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The transverse Fresnel–Fizeau light drag in the presence of a nondispersive homogeneous optical
medium in uniform rectilinear motion is explained by using a simple Huygens’ construction. As a
consequence of the motion of the medium, the wavefront of every individual secondary wavelet is
an ellipse partially dragged by the moving medium. The resulting formula agrees with the
experiment by Jones in the early 1970s and with Fresnel’s formula for transverse light drag. ©2004

American Association of Physics Teachers.
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I. INTRODUCTION

The first step toward a theoretical understanding of
effects on light propagation in moving media was made
Fresnel in his pioneering work in 1818.1 By considering light
as a mechanical wave propagating through the luminifer
ether, Fresnel predicted that the velocity of light in a movi
medium would depend on the angle between the light
and the direction of motion of the medium. According
Fresnel, in the presence of a dispersionless medium in
form rectilinear motion at constant speedu, light propagat-
ing parallel to the motion of the medium would have a v
locity component6u(121/n2) in addition to its phase
velocity c/n which it would have if the medium were at res
The sign of this additional component depends on whe
the light and the medium are moving in the same or oppo
directions. The formula for the light velocity was verifie
experimentally by Fizeau,2 and since then the effect is know
as the longitudinal Fresnel–Fizeau light drag. Later inve
gations showed that if the dispersion of the medium is ta
into account, an extra term also must be considered.3

Almost a century later, Fresnel’s naive approach was
vised, and the resulting formula was confirmed in the fram
work of Einstein’s theory of special relativity4 and the mod-
ern formulation of electrodynamics of moving media.5 The
theory of electrodynamics of moving media has certain
vantages over a purely special relativistic approach. It
pears to be an irreplaceable mathematical tool for describ
the advancement of the wavefront of the light beam throu
a uniformly moving boundary separating two media, each
which is in uniform rectilinear motion at a different speed
a different direction~see Fig. 1!. This example is one for
which the standard Lorentz transformation procedure is
applicable, because there is no reference frame in which
boundary and the optical media divided by it are all at res
the same time. In other words, there exists no refere
frame in which Snell’s law of refraction takes place, so the
is nothing to be Lorentz transformed.6

Of particular recent theoretical and experimental interes
light propagation through a nonuniformly moving medium7

In this case, the light actually ‘‘sees’’ the moving medium
an effective gravitational field. This optical analog of
curved space-time could provide a laboratory test bed
general relativity. One could simply create an optical bla
hole8 in an ordinary glass of rotating water, and then,
example, investigate what would be the equivalent of Haw
ing radiation.9 However, precise calculations showed that o
934 Am. J. Phys.72 ~7!, July 2004 http://aapt.org/ajp
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tical black holes would be observable only if the speed
rotation of the medium exceeded the speed of light in
actual medium. A possible way to overcome this difficulty
to utilize a so-called ‘‘slow light’’ medium, in which the
speed of the light is drastically reduced to several meters
second.10 These ‘‘slow light’’ materials also can be used fo
increasing the light drag considerably when the medium
moving at constant velocity. Furthermore, under certain c
ditions, a vortex flow in a fluid can cause other less drama
but equally interesting phenomena, such as an optical an
of the Aharonov–Bohm effect.11

The purpose of this paper is to provide additional insig
into the motion of light in a moving medium. Although w
will restrict our attention to optical medium in uniform rec
tilinear motion, our analysis should be extendible to mo
complicated situations, such as the case of a nonunifor
moving ‘‘slow light’’ material. The last statement can b
clarified by the fact that the curved space–time that the li
‘‘feels’’ while propagating through a nonuniformly movin
medium can be considered as being locally flat, consisting
a large number of different local inertial reference fram
related to each other in a way determined by the curva
tensor.11

We will consider a hypothetical case of a nondispers
material medium, which should work well if the dispersio
in the real material is so small that correcting terms due
dispersion cannot be detected by the measuring equipm
We will argue that Huygens’ construction can still be used
a ray-tracing tool in a dispersionless optical medium in u
form rectilinear motion if it is applied to the distorted se
ondary wavelets. We will investigate a special case of refr
tion of light, a situation for which the plane surface of th
moving medium, on which the light is incident, is parallel
the motion of the medium. The law of refraction obtained
this manner will be used for describing an experiment
Jones,12,13 in which a light-beam probe is allowed to pa
through a rotating disk made of glass, parallel to its axis
rotation. The setup is an analogue to that of Fizeau,2 but here
the incident light enters the medium perpendicularly to
direction of its motion.

Our procedure will replace the sophisticated mathemat
apparatus of the electrodynamics of moving media by
simpler problem of using ordinary plane geometry and
ementary analysis to analyze the propagation of light in
uniformly moving optical medium.
934© 2004 American Association of Physics Teachers
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II. HUYGENS’ CONSTRUCTION IN A MOVING
MEDIUM

To trace the path of an arbitrary light beam through
medium, a Huygens’ construction can be employed. It sta
that every point that belongs to the primary wavefront
some timet0 serves as an elementary source of second
wavelets which spread in all directions with the same f
quency and velocity as the primary wavefront. The envelo
of these wavelets is the wavefront of the light beam at a la
time t01Dt. If the medium through which light propagate
is made of an optically isotropic substance, then the light
can be constructed as a line normal to every subseq
wavefront at all times.14

If the light propagates through a vacuum, the evolution
the wavefront of an arbitrary secondary wavelet is gover
by

x21y21z25c2t2. ~1!

The wavefront of the elementary source is an expand
sphere whose radius at timet is ct, wheret is the time mea-
sured from the beginning of the emission of the wavelet, a
c is the speed of light in vacuum. If the propagation of lig
is observed from a frame of reference in which the opti
system is moving in a straight line with constant velocity, t
shape of the wavelet remains unchanged because the e
tion of the elementary wavefront is invariant under Loren
transformations.

However, a problem arises when we are dealing with li
propagating through a medium. In the presence of a ho
geneous, isotropic, and nonconducting transparent med
at rest, the evolution of the wavefront of the elementa
source is described by

x821y821z825S c

nD 2

t82, ~2!

where n is the refractive index of the medium in its re
frame. It can be easily demonstrated that Eq.~2! is not in-
variant under Lorentz transformations due to the extra fa
of n2 on the right-hand side. As a result of the noninvarian

Fig. 1. The general case of light refraction between uniformly moving m
dia. Observe that, in addition to the motion of the media, the boundary
is in uniform rectilinear motion.
935 Am. J. Phys., Vol. 72, No. 7, July 2004
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of Eq. ~2!, we expect that the shape of the secondary wav
will become substantially different if viewed from a frame
reference in which the medium is moving at consta
velocity.15

The analytical description of the distorted elementary tw
dimensional wavefront in the reference frameS in which the
medium is moving at fixed velocityu along the positive
direction of theX axis, can be done by applying the Loren
transformations formulas,

x85
x2ut

A12~u/c!2
, y85y, t85

t2~ux!/c2

A12~u/c!2
, ~3!

to the relation

x821y825S c

nD 2

t82. ~4!

Equation~4! describes the evolution of the elementary lig
pulse observed in the reference frameS8 where the medium
is at rest~see Fig. 2!. By making a transition fromS8 to S
using Eq.~3!, we arrive at

~x2ut!21y2S 12
u2

c2D5
1

n2 S ct2
ux

c D 2

. ~5!

The wavefront of the wavelet as viewed fromS is no longer
a circle, but an ellipse partially dragged by the moving m
dium ~Fig. 3!. As long as the speed of the mediumu is
smaller than c/n, the wavefront will be incompletely
dragged and the origin of the elementary wavelet will rem
inside the ellipse. Otherwise, ifc/n,u,c, which is the case
of light propagation in a medium moving at superlumin
velocity, the dragging is overwhelming and the ellipse
longer encloses the origin~Fig. 4!.

By a careful examination of the plot shown in Fig. 3
Eq. ~5! for the caseu,c/n, we conclude that the speed o
light in a uniformly moving optical medium depends on th
angleu between the direction of propagation of the light a
the velocity of the medium. In this way, a medium that
optically isotropic in its rest frame, possesses an optical

-
oFig. 2. In the reference frameS8 where the medium is at rest, the wavefro
of the elementary wavelet represents a circle with radius (c/n)t8.
935Aleksandar Gjurchinovski
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isotropy when observed from the frame in which the medi
is in uniform rectilinear motion. The situation becomes mo
interesting for the casec/n,u,c shown in Fig. 4, where
the superluminal motion of the medium causes the existe
of a Mach cone, outside of which no light ever reaches.

III. REFRACTION BETWEEN MOVING MEDIA

The idea behind the analysis is to trace the advancem
of the wavefront in a moving nondispersive medium by a
plying the Huygens–Fresnel principle to the distorted s
ondary wavelets. We will investigate the refraction of an
bitrary light beam on a plane boundary separating t

Fig. 3. As a consequence of the motion of the medium, the wavefront o
elementary wavelet is no longer a circle, but an ellipse partially dragge
the moving medium. The figure is a sketch of the situation when the sp
of the mediumu is less thanc/n. Note that the dragged ellipse possesses
axial symmetry with respect to theX axis.

Fig. 4. Illustration of the dragging effect when the optical medium is m
ing at a superluminal velocity (c/n,u,c).
936 Am. J. Phys., Vol. 72, No. 7, July 2004
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homogeneous transparent media from the reference fram
which the entire system moves to the right at constant ve
ity u ~Fig. 5!. We take the medium in which the inciden
wavefront propagates to be a vacuum, and the boundary
tween the vacuum and the material medium to coincide w
the X axis. We denote byn the refractive index of the me
dium in its rest frame. The aim is to derive the formula th
connects the angle of incidencea to the angle of refraction
b.

The wavefrontAB of the incident plane-polarized ligh
beam sweeps across the boundary starting at pointA, caus-
ing the atoms along the interface to radiate secondary wa
lets. After the timet needed for the incident wavefront t
reach the final pointD, the wavefront of the secondar
wavelet originating from the elementary source atA is a
dragged ellipse whose shape is described by Eq.~5!. The
envelope of all the elementary wavelets whose sources
alongAD is the distanceCD, which is the wavefront of the
refracted light. The distanceCD belongs to the lineyt

5yt(x), which is a tangent line of all the elementary wav
fronts. Due to the apparent anisotropy of the moving m
dium, the line segmentsAC and CD are not orthogonal to
each other, which is readily observable from Fig. 5. As
consequence, the ray and the normal to the wavefront are
identical in this case.

The equation of the tangent line is

yt2y05S dy

dxD
x0 ,y0

~x2x0!. ~6!

We have taken into account that the tangent line touches
elementary wavefront emanating from the initially disturb
point A at the pointC (x0 ,y0), which implies that the slope
of the wavefront at the pointC coincides with the slope o
the tangent lineyt5yt(x). By taking the derivative with re-
spect tox of Eq. ~5! at the point (x0 ,y0), we obtain

S dy

dxD
x0 ,y0

5

utS 12
1

n2D2x0S 12
u2

n2c2D
y0S 12

u2

c2D . ~7!

e
y

ed
n

-

Fig. 5. Huygens’ construction of the refracted wavefront when the med
on which the light is incident moves at constant velocityu to the right.
936Aleksandar Gjurchinovski
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Then, the equation of the tangent line can be written as

yt2y05

utS 12
1

n2D2x0S 12
u2

n2c2D
y0S 12

u2

c2D ~x2x0!. ~8!

The tangent line intersects the interface at the pointD (d,0).
Therefore, the point (d,0) satisfies Eq.~8!. Then, by setting
x5d andyt50 in Eq. ~8!, we have

2y05

utS 12
1

n2D2x0S 12
u2

n2c2D
y0S 12

u2

c2D ~d2x0!. ~9!

The point of tangencyC belongs to the elementary wave
front emitted fromA, which means that the coordinate poi
(x0 ,y0) satisfies Eq.~5!, that is,

~x02ut!21y0
2S 12

u2

c2D5
1

n2 S ct2
ux0

c D 2

. ~10!

By solving Eqs.~9! and ~10! for x0 andy0 , we obtain

x05

~n221!utd1c2t2S 12
n2u2

c2 D
n2dS 12

u2

n2c2D2ut~n221!

, ~11!

and

y05

ctA12
u2

c2An2~d2ut!22S ct2
ud

c D 2

n2dS 12
u2

n2c2D2ut~n221!

. ~12!

Here we take only the positive solution iny0 , which is the
one that corresponds to the actual situation. It is evident fr
Fig. 5 that tanb5 x0 /y0 . By taking into account Eqs.~11!
and ~12!, we have

tanb5

~n221!
u

c

d

ct
1S 12

n2u2

c2 D
An2S d

ct
2

u

c
D 2

2S 12
u

c

d

ct
D 2A12

u2

c2

.

~13!

From the triangleABD, we have

d

ct
5

1

sina
. ~14!

We substitute Eq.~14! into Eq. ~13! and find the law of
refraction of the wave

tanb5

~n221!
u

c
1S 12

n2u2

c2 D sina

An2S 12
u

c
sina D 2

2S sina2
u

c
D 2A12

u2

c2

.

~15!
937 Am. J. Phys., Vol. 72, No. 7, July 2004
m

If we let u!c, so thatu/c'0, we see that Eq.~15! reduces
to the usual Snell’s law of refraction

sina5n sinb. ~16!

It is possible to derive Eq.~15! by using Lorentz transforma
tions ~see the Appendix!.

IV. ABERRATION OF LIGHT IN A MOVING
MEDIUM

In the following we consider a modified version o
Fizeau’s historic experiment.2 Unlike the original experi-
ment, we take the incident light to be perpendicular to
direction of the motion of the fluid~see Fig. 6!. As a result of
the dragging effect, the boundary rays of the incident wa
front will undergo a continual deflection toward the right
the wave propagates through the moving water.

By tracing the path of the light wave through the optic
air–water–air assemblage, we find that the outgoing li
will emerge parallel to the incoming light and will be dis
placed to the right by the distanceq. From Fig. 6, we have

tanb5
q

D
, ~17!

whereD is the thickness of the layer. The refraction of th
light beam from the layer is in agreement with Eq.~15! if we
take the incident angle to be zero (a50). Thus,

tanb5

S n2
1

n
D u

c

A12
u2

n2c2
A12

u2

c2

, ~18!

wheren is the refractive index of the fluid at rest. We su
stitute Eq.~17! into Eq. ~18! to find

Fig. 6. Modified version of the famous Fizeau’s experiment.
937Aleksandar Gjurchinovski
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q5

Du

c
S n2

1

n
D

A12
u2

n2c2
A12

u2

c2

. ~19!

For u!c, we can expand the right-hand side of Eq.~19! in
powers ofu/c and neglect all the second and higher ord
terms to obtain

q'
Du

c S n2
1

nD . ~20!

Equation ~20! is identical to the Fresnel formula for th
transverse aberration of light.1 The result was experimentall
confirmed by Jones12,13 for white light passing through a
rapidly rotating disk made of a low-dispersive glass, para
to its axis of rotation~Fig. 7!. In this case,q is the tangential
displacement of the light beam due to the dragging eff
caused by the motion of the disk,u is the tangential speed o
the rotating disk in the region of passage,D is the thickness
of the disk, andn is the refractive index of the glass.

V. CONCLUDING REMARKS

We have presented an alternative approach to the pr
gation of light in a nondispersive optical material in unifor
rectilinear motion. We have limited our discussion to a s
cific geometry of light refraction, where we considered t
surface of the material, on which the light is incident, to
parallel to the motion of the material. This sort of arrang
ment gave us an opportunity to compare our derivation w
the results of the experiment by Jones to measure the tr
verse Fresnel–Fizeau light drag effect. Our conclusions
in agreement with the result of the experiment, and matc
the one derived by Fresnel for transverse light drag.

However, when the rotating disk used in the experimen
made of a highly dispersive glass material, a significant
hancement of the drag effect was noticed.16 In this case, the
value of the displacementq of the beam was found to b
different from the one predicted by Eq.~20!. It has been
shown17,18 that the original Fresnel formula is modified b
the presence of an additional term due to dispersion, and

Fig. 7. Simplified presentation of the experiment performed by Jones~Refs.
12 and 13!.
938 Am. J. Phys., Vol. 72, No. 7, July 2004
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modification is in perfect agreement with the experime
The formula that replaces Eq.~20! for a dispersive materia
is17,18

q5
Du

c S ng2
1

np
D ~21!

to first order inu/c. Here,np is the phase refractive index o
the medium, which is a function of the frequencyf of the
light, and ng is its group refractive index related tonp by
ng5np1 f dnp /d f . For a low dispersive medium,ng'np

5n, Eq. ~21! reduces to Eq.~20!.
The derivation of Eq.~21! by a procedure similar to the

one used here is an open question, and we leave it
subject for future study. We expect that the method of ana
sis in this paper can be applied to more complicated confi
rations, such as the one shown in Fig. 1, where in addition
the motion of the media, the boundary between them als
moving at constant velocity. We believe that the method a
could lead to a simpler and more intuitive approach to
problem of light propagation through a nonuniformly mo
ing material medium.

APPENDIX

In reference frameS8 where the whole system is at re
~Fig. 8!, Snell’s law of refraction is

sina85n sinb8, ~A1!

and the velocity components of the propagating light be
are

vx1
8 5c sina8, ~A2!

vy1
8 5c cosa8, ~A3!

vx2
8 5

c

n
sinb8, ~A4!

vy2
8 5

c

n
cosb8. ~A5!

In the reference frameS where the medium is in uniform
rectilinear motion to the right~Fig. 9!, the components of the
velocity of the light beam are

vx1
5c sina, ~A6!

Fig. 8. Refraction of light from a material medium observed in the refere
frameS8 where the medium is at rest.
938Aleksandar Gjurchinovski
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vy1
5c cosa, ~A7!

vx2
5vb sinb, ~A8!

vy2
5vb cosb, ~A9!

wherevb refers to the velocity of the light beam in the mo
ing medium in the direction determined by the angleb. The
X components of the velocity of the incident light inS and
S8 are connected to each other by

vx1
8 5

vx1
2u

12
uvx1

c2

. ~A10!

If we use Eqs.~A2! and ~A6!, we have

sina85

sina2
u

c

12
u

c
sina

. ~A11!

By applying Eq.~A1!, we have

sinb85
1

n

sina2
u

c

12
u

c
sina

. ~A12!

Then, by using Eq.~A12!, Eqs.~A4! and ~A5! become

vx2
8 5

c

n2

sina2
u

c

12
u

c
sina

, ~A13!

and

vy2
8 5

c

n2

1

12
u

c
sina

An2S 12
u

c
sina D 2

2S u

c
2sina D 2

.

~A14!

The components of the velocity of the refracted light beam
both reference frames are related by

Fig. 9. Refraction observed in the reference frameS where the medium is in
uniform rectilinear motion.
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n

vx2
5

vx2
8 1u

11
uvx2

8

c2

, ~A15!

vy2
5vy2

8

A12
u2

c2

11
uvx2

8

c2

. ~A16!

By eliminatingvb from Eqs.~A8! and ~A9!, and using Eqs.
~A15! and ~A16!, we have

tanb5
vx2

vy2

5

vx2
8 1u

vy2
8 A12

u2

c2

. ~A17!

Finally, we substitute Eqs.~A13! and ~A14! into Eq. ~A17!
and obtain

tanb5

~n221!
u

c
1S 12

n2u2

c2 D sina

An2S 12
u

c
sina D 2

2S sina2
u

c
D 2A12

u2

c2

.

~A18!
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VISUALIZING PHYSICS

I found out that the main ability to have was visual, and also an almost tactile, way to imagine
the physical situations, rather than a merely logical picture of the problems.

The feeling for problems in physics is quite different from purely theoretical mathematical
thinking. It is hard to describe the kind of imagination that enables one to guess at or gauge the
behavior of physical phenomena. Very few mathematicians seem to possess it to any great degree.
Johnny,@von Neumann# for example, did not have to any extent the intuitive common sense and
‘‘gut’’ feeling or penchant for guessing what happens in given physical situations. His memory
was mainly auditory, rather than visual.

Stanislaw M. Ulam,Adventures of a Mathematician~Charles Scribner’s Sons, 1983!. Reprinted inThe World Treasury of
Physics, Astronomy, and Mathematics~Little, Brown and Company, Boston, MA, 1991!, p. 710.
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