentiatingRR̃51, it is easy to prove that the derivative
of the rotorR must have the form

]mR5 1
2VmR, ~241!

whereVm5Vm(x) is a bivector field. Consequently the d
rivatives of theen defined by~205! have the form

]men5Vm•en . ~242!

Thus Vm is the rotation rate of the frame$en% as it is dis-
placed in the directiongm .
708 Am. J. Phys., Vol. 71, No. 7, July 2003
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Now, with the help of~212!, the effect ofpI n on c can be
put in the form

pI nc5@]n~ ln r1 ib!1Vn#Sc2eAnc, ~243!

whence

~pI nc!g0c̃5@]n~ ln r1 ib!1Vn# irs2eAnrv. ~244!

Inserting this in the definition~226! for the energy-
momentum tensor, after some manipulations beginning w
is5Sv, we get the explicit expression

Tmn5r@vm~Vn•S2eAn!2~gm∧v !•~]nS!2sm]nb#.
~245!

From this we find, by~228!, the momentum components

pn5Vn•S2eAn . ~246!

This reveals that~apart from theAn contribution! the mo-
mentum has a kinematical meaning related to the spin: It is
completely determined by the component ofVn in the spin
plane. In other words, it describes therotation rate of the
frame$em% in the spin plane or, if you will, ‘‘about the spin
axis.’’ But we have identified the angle of rotation in th
plane with the phase of the wave function. Thus, the mom
tum describes the phase change in all directions of the w
function or, equivalently, of the frame$em%. A physical in-
terpretation for this geometrical fact will be offered in th
next section.

The kinematical import of the operatorpI n is derived from
its action on the rotorR. To make that explicit, write~241! in
the form

~]nR!i\R̃5VnS5Vn•S1Vn∧S1]nS, ~247!

where~212! was used to establish that

]nS5 1
2@Vn ,S#5 1

2~VnS2SVn!. ~248!

Introducing the abbreviation

iqn5Vn∧S ~249!

and using~246! we can put~247! in the form

~pI nR!R̃5pn1 iqn1]nS. ~250!

This shows explicitly how the operatorpI n relates to kine-

matical observables, although the physical significance oqn

is obscure. Note that bothpn and ]nS contribute toTmn in
~245!, but qn does not. By the way, it should be noted th
the last two terms in~245! describe energy-momentum flu
orthogonal to thev direction. It is altogether natural that thi
flux should depend on the component of]nS as shown. How-
ever, the significance of the parameterb in the last term of
~245! remains obscure.

An auxiliary conservation law can be derived from th
Dirac equation by decomposing the Dirac current as follow
Solving ~225! for the Dirac charge current, we have

J5ecg0c̃5
e

m
gm~pI mc!c̃. ~251!

The identity~250! is easily generalized to

~pI mc!c̃5~pm1 iqm!reib1]m~rSeib!. ~252!
708David Hestenes
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The right side exhibits the scalar, pseudoscalar, and bive
parts, explicitly. From the scalar part we define theGordon
current:

Km5
e

m
@~pI mc!c̃#~0!5

e

m
~ c̃pI mc!~0!

5
e

m
~pmr cosb2qmr sinb!,

~253!

or, in vector form,

K5
e

m
r~p cosb2q sinb!. ~254!

When ~252! is inserted into~251!, the pseudovector par
must vanish, and the vector part gives us the so-called ‘‘Gor-
don decomposition’’

J5K1¹•M , ~255!

where the definition~219! of the magnetization tensorM has
been introduced for the last term in~252!. This is ostensibly
a decomposition into aconduction current Kand amagneti-
zation current¹•M , both of which are separately conserve
But how does this square with the physical interpretat
already ascribed toJ? The possibility that it arises from
substructure in the charge flow is considered in the next
tion.

So far we have supplied a physical interpretation for
parameters in the wave function~204! except the ‘‘duality
parameter’’ b. To date, this parameter has defied all efforts
physical interpretation, because of its peculiar ‘‘duality role
For example, a straightforward interpretation of the Gord
current in ~254! as a conduction current is confounded
bÞ0. Similarly, Eq. ~219! tells us that the magnetizatio
~magnetic moment density! M is not directly proportional to
the spin~as commonly supposed! but ‘‘dually proportional.’’
The duality factoreib has the effect of generating an effe
tive electric dipole moment for the electron, as is eas
shown by applying the spacetime split~181! to M. This
seems to conflict with experimental evidence that the e
tron has no detectable electric moment, but the issue
subtle. We are forced to leave the problem of interpretingb
as unresolved, though it rises again in the next section.

VIII. INTERPRETATION OF QUANTUM
MECHANICS

Quantum mechanics has been spectacularly succe
over an immense range of applications, so there is li
doubt about the efficacy of its mathematical formulatio
However, the physical interpretation of quantum mechan
has remained a matter of intense debate. Two prominen
ternatives have emerged in the literature: theCopenhagen
interpretationchampioned by Niels Bohr, and thecausal in-
terpretationchampioned by David Bohm. These two inte
pretations are so radically different as to constitutedifferent
physical theories, though they share the same mathemati
formulation. The essential difference is that the causal the
asserts thatelectrons have continuous paths in spacetim,
whereas the Copenhagen theory denies that.

James Cushing21 has traced the history of the dispute b
tween these theories and critically reviewed arguments
support of the causal theory. In agreement with many ot
709 Am. J. Phys., Vol. 71, No. 7, July 2003
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commentators, he concludes that the causal theory is
fectly viable, and every objection from the Copenhag
camp has been adequately answered in the literature.
traces the dispute from the inception of quantum mecha
and comes to the surprising conclusion that the dominanc
the Copenhagen theory in the physics literature is a histor
accident that could easily have been deflected in favor of
causal theory instead.

Our real formulation of Schroedinger–Pauli–Dirac theo
puts the causal-Copenhagen dispute in new light by mak
the geometric structure of the equations more explicit. T
causal theory admits to a much more detailed physical in
pretation of this structure than the Copenhagen theory,
cluding hidden structure revealed by the real formulatio
However, since real QM is mathematically isomorphic w
standard QM, our analysis does not contradict successe
the Copenhagen theory.

Real QM does raise some questions for Copenha
theory though. First, questions about the relation of obse
ables to operators in QM are raised by the realization t
both hermiticity and noncommutivity of Pauli and Dirac m
trices have clear geometric meanings with no necessary
nection to QM. Second, any interpretation of uncertainty
lations should account for the fact that Planck’s const
enters the Dirac equation only as the magnitude of the s
What indeed does spin have to do with limitations on obse
ability?

The causal theory does not resolve all the mysteries
QM. Rather it replaces the mysteries of Copenhagen the
with a different set of mysteries. As the two theories a
mathematically equivalent, the choice between them co
be regarded as a matter of taste. However, they suggest
different directions for research that could lead to testa
differences between them.

Our discussion here is concentrated on the geometry of
single particle Dirac theory as a guide to physical interpre
tion. Many particle theory raises new issues. We merely n
that Bohm and his followers have extended the causal the
to the many particle case22,23 and demonstrated its use i
explaining such mysterious QM effects as entanglement.
real QM is so similar to Bohm’s theory in the one-partic
case, it has a straightforward extension to the many-part
case by following Bohm. No position on the validity of tha
extension is taken here.

A. Electron trajectories

In classical theory the concept ofparticle refers to an ob-
ject of negligible size with a continuous trajectory. Cope
hagen theory asserts that it is meaningless or impossibl
quantum mechanics to regard the electron as a particle in
sense. On the contrary, Bohm argues that the difference
tween classical and quantum mechanics is not in the con
of particle itself but in the equation for particle trajectorie
From Schroedinger’s equation he derived an equation of
tion for the electron that differs from the classical equati
only in a statistical term called the ‘‘quantum force.’’ He wa
careful, however, not to commit himself to any special h
pothesis about the origins of the quantum force. He accep
the form of the force dictated by Schroedinger’s equati
and he took pains to show that all implications of Sch
edinger theory are compatible with a strict particle interp
tation. Adopting the same general particle interpretation
the Dirac theory, we find a generalization of Bohm’s equ
tion that provides a new perspective on the quantum forc
709David Hestenes
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The Dirac currentrv assigns a unit timelike vectorv(x)
to each spacetime pointx whererÞ0. In accordance with
the causal theory, we interpretv(x) as theexpectedproper
velocityof the electron atx, that is, the velocity predicted fo
the electron if it happens to be atx. The velocityv(x) defines
a local reference frame atx called theelectron rest frame.
Theproper probability densityr5(rv)•v can be interpreted
as the probability density in the rest frame. By a well-know
theorem, the probability conservation law~208! implies that
through each spacetime point there passes aunique integral
curve that is tangent tov at each of its points. Let us ca
these curves~electron! streamlines. In any spacetime region
whererÞ0, a solution of the Dirac equation determines
family of streamlinesthat fills the region with exactly one
streamline through each point. The streamline through a
cific point x0 is the expected history of an electron atx0 , that
is, it is the optimal prediction for the history of an electro
that actually is atx0 @with relative probabilityr(x0), of
course#. Parametrized by proper timet, the streamlinex
5x(t) is determined by the equation

dx

dt
5v~x~t!!. ~256!

The main objection to a strict particle interpretation of t
Schroedinger and Dirac theories is the Copenhagen c
that a wave interpretation is essential to explain diffracti
The causal theory claims otherwise, based on thefact that the
wave function determines a unique family of electron traj
tories. For double slit diffraction these trajectories have b
calculated from Schroedinger’s equation,24,25 and, recently,
from the Dirac equation.14 Sure enough, after flowing uni
formly through the slits, the trajectories bunch up at diffra
tion maxima and thin out at the minima. According to Boh
the cause of this phenomenon is the quantum force ra
than wave interference. This shows at least that the par
interpretation is not inconsistent with diffraction phenome
though the origin of the quantum force remains to be
plained. The obvious objections to this account of diffracti
have been adequately refuted in the literature.21 It is worth
noting, though, that this account has the decided advan
of avoiding the paradoxical ‘‘collapse of the wave functio
inherent in the ‘‘dualist’’ Copenhagen explanation of diffra
tion. At no time is it claimed that the electron spreads o
like a wave to interfere with itself and then ‘‘collapses’’ whe
it is detected in a localized region. The claim is only that t
electron is likely to travel on one of a family of possib
trajectories consistent with experimental constraints; wh
trajectory is known initially only with a certain probability
though it can be inferred more precisely after detection in
final state. Indeed, it is possible then to infer which slit t
electron passed through.24 These remarks apply to the Dira
theory as well as to the Schroedinger theory, though there
some differences in the predicted trajectories,14 because the
Schroedinger current is the nonrelativistic limit of the Go
don current rather than the Dirac current.26

Now let us investigate the equations for motion along
Dirac streamlinex5x(t). On this curve the kinematical fac
tor in the Dirac wave function~204! can be expressed as
function of proper time:

R5R~x~t!!. ~257!

By ~205!, ~207!, and ~256!, this determines acomoving
frame
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em5RgmR̃ ~258!

on the streamline with velocityv5e0 , while the spin vector
s and bivectorS are given as before by~211! and ~212!. In
accordance with~241!, differentiation of~257! leads to

Ṙ5v•¹R5 1
2VR, ~259!

where the overdot indicates differentiation with respect
proper time, and

V5vmVm5V~x~t!! ~260!

is the rotational velocity of the frame$em%. Accordingly,

ėm5v•¹em5V•em . ~261!

But these equations are identical in form to those in Sec
for the classical theory of a relativistic rigid body with ne
ligible size. This is a consequence of the particle interpre
tion. In Bohmian terms, the only difference between class
and quantum theory is in the functional form ofV. Our main
task, therefore, is to investigate what the Dirac theory tells
aboutV.

We begin by examining the special case of a free part
and the simplest approach to the classical limit. Then
formulate the causal theory in the most general terms
discuss its extension to a more detailed interpretation
Dirac theory.

B. Solutions of the Dirac equation

This is not the place for a systematic study of solutions
the Dirac equation. Suffice it to say that every solution in t
matrix theory has a corresponding solution in the real theo
To show what a ‘‘real solution’’ looks like and the physic
insight that it offers, we consider the simplest example o
free particle.

For a free particle with proper momentump, the wave
functionc is an eigenstate of the ‘‘proper momentum ope
tor’’ ~223!, that is,

pI c5pc, ~262!

so the Dirac equation~225! reduces to the algebraic equatio

pc5cg0m. ~263!

The solution is aplane waveof the form

c5~reib!1/2R5r1/2eib/2R0e2 ip•x/\, ~264!

where the kinematical factorR has been decomposed to e
plicitly exhibit its spacetime dependence on a phase sati
ing ¹p•x5p. Inserting this into~223! and solving forp we
get

p5meibRg0R̃5mve2 ib. ~265!

This implieseib561, so

eib/251 or i , ~266!

and p56mv corresponding to two distinct solutions. On
solution appears to have negative energyE5p•g0 , but that
can be rectified by changing the sign in the phase of
‘‘trial solution’’ ~264!.

Thus we obtain two distinct kinds of plane wave solutio
with positive energyE5p•g0 :

c25r1/2R0e2 ip•x/\, ~267!
710David Hestenes
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c15r1/2iR0e1 ip•x/\. ~268!

We identify these aselectronand positron wave functions.
Indeed, the two solutions are related by charge conjugat
According to~202!, the charge conjugate of~267! is

c2
C 5c2s25r1/2iR08e

1 ip•x/\, ~269!

where

R085R0~2 i s2!. ~270!

The factor2 i s2 represents a spatial rotation that just ‘‘flips
the direction of the spin vector. Evidently~268! and~269! are
both positron solutions, but with oppositely directed spin

Determining the comoving frame~258! for the electron
solution~267!, we find that the velocityv5R0g0R̃0 and the

spin s5 1
2\R0g3R̃0 are constant, but, fork51,2,

ek~t!5ek~0!e2p•x/S5ek~0!ee2e1vt, ~271!

where t5v•x is the proper time along the streamline a
frequencyv is given by

v5
2m

\
51.631021 s21. ~272!

Thus, the streamlines are straight lines along which
spin is constant, ande1 ande2 rotate about the ‘‘spin axis’’
with the ultrahigh frequency~272! as the electron move
along the streamline. A similar result is found for the po
tron solution.

For applications, the constants in the solution must
specified in more detail. If the wave functions are normaliz
to one particle per unit volumeV in the g0-system, then we
have

r05g0•~ru!5
1

V
or r5

m

EV
5

1

g0•vV
. ~273!

To separate velocity and spin variables, we follow the p
cedure beginning with~80! to make the spacetime split

R5LU where U5U0e2 ip/\. ~274!

Inserting this into~263!, we can expressL in terms ofp and
g0 , as already shown in~88!. The rotorU describes the spin
direction in the same way as in the Pauli theory in GA1.

C. The classical limit

One way to get a classical limit is through an ‘‘eikon
approximation’’ to the Dirac equation. Accordingly, the wa
function is set is the form

c5c0e2 iw/\. ~275!

Then the ‘‘amplitude’’c0 is assumed to be slowly varyin
compared to the ‘‘phase’’w, so the derivatives ofc0 in the
Dirac equation can be neglected to a good approximat
Thus, inserting~275! into the Dirac equation, say in the form
~192!, we obtain

~¹w2eA!eib5mv. ~276!

As in the plane wave case~265! this implieseib561, and
the two values correspond to electron and positron solutio
For the electron case,

¹w2eA5mv. ~277!
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This defines a family of classical histories in spacetime. F
a given external potentialA5A(x), the phasew can be
found by solving the ‘‘Hamilton-Jacobi equation’’

~¹w2eA!25m2, ~278!

obtained by squaring~277!. On the other hand, the curl o
~277! gives

m¹∧v52e¹∧A52eF. ~279!

Dotting this withv and using the identity

v̇5v•~¹∧v !5v•¹v, ~280!

we obtain exactly the classical Lorentz force for each strea
line. Inserting~279! into ~287!, we obtain

V5
e

m
F1~m1eA•v !S21, ~281!

whence the rotor equation~259! assumes the explicit form

Ṙ5
e

2m
FR2Ri~m1eA•v !/\. ~282!

This admits a solution by separation of variables:

R5R0e2 iw/\, ~283!

where

Ṙ05
e

2m
FR0 ~284!

and

ẇ5v•¹w5m1eA•v. ~285!

Equation~284! is identical to the classical rotor equation~99!
with Lorentz torque, while ~285! can be obtained from~277!.

Thus, in the eikonal approximation the quantum equat
for a comoving frame differs from the classical equation on
in having additional rotation in the spin plane. Quantum m
chanics also assigns energy to this rotation, and an exp
expression for it is obtained by inserting~281! into ~246!,
with the interesting result

p•v5m1
e

m
F•S. ~286!

This is what one would expect classically if there were so
sort of localized motion in the spin plane. Note that the hi
frequency rotation rate~272! due to the mass is shifted by
magnetic type interaction. That possibility is considered
low.

The two kinds of solutions distinguished by the values
b in ~266! and ~276! suggest thatb parametrizes an admix
ture of particle–antiparticle states. Unfortunately, that is
consistent with more general solutions of the Dirac equati
such as the Darwin solutions for the hydrogen atom. O
way out of the dilemma is simply to assert that it shows
need for second quantization, but that solution is too fac
without further argument.

D. Quantum torque

Having gained some physical insight from special cas
let us turn to the derivation of a general equation for a Di
streamline. For this purpose, we know that the rotor equa
~259! is optimal. All we need is an explicit form for the
rotational velocityV defined by~260!. A general expression
711David Hestenes
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for V in terms of observables has been derived from
Dirac equation in two steps.17 The first step yields the inter
esting result

V52¹∧v1v•~ i¹b!1~m cosb1eA•v !S21. ~287!

But this tells us nothing about particle streamlines, becau
gives us the identity~280! for the velocity. The second ste
yields

2¹∧v1v•~ i¹b!5m21~eFeib1Q!, ~288!

whereQ has the complicated form

Q52eib$]mWm1 1
2~gm∧gn!@~Wm3Wn!S21#%~2! ,

~289!

whereA3B is the commutator product and

Wm5~reib!21]m~reibS!5]mS1S]m~ ln r1 ib!. ~290!

Hence,

V5
e

m
Feib1m21Q1~m cosb1eA•v !S21. ~291!

This is the desired result in its most general form.
Again we see the Lorentz torque in~291!, but multiplied

by the duality factoreib. Again the cases with opposit
charge are covered by cosb561, and that assignment sim
plifies the other terms in~291! as well. However, the value o
b is set by solving the Dirac equation, and in solutions
the hydrogen atom, for example,b is a variable function of
position that so far has defied physical interpretation.

The termQ in ~291! generalizes the ‘‘quantum force’’ term
that Bohm identifies in Schroedinger theory as respons
for quantum effects on particle motion.21 Like the ‘‘Lorentz
torque’’ it exerts a torque on the spin as well as a force on
motion, so let us callQ the quantum torque. From ~290! we
see thatQ is independent of normalization on the probabil
density r, as Bohm has observed for the quantum for
However, the striking new insight brought by the Dira
theory and made explicit by~289! and~290! is that the quan-
tum torque is derived from spin. To put it baldly: No spi
No quantum torque! No quantum force! No quantum effec
This may be the strongest theoretical evidence thatspin is an
essential ingredient of QM, not simply an ‘‘add-on’’ to more
basic quantum behavior.

Though Bohm never noticed it, the quantum force is s
dependent even in Schroedinger theory, provided it is
rived from Dirac theory.25

The expression~291! for V may be the best starting plac
for studying the classical limit. Theclassical limit can be
characterized first by]m ln r→0 and, say, cosb51, and, sec-

ond, by ]mS5vmṠ, which comes from assuming that on
the variation ofS along the history can affect the motion
Accordingly, ~289! reduces toQ5S̈, and for the limiting
classical equations of motion for a particle with intrinsic sp
we obtain

mv̇5~eF2S̈!•v, ~292!

mṠ5~eF2S̈!3S. ~293!

These coupled equations have not been seriously studied
course, they should be studied in conjunction with the spi
equation~259!.
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E. Zitterbewegung

Many students of the Dirac theory includin
Schroedinger27,28and Bohm22 have suggested that the spin
a Dirac electron is generated by localized particle circulat
that Schroedinger calledzitterbewegung~5 trembling mo-
tion!. Schroedinger’s original analysis applied only to fr
particles. However, the real Dirac theory provides a natu
extension of the interpretation to all solutions of the Dir
equation. Since the Dirac equation is the prototypical eq
tion for all fermions, the interpretation extends broadly
quantum mechanics. It has been dubbedthe zitterbewegung
(zbw) interpretation of quantum mechanics.29

The zbw interpretation can be regarded as a refinemen
the causal interpretation of QM, so it needs to be evalua
in the same light. Its main advantage is the simple, cohe
picture it gives for electron motion. Here is a brief introdu
tion to the idea.

We have seen that the kinematics of electron motion
completely characterized by the ‘‘Dirac rotor’’R in the in-
variant decomposition~204! of the wave function. The Dirac
rotor determines a comoving frame$em5RgmR̃% that rotates
at high frequency in thee2e1-plane, the ‘‘spin plane,’’ as the
electron moves along a streamline. Moreover, according
~286! there is energy associated with this rotation, indeed,
the rest energyp•v of the electron. These facts suggest th
theelectron mass, spin and magnetic moment are manife
tions of a local circular motion of the electron. Mindful that
the velocity attributed to the electron is an independent
sumption imposed on the Dirac theory from physical cons
erations, we recognize that this suggestion can be accom
dated by giving the electron a component of velocity in t
spin plane. Accordingly, we nowdefine the electron velocity
u by

u5v2e25e02e2 . ~294!

The choiceu250 has the advantage that the electron m
can be attributed to kinetic energy of self-interaction wh
the spin is the corresponding angular momentum.29

This new identification of electron velocity makes th
plane wave solutions more physically meaningful. Forp•x
5mv•x5mt, the kinematical factor for the solution~267!
can be written in the form

R5e~1/2!VtR0 , ~295!

whereV is the constant bivector

V5mS215
2m

\
e1e2 . ~296!

From ~295! it follows that v is constant and

e2~t!5eVte2~0!. ~297!

So u5 ż can be integrated immediately to get the electr
history

z~t!5vt1~eVt21!r 01z0 , ~298!

where r 05V21e2(0). This is a lightlike helix centered on
the Dirac streamlinex(t)5vt1z02r 0 . In the electron ‘‘rest
system’’ defined byv, it projects to a circular orbit of radius

ur 0u5uV21u5
\

2m
51.9310213 m. ~299!
712David Hestenes
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The diameter of the orbit is thus equal to an electron Com
ton wavelength. Forr (t)5eVtr 0 , the angular momentum o
this circular motion is, as intended, the spin

~mṙ!∧r 5mṙr 5mr2V5mV215S. ~300!

Finally, if z0 is varied parametrically over a hyperplane no
mal to v, Eq. ~298! describes a three-parameter family
spacetime filling lightlike helixes, each centered on a uniq
Dirac streamline. According to the causal interpretation,
electron can be on any one of these helixes with unifo
probability.

Let us refer to this localized helical motion of the electr
by the namezitterbewegung~zbw! originally introduced by
Schroedinger. Accordingly, we callv5V•S the zbw fre-
quencyandl5v21 the zbw radius. The phase of the wave
function can now be interpreted literally as the phase in
circular motion, so we can refer to that as thezbw phase.

Although the frequency and radius ascribed to thezbware
the same here as in Schroedinger’s work, its role in
theory is quite different. Schroedinger attributed it to int
ference between positive and negative energy componen
a wave packet,27,28whereas here it is associated directly w
the complex phase factor of a plane wave. From the pre
point of view, wave packets and interference are not esse
ingredients of thezbw, although the phenomenon noticed b
Schroedinger certainly appears when wave packets are
structed. Of course, the present interpretation was not an
tion open to Schroedinger, because the association of the
imaginary with spin was not established~or even dreamed
of!, and the vectore2 needed to form the spacelike comp
nent of thezbw velocity uwas buried out of sight in the
matrix formalism. Now that it has been exhumed, we can
that thezbwmay play a ubiquitous role in quantum mecha
ics. The present approach associates thezbwphase and fre-
quency with the phase and frequency of the complex ph
factor in the electron wave function. This is the central fe
ture of thethe zitterbewegung interpretationof quantum me-
chanics.

The strength of thezbw interpretation lies first in its co-
herence and completeness in the Dirac theory and secon
the intimations it gives of more fundamental physics. It w
be noted that thezbw interpretation is completely genera
because the definition~294! of the zbw velocity is well de-
fined for any solution of the Dirac equation. It is also pe
fectly compatible with everything said about the causal
terpretation of the Dirac theory. One need only recognize
the Dirac velocity can be interpreted as the average of
electron velocity over azbwperiod, as expressed by writin

v5ū. ~301!

Since the period is on the order of 10221 s, it isv rather than
u that best describes electron motion in most experimen

Perhaps the strongest theoretical support for thezbwinter-
pretation is the fact that it is fundamentally geometrical
completes the kinematical interpretation ofR, so all compo-
nents ofR, even the complex phase factor, characterize f
tures of the electron history.

Thekey ingredientsof thezbw interpretation are the com
plex phase factor and the energy-momentum operatorspm
defined by~223!. The unit imaginaryi appearing in both of
these has the dual properties of representing the plan
which zbwcirculation takes place and generating rotations
that plane. The phase factor literally represents a rotation
713 Am. J. Phys., Vol. 71, No. 7, July 2003
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the electron’s circular orbit in the spin plane. Operating
the phase factor, thepm computes the phase rotation rates
all spacetime directions and associates them with the e
tron energy-momentum. Thus, thezbw interpretation ex-
plains the physical significance of the mysterious ‘‘quantu
mechanical operators’’pm .

The key ingredients of thezbwinterpretation are preserve
in the nonrelativistic limit and so provide azitterbewegung
interpretation of Pauli–Schroedinger theory. The nonrelativ-
istic approximation to the STA version of the Dirac theor
leading through the Pauli theory to the Schroedinger the
has been treated in detail elsewhere.16 But the essential poin
can be seen by a split of the Dirac wave functionc into the
factors

c5r1/2eib/2LUe2 i~m/\!t. ~302!

In the nonrelativistic approximation three of these factors
neglected or eliminated andc is reduced to the Pauli wav
functioncP5r1/2U, where the rotorU retains the portion of
the phase that is influenced by external interactions.

It follows that even in the Schroedinger theory the pha
w/\ describes thezbw, and]mw describes thezbwenergy and
momentum. This implies that the physical significance of
complex phase factore2 i(w/\) is kinematical rather than logi
cal or statistical as so often claimed.

The zbw interpretation has the potential to explain mu
more than the electron spin and magnetic moment,29–31but it
remains to be seen if that is a fruitful direction for resear

One interesting direction for future research is applicat
of Feynman’s path integral methods in real quantum theo
Suppose that the electron state at each pointx is character-
ized by a spacetime rotorRk(x) for each path to the point
Feynman’s complex phase factor can then be incorporate
the Rk(x) as part of the zbw path, and spin will be include
automatically. It is easy to prove that the sum over paths w
then produce a wave function of the general form

c~x!5(
k

Rk~x!5~reib!1/2R. ~303!

Thus, the factor (reib)1/2 arises from superposition, whic
supports its interpretation as a statistical factor and m
thereby explain the origin of the troublesome parameterb.

IX. STA IN THE PHYSICS CURRICULUM

I claim that the physics curriculum at all levels can
thoroughly unified and considerably simplified by adopti
STA as the core mathematical language of physics. The
guage is fully developed and ready to use. Setting the poli
of curriculum reform aside, let us consider how a forwar
looking physics department could incorporate STA into
curriculum.

In GA1 I made the case for adopting GA as the ma
ematical language of physics from the outset of the fi
course. For the sake of argument, let us suppose that
been done. Presumably, the students will have develo
some proficiency with GA by the end of the first semester,
the first year, at least. That, I propose, is the ideal time
introduce the rudiments of STA, with the objective of deve
oping student capacity for spacetime thinking as early
possible. This step is not so radical as might be supposed
the fundamental geometric product defining STA in Sec. I
nearly the same as the defining product introduced in G
713David Hestenes
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for classical physics, the main difference being the signa
of spacetime and its geometric role in characterizing the li
cone. Moreover, the spacetime split in Sec. III makes it p
sible to interrelate relativistic and nonrelativistic physi
without appeal to Lorentz transformations. That enables
dents immediately to reason with relativistic invariants a
acquire a working knowledge of such important physi
concepts as mass-energy equivalence, energy-mome
conservation, and time dilation. This portion of the curric
lum is easily constructed from available materials.7

Early introduction to STA will make it available through
out the rest of the curriculum, so it will be possible to mo
fluently between relativistic and nonrelativistic treatments
any topic, whatever is most appropriate. Wasted time in tr
ing a topic both relativistically and nonrelativistically in di
ferent courses will be eliminated. The usual junior lev
course in electrodynamics will be able to take full advanta
of the simplifications brought by the STA treatment in Se
V and VI. Finally, the senior level quantum mechani
course will be able to deal with the real Dirac equation fro
the outset. I daresay that this would be an eyeopener to m
physicists.14

It should be recognized that this unprecedented simp
cation of classical, relativistic, and quantum physics is
abled by two profound STA innovations: First, a comm
spinor method for rotations and rotational dynamics. Seco
a universal concept of vector derivative.

Of course, the wholesale reconstruction of the physics
riculum proposed here will be a formidable task, though
the pieces are at hand. Who will volunteer to get it starte

Note: Most of the papers listed in the references are av
able on line at ^http://modelingnts.la.asu.edu& or ^http://
www.mrao.cam.ac.uk/;clifford/&.
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Boston, 2000!, pp. 49–71.

16D. Hestenes, ‘‘Observables, operators and complex numbers in the D
theory,’’ J. Math. Phys.16, 556–572~1975!.

17D. Hestenes, ‘‘Local observables in the Dirac theory,’’ J. Math. Phys.14,
893–905~1973!.

18S. Gull, A. Lasenby, and C. Doran, ‘‘Imaginary numbers are not real-
geometric algebra of spacetime,’’ Found. Phys.23, 1175–1202~1993!.

19D. Hestenes, ‘‘Real spinor fields,’’ J. Math. Phys.8, 798–808~1967!.
20J. P. Crawford, ‘‘On the algebra of Dirac bispinor densities,’’ J. Ma

Phys.26, 1439–1441~1985!.
21J. Cushing,Quantum Mechanics—Historical Contingency and the Cop

hagen Hegemony~Univ. of Chicago, Chicago, 1994!.
22D. Bohm and B. Hiley,THE UNDIVIDED UNIVERSE, An Ontologica

Interpretation of Quantum Theory~Routledge, London, 1993!.
23P. Holland, Quantum Theory of Motion~Cambridge U. P., Cambridge

1993!.
24C. Philippidis, C. Dewdney, and B. J. Hiley, ‘‘Quantum Interference a

the Quantum Potential,’’ Nuovo Cimento Soc. Ital. Fis., B52B, 15–28
~1979!.

25J.-P. Vigier, C. Dewdney, P. R. Holland, and A. Kypriandis, ‘‘Causu
particle trajectories and the interpretation of quantum mechanics,’
Quantum Implications, edited by B. J. Hiley and F. D. Peat~Routledge and
Kegan Paul, London, 1987!.

26R. Gurtler and D. Hestenes, ‘‘Consistency in the formulation of the Dir
Pauli and Schroedinger theories,’’ J. Math. Phys.16, 573–583~1975!.

27E. Schroedinger, Sitzungsber. Preuss. Akad. Wiss., Phys. Math. Kl.24, 418
~1930!.

28K. Huang, ‘‘On the Zitterbewegung of the electron,’’ Am. J. Phys.47, 797
~1949!.

29D. Hestenes, ‘‘The Zitterbewegung Interpretation of Quantum Mech
ics,’’ Found. Phys.20, 1213–1232~1990!.

30D. Hestenes, ‘‘Quantum Mechanics from Self-Interaction,’’ Found. Ph
15, 63–87~1985!.

31E. Recami and G. Salesi, ‘‘Kinematics and hydrodynamics of spinn
particles,’’ Phys. Rev. A57, 98–105~1998!.
714David Hestenes


