Aberration of light in a uniformly moving optical medium
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The transverse Fresnel—Fizeau light drag in the presence of a nondispersive homogeneous optical
medium in uniform rectilinear motion is explained by using a simple Huygens’ construction. As a
consequence of the motion of the medium, the wavefront of every individual secondary wavelet is
an ellipse partially dragged by the moving medium. The resulting formula agrees with the
experiment by Jones in the early 1970s and with Fresnel’s formula for transverse light drag4 ©
American Association of Physics Teachers.
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I. INTRODUCTION tical black holes would be observable only if the speed of
rotation of the medium exceeded the speed of light in the
The first step toward a theoretical understanding of theyctual medium. A possible way to overcome this difficulty is
effects on light propagation in moving media was made by ytilize a so-called “slow light” medium, in which the
Fresnel in his pioneering work in 1818y considering light speed of the light is drastically reduced to several meters per
as a mechanical wave propagating through the luminiferouga.ond® These “slow light” materials also can be used for
ethg_r, Fresnelldp:jedictec(jj thattrt]he vel(l)citg ?\Ivlight ;ﬂ alm?}\tlmgincreasing the light drag considerably when the medium is
medium would depend on the angle between the hgnt ra oving at constant velocity. Furthermore, under certain con-
and the direction of motion of the medium. According to itions, a vortex flow in a fluid can cause other less dramatic,

Fresnel, in the presence of a dispersionless medium in ung— : . .

form rectilinear motion at constant speaglight propagat- ut equally interesting phenomena, such as an optical analog

: - : of the Aharonov—Bohm effect

ing parallel to the motion of the medium would have a ve- : . . . _—
The purpose of this paper is to provide additional insight

locity component*+u(1—1/n?) in addition to its phase . . o ) .
velocity ¢/n which it would have if the medium were at rest. m_to the mot|on of "ght In a moving me.d'“”?- Although we
e\pl!” restrict our attention to optical medium in uniform rec-

The si f thi itional hethel . . .
e sign of this additional component depends on whet glmear motion, our analysis should be extendible to more

the light and the medium are moving in the same or opposit i d situati h h f iforml
directions. The formula for the light velocity was verified OMplicated situations, such as the case of a nonuniformly

experimentally by Fizeatiand since then the effect is known Moving “slow light” material. The last statement can be
as the longitudinal Fresnel—Fizeau light drag. Later investiclarified by the fact that the curved space—time that the light
gations showed that if the dispersion of the medium is takenfeels” while propagating through a nonuniformly moving
into account, an extra term also must be consid@red. medium can be considered as being locally flat, consisting of
Almost a century later, Fresnel's naive approach was rea large number of different local inertial reference frames
vised, and the resulting formula was confirmed in the framev+elated to each other in a way determined by the curvature
work of Einstein’s theory of special relativiyand the mod-  tensor'
ern formulation of electrodynamics of moving medi@he We will consider a hypothetical case of a nondispersive
theory of electrodynamics of moving media has certain admaterial medium, which should work well if the dispersion
vantages over a purely special relativistic approach. It apin the real material is so small that correcting terms due to
pears to be an irreplaceable mathematical tool for describingiispersion cannot be detected by the measuring equipment.
the advancement of the wavefront of the light beam througle will argue that Huygens’ construction can still be used as
a uniformly moving boundary separating two media, each of; ray-tracing tool in a dispersionless optical medium in uni-
which is in uniform rectilinear motion at a different speed in oy rectilinear motion if it is applied to the distorted sec-
a different direction(see Fig. 1. This example is one for ohqary wavelets. We will investigate a special case of refrac-
which the standard Lorentz transformation procedure is NGy, of light, a situation for which the plane surface of the
applicable, because t_here IS no re_zf_erence f_rame in which ¢ oving medium, on which the light is incident, is parallel to
boundary and the optical media divided by it are all at rest a e motion of the medium. The law of refraction obtained in

the same time. In other words, there exists no referenc is manner will be used for describing an experiment b
frame in which Snell’'s law of refraction takes place, so there ' 213 - Wit us 'bing xper y
Jones>®in which a light-beam probe is allowed to pass

is nothing to be Lorentz transforméd. h h : sk £ al llel to i is of
Of particular recent theoretical and experimental interest i§170ugh @ rotating disk made of glass, parallel to its axis o

light propagation through a nonuniformly moving mediém. fotation. The setup is an analogue to that of Fizeaut here

In this case, the light actually “sees” the moving medium asthe |n.C|dent.I|ght enters the medium perpendicularly to the
an effective gravitational field. This optical analog of a direction of its motion.

curved space-time could provide a laboratory test bed for Our procedure will replace the sophisticated mathematical
general relativity. One could simply create an optical blackapparatus of the electrodynamics of moving media by the
holé® in an ordinary glass of rotating water, and then, forsimpler problem of using ordinary plane geometry and el-
example, investigate what would be the equivalent of Hawkementary analysis to analyze the propagation of light in a
ing radiation’ However, precise calculations showed that op-uniformly moving optical medium.
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Fig. 1. The general case of light refraction between uniformly moving me-
dia. Observe that, in addition to the motion of the media, the boundary als

S : i ) %ig. 2. In the reference frant® where the medium is at rest, the wavefront
is in uniform rectilinear motion.

of the elementary wavelet represents a circle with radas)t’.

Il. HUYGENS’ CONSTRUCTION IN A MOVING of Eq. (2), we expect that the shape of the secondary wavelet
MEDIUM will become substantially different if viewed from a frame of
reference in which the medium is moving at constant

To trace the path of an arbitrary light beam through a
medium, a Huygens’ construction can be employed. It state¥
that every point that belongs to the primary wavefront at . . ) ; .
some timet, serves as an elementary source of secondar |m§n3|o_nal wayefrontt |fn thde reflergtnce Tra&e:hwmch .tthe
wavelets which spread in all directions with the same fre- edium 1S moving at fixed velocityl along the positive

quency and velocity as the primary wavefront. The envelopdlirection of theX axis, can be done by applying the Lorentz
of these wavelets is the wavefront of the light beam at a latefr@nsformations formulas,

elocity®
The analytical description of the distorted elementary two-

time ty+ At. If the medium through which light propagates x—ut t—(ux)/c
is made of an optically isotropic substance, then the lightray x'=———, y'=y, t'=————, ©)
can be constructed as a line normal to every subsequent V1—(u/c)? V1-(u/c)?

; 4
wavefront at all times: . to the relation
If the light propagates through a vacuum, the evolution of

the wavefront of an arbitrary secondary wavelet is governed _ , , (C 2 ,2
by Xy t=( o) U 4
n
X*+y?+2%=c?t?, 1) Equation(4) describes the evolution of the elementary light

The wavefront of the elementary source is an expandin@mse observed in the reference fragfewhere the medium

sphere whose radius at tinhés ct, wheret is the time mea- IS at rest(see Fig. 2 By making a transition fron§’ to S
sured from the beginning of the emission of the wavelet, andsing Eq.(3), we arrive at
c is the speed of light in vacuum. If the propagation of light u2
is observed from a frame of reference in which the optical ~ (x—ut)®+y? 1— —
system is moving in a straight line with constant velocity, the ¢
shape of the wavelet remains unchanged because the equhe wavefront of the wavelet as viewed frdris no longer
tion of the elementary wavefront is invariant under Lorentza circle, but an ellipse partially dragged by the moving me-
transformations. dium (Fig. 3. As long as the speed of the mediumis
However, a problem arises when we are dealing with lightsmaller than c/n, the wavefront will be incompletely
propagating through a medium. In the presence of a homQyragged and the origin of the elementary wavelet will remain

geneous, isotropic, and nonconducting transparent mediufiqide the ellipse. Otherwise, dfn<u<c, which is the case

at rest,_the evqlution of the wavefront of the elementaryof light propagation in a medium moving at superluminal
source is described by

velocity, the dragging is overwhelming and the ellipse no
c\?2 longer encloses the origifiFig. 4).
12 12 12 _ 12 . h . .
X'“Hy't+zie=| —) e 2 By a careful examination of the plot shown in Fig. 3 of
n

_ o _ o Eq. (5) for the casau<c/n, we conclude that the speed of
wheren is the refractive index of the medium in its rest light in a uniformly moving optical medium depends on the
frame. It can be easily demonstrated that E).is not in-  angled between the direction of propagation of the light and
variant under Lorentz transformations due to the extra factothe velocity of the medium. In this way, a medium that is
of n? on the right-hand side. As a result of the noninvarianceoptically isotropic in its rest frame, possesses an optical an-

1

_n2

ct——
C

®

ux)2
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Fig. 5. Huygens’ construction of the refracted wavefront when the medium
on which the light is incident moves at constant velocitjo the right.

Fig. 3. As a consequence of the motion of the medium, the wavefront of the

elementary wavelet is no longer a circle, but an ellipse partially dragged b)homogeneous transparent media from the reference frame in

the moving medium. The figure is a sketch of the situation when the speegvhich the entire system moves to the right at constant veloc-

of the mediumu is less tharc/n. Note that the dragged ellipse possesses an. . . . . P

axial symmetry with respect to thé axis, ity u (Fig. 5. We take the medium in which the incident
wavefront propagates to be a vacuum, and the boundary be-
tween the vacuum and the material medium to coincide with

isotropy when observed from the frame in which the mediuri€ X axis. We denote by the refractive index of the me-
is in uniform rectilinear motion. The situation becomes moredium in its rest frame. The aim is to derive the formula that
interesting for the case/n<u<c shown in Fig. 4, where connects the angle of incideneeto the angle of refraction
the superluminal motion of the medium causes the existence: — o ) )
of a Mach cone, outside of which no light ever reaches. The wavefrontAB of the incident plane-polarized light
beam sweeps across the boundary starting at gairdaus-
ing the atoms along the interface to radiate secondary wave-
lIl. REFRACTION BETWEEN MOVING MEDIA lets. After the timet needed for the incident wavefront to

The idea behind the analysis is to trace the advancemem¢ach the final pointD, the wavefront of the secondary
of the wavefront in a moving nondispersive medium by ap-wavelet originating from the elementary sourceAatis a
plying the Huygens—Fresnel principle to the distorted secdragged ellipse whose shape is described by (By. The
ondary v_vavelets. We will investigate the refraction O_f an ar-envelope of all the elementary wavelets whose sources lie
bitrary light beam on a plane boundary separating twoyongAD is the distance€€D, which is the wavefront of the
refracted light. The distanc€D belongs to the liney,
y =V,(x), which is a tangent line of all the elementary wave-
A fronts. Due to the apparent anisotropy of the moving me-
S dium, the line segment&C and CD are not orthogonal to
each other, which is readily observable from Fig. 5. As a
consequence, the ray and the normal to the wavefront are not
identical in this case.

The equation of the tangent line is

Yi—Yo=

dy
&) (X=Xo). (6)

Xo0:Yo

v

X We have taken into account that the tangent line touches the
elementary wavefront emanating from the initially disturbed
point A at the pointC (Xq,Yo), Which implies that the slope
of the wavefront at the poin€ coincides with the slope of
the tangent ling/;=y,(x). By taking the derivative with re-
spect tox of Eq. (5) at the point &g,Yyo), we obtain

1 u?
dy ut(l—?)—xo l—w)
_> = UZ) . (7)

X
X0:Yo 1- —
Yo o2

Fig. 4. lllustration of the dragging effect when the optical medium is mov- (
ing at a superluminal velocityc(n<u<c).

936 Am. J. Phys., Vol. 72, No. 7, July 2004 Aleksandar Gjurchinovski 936



Then, the equation of the tangent line can be written as

1 2
ut 1—?)—X0 1_W)
Yt—Yo= 02 (X—Xo). €S)
-3

The tangent line intersects the interface at the pbirfd,0).
Therefore, the pointd,0) satisfies Eq(8). Then, by setting
x=d andy;=0 in Eq.(8), we have

1 u?
ut 1—F —Xg 1—W
—Yo= Y (d—Xo). 9
-z

The point of tangencyC belongs to the elementary wave-
front emitted fromA, which means that the coordinate point

(Xg,Yo) satisfies Eq(5), that is,

u?) 1 uxg\?
(xo—ut)2+y§( 1— ?) = —Z(Ct— —XO) .

n c (10

By solving Egs.(9) and(10) for x, andy,, we obtain

n2u?

(nz—l)utd+czt2(1——cz—

XOZ 2 y (11)
nd l—u— —ut(n®-1)

n?c?
and

t\/l uz\/zd t)2 t udy®
c i n<(d—ut) C c

Yo= 7 . (12

u
nzd(l— W) —ut(n2—1)

Here we take only the positive solution y, which is the

air

o< << <
/ / / AN
# 3 \\,‘, \/ \Y N

air / ¢ AN

Fig. 6. Modified version of the famous Fizeau's experiment.

If we let u<c, so thatu/c~0, we see that Eq15) reduces

to the usual Snell’s law of refraction
sine=nsinp. (16

It is possible to derive Eq15) by using Lorentz transforma-
tions (see the Appendjx

IV. ABERRATION OF LIGHT IN A MOVING
MEDIUM

In the following we consider a modified version of
Fizeau's historic experimeft.Unlike the original experi-

one that corresponds to the actual situation. It is evident fronf?€nt, we take the incident light to be perpendicular to the

Fig. 5 that tamB=x,/y,. By taking into account Eqg11)
and(12), we have

, ,ud n?u?
n“-1)——+|1-—-
( )c ct c?
ang= .
d u\? ud)? u?
n| ———| —{1--—— 1-—
ct ¢ cct c
(13
From the triangleABD, we have
d —l 14
ct sina’ (14

We substitute Eq(14) into Eqg. (13) and find the law of
refraction of the wave

u nZu?\
(N°=1)=+| 1- —|sina
C c
tanpB= .
T u\? u?
n2| 1— —sina| —| sina—— 1-—
c c c
(15
937 Am. J. Phys., Vol. 72, No. 7, July 2004

direction of the motion of the flui¢see Fig. 6. As a result of
the dragging effect, the boundary rays of the incident wave-
front will undergo a continual deflection toward the right as
the wave propagates through the moving water.

By tracing the path of the light wave through the optical
air—water—air assemblage, we find that the outgoing light
will emerge parallel to the incoming light and will be dis-
placed to the right by the distance From Fig. 6, we have

q

tang= 5, 17

whereD is the thickness of the layer. The refraction of the

light beam from the layer is in agreement with E&5) if we
take the incident angle to be zera€0). Thus,

1\ u

n__ —

nlc
\/ u? \/ u?
1-——\/1- =
n2c? c?

wheren is the refractive index of the fluid at rest. We sub-
stitute Eq.(17) into Eq. (18) to find

tangB= , (18)
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light beam Fig. 8. Refraction of light from a material medium observed in the reference

frame S’ where the medium is at rest.

Fig. 7. Simplified presentation of the experiment performed by JRefs. modification is in perfect agreement with the experiment.

12 and 13 T?glgormula that replaces E(O) for a dispersive material
ist"
Du ( 1 Du ( 1 ) 2
c n c\ 9 n,
a= 12 u2' (19 to first order inu/c. Here,n,, is the phase refractive index of
\/1_ _\/1_ _ the medium, which is a function of the frequentyof the
n2c? c? light, and ng is its group refractive index related tw, by

ng=n,+fdn,/df. For a low dispersive mediumg~n,
=n, Eqg.(21) reduces to Eq(20).

The derivation of Eq(21) by a procedure similar to the
one used here is an open question, and we leave it as a
Du 1 subject for future study. We expect that the method of analy-
a~—= 1" 5l (20 sis in this paper can be applied to more complicated configu-

) o ) rations, such as the one shown in Fig. 1, where in addition to
Equation (20) is identical to the Fresnel formula for the he motion of the media, the boundary between them also is
transverse aberrat|on1§)f lighThe result was experimentally moving at constant velocity. We believe that the method also
confirmed by Joné&® for white light passing through & ¢ould lead to a simpler and more intuitive approach to the

rapidly rotating disk made of a low-dispersive glass, parallelyoplem of light propagation through a nonuniformly mov-
to its axis of rotatior(Fig. 7). In this caseq is the tangential  ing material medium.

displacement of the light beam due to the dragging effect
caused by the motion of the disk,is the tangential speed of

the rotating disk in the region of passa@ejs the thickness APPENDIX
of the disk, anch is the refractive index of the glass.

For u<c, we can expand the right-hand side of EfQ) in
powers ofu/c and neglect all the second and higher order
terms to obtain

In reference frames' where the whole system is at rest
(Fig. 8), Snell’s law of refraction is

We have presented an alternative approach to the propa- sina’=nsing’, (AL)
gation of light in a nondispersive optical material in uniform and the velocity components of the propagating light beam
rectilinear motion. We have limited our discussion to a speare
cific geometry of light refraction, where we considered the
surface of the material, on which the light is incident, to be
parallel to the motion of the material. This sort of arrange-
ment gave us an opportunity to compare our derivation with
the results of the experiment by Jones to measure the trans-
verse Fresnel—Fizeau light drag effect. Our conclusions are v, = —sing’, (A4)
in agreement with the result of the experiment, and matches z2.n
the one derived by Fresnel for transverse light drag. c

However, when the rotating disk used in the experiment is v)’,2= —cosp’. (A5)
made of a highly dispersive glass material, a significant en- n
hancement of the drag effect was notic8di this case, the In the reference fram& where the medium is in uniform
value of the displacemerg of the beam was found to be rectilinear motion to the rightFig. 9), the components of the
different from the one predicted by E@O). It has been velocity of the light beam are
showrt”*8 that the original Fresnel formula is modified by
the presence of an additional term due to dispersion, and this

V. CONCLUDING REMARKS

v)’(lzcsina’, (A2)

v§l= ccosa’, (A3)

vy, =Csina, (AB)
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Fig. 9. Refraction observed in the reference frésnehere the medium is in
uniform rectilinear motion.

vy, =CCosa, (A7)
vX2=vﬁsin,8, (A8)
vy, =V COSB, (A9)

wherev 4 refers to the velocity of the light beam in the mov-
ing medium in the direction determined by the angleThe

X components of the velocity of the incident light $1and
S’ are connected to each other by

Uy, —U
v, = . A10
>(l B qul ( )
o2
If we use Eqs(A2) and(A6), we have
) u
sina— —
C
sina’ = J (A11)
1- =sina
c
By applying Eq.(Al), we have
. u
sina—
sing = 0 (A12)
1-—sina
c

Then, by using Eq(A12), Egs.(A4) and (A5) become

] u
SINa— —
, c
e R TR (A13)
1-— —sina
c
and
, ¢ 1 \/2 u .\ (u 2
vyz—r?u— n 1—Esma - E—sma .
1-—sina
c
(A14)

vy TU
2
Uy, = ; (Al15)
2 Uvy,
+
1 2
u
! C2
Uyzzvszv),( (A16)
s

By eliminatingv ; from Eqgs.(A8) and(A9), and using Egs.
(A15) and(A16), we have

UX2
tang=—

vg+u

(A17)

Finally, we substitute EqgA13) and (A14) into Eq. (A17)
and obtain

nZu?\
1——2 SN«
C C

u 2 u\? u?
n?( 1— —sina| —| sina—— 1-—
c c c
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VISUALIZING PHYSICS

| found out that the main ability to have was visual, and also an almost tactile, way to imagine
the physical situations, rather than a merely logical picture of the problems.

The feeling for problems in physics is quite different from purely theoretical mathematical
thinking. It is hard to describe the kind of imagination that enables one to guess at or gauge the
behavior of physical phenomena. Very few mathematicians seem to possess it to any great degree.
Johnny,[von Neumanihfor example, did not have to any extent the intuitive common sense |and
“gut” feeling or penchant for guessing what happens in given physical situations. His memory
was mainly auditory, rather than visual.

Stanislaw M. UlamAdventures of a Mathematicigi€harles Scribner’s Sons, 198Reprinted inThe World Treasury of
Physics, Astronomy, and Mathematitsttle, Brown and Company, Boston, MA, 1991p. 710.
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