Space-time exchange invariance: Special relativity as a symmetry principle
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Special relativity is reformulated as a symmetry property of space-time: space-time exchange
invariance. The additional hypothesis of spatial homogeneity is then sufficient to derive the Lorentz
transformation without reference to the traditional form of the Principle of Special Relativity. The
kinematical version of the latter is shown to be a consequence of the Lorentz transformation. As a
dynamical application, the laws of electrodynamics and magnetodynamics are derived from those of
electrostatics and magnetostatics respectively. The four-vector nature of the electromagnetic
potential plays a crucial role in the last two derivations. 2@1 American Association of Physics Teachers.
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[. INTRODUCTION quenceof the LT. The KSRP, which describes the reciprocal
nature of similar space-time measurements made in two dif-

Two postulates were essential for Einstein’s original axi-ferent inertial frame§ states that .
omatic derivatioh of the Lorentz transformatiofiLT): (i) the “ Reciprocal space-time measurements of similar mea-
Specia| Re|at|v|ty Princip|e an(ﬁ”) the hypothesis of the Suring rods and clocks at rest in t.WO different |nert|al
constancy of the velocity of light in all inertial framégin-  frames S, S’ by observers at rest inS', S respectively,

stein’s second postulateThe Special Relativity Principle, Yield identical results.” _
which states that There is no reference here to any physical law. Only

“The laws of physics are the same in all inertial SPace-time events that may constitute the raw material of any

frames,” had long been known to be respected by Newtonyso_bserv_anon of a physical process are_con5|dered._ In the pre-
laws of mechanics at the time Einstein’s paper was writtenYi0US literature the KSRRor some equivalent condition ap-
Galileo had already stated the principle in 1588 in his “Dia- Pli€d t0 & gedanken experiménhas been used as a neces-
logues Concerning Two New Sciences.” The title of Ein- STy Postulate to derive the LT. . .
stein’s papef. “On the Electrodynamics of Moving Bod- The symmetry condition that restates the Special Relativ-
ies,” and the special role of light in his second postulate'ty Prlpmple IS - .

seem to link special relativity closely to classical electrody-. () *The equations describing the laws of physics are
namics. Indeed, the LT was discovered as the transformatio'ﬁw"’lr('j".’mt with respect to the e>|<|chang(ra] of sp?]ce and ]Prrk\‘e
that demonstrates that Maxwell’'s equations may be writte goordinates, or, more generally, to the exchange of the

) . T . rl;patial and temporal components of four vectors’
in the same way in any inertial frame, and so manlfestIyA corollary is

respect the Special Relativity Principle. The same close con- (1) * Predictions of physical theories do not depend on

nect[on _betv;/e.endspec!atl rﬁlat'\lll'tty ?Qd El?ssTal etleCt][(?[ﬂy’[he metric sign convention(space-like or time-like) used
namics is retained in virtually all textbook treatments of the, " yafine four-vector scalar products”

subject, obscuring the essentially geometrical and kinemaUA proof of this corollary is presented in Sec. IV
cal nature of special relativistic effects. The latter actually As will become clear during the following diséussion the
transcend the dynamics of any particular physical system. |6peration of space-time exchan¢8TE reveals an invari-

was realized, shortly after the space-time geometrical naturg,ce property of pairs of physical equations, which are found
of the LT was pointed out by MinkowskKithat the domain of to map into each other und@TE The examples of this

applicability of the LT extends beyond the classical electrojscyssed below are: the Lorentz transformation equations of
dynamics considered by Einstein, and that, in fact, Einstein'gpace and time, the Maxwell equations describing electro-
second postulate is not necessary for its derivatbfihere  statics (Gauss’ law and electrodynamicéAmpere’s law)

is now a vast literature devoted to derivations of the LT thatyng those describing magnetostatiGauss’ lawy and maé-

do not require the second postulate. _ netodynamics(the Faraday—Lenz law It will be demon-

In a recent paper by the present auththe question of strated that each of these three pairs of equations map into
the minimum number of postulates, in addition to the Speciabach other unde8TE and so are invariants of tH8TE op-
Relativity Principle, necessary to derive the LT was ad-erator_ In the case of the LT equa[ionS, imposﬁ]‘@fsym_
dressed. The aim of the present paper is somewhat differenietry is sufficient to derive them from a general form of the
The Special Relativity Principle itself is restated in a simplespace transformation equation that respects the classical
mathematical form which, as will be shown below, has bothlimit.
kinematical and dynamical applications. The new statement The expression “The equations describing the laws of
is a symmetry condition relating space and time, which, it isphysics” in (1) should then be understood as includingth
conjectured, is respected by the mathematical equations thatjuationsof eachSTEinvariant pair. For example, the Gauss
describe all physical lawsThe symmetry condition is first equation of electrostatics, considered as an independent
used, together with the postulate of the homogeneity ophysical law, clearly does not respety.
space, to derive the LT. It is then shown that the Kinematical For dimensional reasons, the definition of the exchange
Special Relativity Principled KSRP is a necessargonse- operation referred to ifl) requires the time coordinate to be
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multiplied by a universal parameterwith the dimensions of = Faraday—Lenz lajfrom the Gauss laws of electrostatics and
velocity. The new time coordinate with dimensifn, magnetostatics, respectively. A summary is given in Sec. VI.

xO=Vt, (1.1

may be called the “causality radius® to distinguish it from || DERIVATION OF THE LORENTZ

the Cartesian spatial coordinateor the invariant intervab.  TRANSEORMATION

Since space is three dimensional and time is one dimen-

sional, there is a certain ambiguity in the definition of the  Consider two inertial frame§, S’. S’ moves along the
exchange operation ift). Depending on the case under dis- commonx, x’ axis of orthogonal Cartesian coordinate sys-
cussmn,_the space coordinate may pe either the magnitude Qf o inS, S’ with velocity v relative toS. They, y’ axes are
the spatial vectox=|x|, or a Cartesian componert, X*, o155 parallel. At imet=t' =0 the origins ofSandS’ coin-

3 . . . .
x”. For any physical problem with a preferred spatial direC-gjge | general the transformation equation between the co-
tion (which is the case for the )T then, by a suitable chc_)lce ordinatex in S of a fixed point on theOx' axis and the

; i ifinati 1 yw2_y3_
of coordlnatg system, the |dent|f|cat|<x1?=x s X =x7=01S  oordinatex’ of the same point referred to the frarBé is
always possible. The exchange operatiofi jris then simply

x%x. Formally, the exchange operation is defined by the X’ =f(x,x%4), 2.9
equations where=v/V andV is the universal constant introduced in
STEX=x!, (1.2 Eg. (1.). Differentiating Eq.(2.1) with respect tox?, for

0 fixed x’, gives
STEX=X", (1.3
dx’ dx| of of
(STB?=1, (1.4 0 "0 Xt 2.2
x' x'

where STE denotes the space time exchange operator. Ag.
shown below, for problems where there is no preferred di- Ince

rection, but rather spatial symmetry, it may also be useful to  dx 1dx v
define three exchange operators: O TVt =v=,37
. X/ XI

xXPox, i=1,2,3, (1.5

the functionf must satisfy the partial differential equation:

with associated operation§THi) analogous toSTE of of

=STH1) in Egs.(1.2—(1.4). The operations in Eq$1.2)— —=-—3. (2.3

(1.5 may also be generalized to the case of an arbitrary dx 2

four-vector with temporal and spatial compone#® and A sufficient condition foif to be a solution of E¢(2.3) is that

Al respectively. it is a function ofx— Bx°. Assuming alsd is a differentiable
To clarify the meaning of th&TEoperation, it is of inter-  function, it may be expanded in a Taylor series:

est to compare it with a different operator acting on space

and time coordinates that may be called “space-time coordi- "= — gx0 — gx%n

nate permutation’(STCB. Con)gider an equa?ion of the form X' =YB) X px )+r§2 B(B)(x= Bx" 4

f(x%,x4)=0. (1.6  Requiring either spatial homogenetty,*%or that the LT is a
) o unique, single-valued, function of its argumehteequires
The STEconjugate equation is Eq. (2.4) to be linear, i.e.,

f(x1,x%)=0. (1.7 a,(B)=as(B)=---=0

This equation is different fromil.6) because® andx* have  so that

different physical meanings. In th8 TCP operation, how- ,_ o0

ever, thevaluesof the space and time coordinates are inter- X'=y(B)(x=Bx7). 29
changed, but no new equation is generatea’#a andx'  Spatial _homoger)eity implies that E@.5) is invariant when
=b in Eq.(1.6), then theSTCPoperation applied to the latter all spatial coordinates are scaled by any constant fa€tor

yields Noting that
f(x°=b,x*=a)=0. (1.9 _ldx 1d(=x) 2.6

This equation is identical in form t¢1.6); only its param- vt vodt |,
eters have different values. and choosinK = — 1 gives

The physical meaning of the universal paraméaterand , o
its relation to the velocity of lightc, is discussed in the —x'=y(=B)(—x+BxX7). 2.7
following section, after the derivation of the LT. Hence, Eq(2.5) is invariant provided that

The plan of the paper is as follows. In the following sec-
tion the LT is derived. In Sec. lll, the LT is used to derive (=B)=7v(B), 2.8

the KSRP. The space-time exchange properties of fourte () is an even function of.

vectors and the related symmetries in Minkowski space are Applying the space-time exchange operations:x°
discussed in Sec. IV. In Sec. V the space-time exchangg,(_)(xo), t0 Eq.(2.5) gives ,
symmetries of Maxwell's equations are used to derive elec- o
trodynamics (Ampere’s law) and magnetodynamicsgthe (x%)" = y(B)(x°— Bx). (2.9
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The transformation inverse {@.9) may, in general, be writ-
ten as:

X°=y(B")((X°)' = B'x"). (2.10

The same inverse transformation may also be derived b

eliminatingx between Eqs(2.5) and(2.9) and rearranging:

(2.11

1
0_ 0y ’
=g () A

Equations(2.10 and(2.11) are consistent provided that

1

T B @12
and

B'=-p. (213
Equations(2.8), (2.12, and(2.13 then givé*

1
= . 2.1
¥(B) N (2.14

Equations(2.5) and (2.9) with vy given by (2.14) are the LT
equations for space-time points along the commax axis

of the framesS, S’'. They have been derived here solely from
the symmetry conditionl) and the assumption of spatial

X1 =y(Xy—vt), (3.5
X5=y(X,—vt). (3.6

Denoting byls the apparent length of the rod, as observed
from Sat timet, Egs.(3.5 and(3.6) give

1 I
[s=X,—X;=—(X]—X5)=—. (3.7
S 2 1 ')’( 1 2 %
Suppose that the observer  now makes reciprocal mea-
surementx; , X, of the ends of a similar rod, at rest & at
time t’. In Sthe ends of the rod are at the points, X5,
wherel =x,—x;. Using Eq.(3.3)

X1=y(x1+ot’), (3.8

Xo=y(Xy+vt") (3.9
and, corresponding t8.7), there is the relation

1 I

IS’EXé_Xi:;(XZ_Xl):;- (3.10

Hence, from Eqs(3.7) and(3.10
o1
IS—IS,—;, (3.1)

homogeneity, without any reference to the Principle of Spesg that reciprocal length measurements yield identical re-

cial Relativity.
The physical meaning of the universal parametebe-

sults.
Consider now a clock at rest & atx’=0. This clock is

comes clear when the kinematical consequences of the Ldynchronized with a similar clock iBatt=t’ =0, when the

for physical objects are worked out in detail. This is done,
for example, in Ref. 6, where it is shown that the velocity of

any massive physical object approachésn any inertial

spatial coordinate systems8andS’ coincide. Suppose that
the observer at rest i notes the time recorded by his own
clock, when the moving clock records the time At this

frame in which its energy is much greater than its rest mass; o the clock which is moving along the commex’ axis

The identification ofV with the velocity of light,c, then
follows'38if it is assumed that light consists of massléss

almost masslegsparticles, the light quanta discovered by

Einstein in his analysis of the photoelectric effétThatV
is the limiting velocity for the applicability of the LT equa-
tions is, however, already evident from Eg8.14). If y(B) is
real, thenB<1, that isy<V.

[ll. DERIVATION OF THE KINEMATICAL
SPECIAL RELATIVITY PRINCIPLE

The LT equationg2.5) and(2.9) and their inverses, writ-
ten in terms ofx,x’; t,t’, are

X' =y(x—vt), (3.1
X

t'=y(t—f7 , 3.2

x=vy(x"+vt"), (3.3

t=y(t'+l%). (3.9

Consider now observers, at rest in the fraiBeS’, equipped
with identical measuring rods and clocks. The observé&’in
places a rod, of length along the commom, x’ axis. The
coordinates irS’ of the ends of the rod ane;, x;, where

x5—X;=I. If the observer irBmeasures, at timein his own

frame, the ends of the rod to be»at, x, then, according to
Eq. (3.1):
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with velocity v will be situated ak=wvt. With the definition
7s=t, and using Eq(3.2),

vX

T= ‘y( ST 2 (3.12

U2 S
=7YT7s 1— W = 7
If the observer at rest i6’ makes a reciprocal measurement
of the clock at rest ir5, which is seen to be at’'=—uvt’
when it shows the time, then according to Eq.3.4) with

Ts'Et,,

T=Y Tsr‘}'%zi):’yTsr(l_v_Zz):i. (313
V V 0%
Equations(3.12 and(3.13 give
Tg= Tg = YT. (314)

Equations(3.11) and (3.14 prove the Kinematical Special
Relativity Principle as stated above. It is a necessary conse-
quence of the LT.

IV. GENERAL SPACE-TIME EXCHANGE
SYMMETRY PROPERTIES OF FOUR-VECTORS.
SYMMETRIES OF MINKOWSKI SPACE

The LT was derived above for space-time points lying
along the commorx, x’ axis, so thax=|X|. However, this
restriction is not necessary. In the case that(x*,x2,x%),
thenx andx’ in Eqg. (2.5 may be replaced bx=X-v/|v]
andx’=x"-v/|v|, respectively, where the 1-axis is chosen
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parallel tov. The proof proceeds as before with the space- X0+ x1

time exchange operation defined as in E4s2—(1.4). The X, = , (4.12
additional transformation equations, V2
=y, (4.2 x0—xt
=y X_= . (4.13
7' =z, 4.2 V2
follow from spatial isotropy- X4, X_ have, respectively, even and od&TEparity:”
In the above derivation of the LT, application of tB&E _
operator generates the LT of time from that of space. It is the STEX =X, (4.14
pair of equations that is invariant with respect to tB€E STEX. =—x_. (4.19

operation. Alternatively, as shown below, by a suitable . . . . .
change of variables, equivalent equations may be define§jn® manifestly STE invariant LT equations expressed in

that are manifestly invariant under ti&SEoperation. terms of these variables are

The four-vector velocityU and the energy-momentum X\ =ax,, (4.16
four-vector P are defined in terms of the space-time
four-vector? ;1
X =—x_, (4.17)
X=(Vt;x,y,z) = (x%x%,x?,x3), 4.3 @
by the equations where
1-B
dX a=\—. 4.1
=4 (4.9 1+8 (4.19
P=mV. 45 Introducing similar variables for an arbitrary four-vector,
. . . . CO+ Cl
wherem is the Newtonian mass of the physical object and C,= , (4.19
is its proper time, i.e., the time in a reference frame in which V2
the object is at rest. Sinceis a Lorentz invariant quantity,
the four-vectordJ, P have identical LT properties to X. The co-ct
properties ofU, P under theSTE operation follow directly C.= Vi (4.20
from Egs.(1.2) and(1.3) and the definition$4.4) and(4.5).
Writing the energy-momentum four-vector as the 4-vector scalar product & andD may be written as
E C.-D=C,D_+C_D,. 4.2)
P= (—;p,O,O) =(p%p*.0,0, (4.9 : : . .
\ In view of the LT equation$4.16) and(4.17), C-D is mani-

festly Lorentz invariant. The transformatio4.12), (4.13
and (4.19, (4.20 correspond to an anti-clockwise rotation
by 45° of the axes of the usuat versusx plot. Thex, ,x_
(p°)" = v(p°—Bp?H) (4.7)  axes lie along the light cones of thect plot (see Fig. 1

The LT equationg4.16) and(4.17) give a parametric rep-
resentation of a hyperbola x, ,x_ space. A point on the
(pY)" =y(p*—Bp° (4.8 latter corresponds to a particular space-time point as viewed
in a frameS. The pointx, =x_=0 corresponds to the space-
time origin of the frame&S’ moving with velocityBc relative
to S A point at the spatial origin o8’ at timet’ = 7 will be
C-D=C°D°-C.D, (4.9 seen by an observer B asB (and hencex) varies, to lie on
one of the hyperbolakl . , ,H__ in Fig. 1:

the STE operations:p®—p?,(p°’ < (p')’' generate the LT
equation for energy

from that of momentum

or vice versa.
The scalar product of two arbitrary four-vectdzsD,

can, by choosing the-axis parallel toC or D, always be ) 5
written as: X+X_:C_T 4.22

2

C-D=C’D°-C'D". (4.10

- _ _ with  x, ,x->0 if 7>0(H,.;) or x,,x_<0 if 7
Deﬂnmg theS.TFTexchange operation for an arbitrary four- <O(H__). A point along thex’ -axis at a distancefrom the
vector in a similar way to Eqs(1.2) and (1.3), then the origin, att’ =0, lies on the hyperbolas H -
combined operation€°—C*,D%-D!? yield ’ 2 A

-s

C.-D—C'D'-CD°=~C.D. (4.11 XiX_ = (4.23
The four-vector product changes sign, and so the combined. ) _
STEoperation is equivalent to a change in the sign convenWith x>0, x_<0 if s>0(H, ) or x, <0, x>0 if s
tion of the metric from space-like to time-liker vice versy ~ <O0(H-.). As indicated in Fig. 1 the hyperbol#4.22) cor-
hence the corollaryll) in Sec. I. respond to the pastr&0) or the future ¢>0) of a space-

The LT equations take a particularly simple form if new time point at the origin ofS or S’, whereas(4.23 corre-

variables are defined which have simple transformation propsponds to the “elsewhere” of the same space-time points,
erties under th&TEoperation. The variables are that is, the manifold of all space-time points that are causally
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In the following, Maxwell's equations are written in

ELS(E\N';;ERE FtJ;U;E Heaviside—Lorentz units with/=c=1." The four-vector
< >
X_ potential A= (A% A) is related to the electromagnetic field

4 tensorF#” by the equation

Frr=gtAY— 9" A+, (5.7
where

J - 0 -

= ﬁ;—V =(d";,—V). (5.2

The electric and magnetic field componeri&,and BX, re-
spectively, are given, in terms 6", by the equations

EX=FX, (5.3
Bk=— e F". (5.4)

A time-like metric is used withC,=C°=C,, C,=C!
=—-C,4, etc., with summation over repeated contravariant
upped and covarianflower) indices understood. Repeated
PAST v ELSEWHERE (Grpe%kbindices are sutr(nmed)from 1to 4 and Roman oFr)les from
(’C<0) (S>0) 1t0 3
The transformation properties of contravariant and covari-
Fig. 1. Space-time points i as seen by an observer&The hyperbolae ~ ant four-vectors under th8TEoperation are now discussed.
H.. ,H__ correspond to points at the origin & at timet’=7. The  They are derived from the general condition that four-vector
hyperbolaeH . _ ,H_ . correspond to points af =s andt’=0. See the text  products change sign under t8dE operation[Eq. (4.11)].
for the equations of the hyperbolae and further discussion. The four-vector produc4.10) is written, in terms of contra-
variant and covariant four-vectors, as

disconnected from them. These are all familiar properties of C-D=C°Dy+C'D;. (5.5

the Minkowski space-ct plot. One may note, however, the . .

simplicity of the equation4.16), (4.17), (4.22, and(4.23 Assum_lng that the contravariant four-vector transforms

containing the “lightcone” variablesx, ,x_ that have according to Eqs(1.2) and(1.3), i.e.,

simple transformation properties under tB€Eoperation. cl~ct, (5.6
Another application ofSTE symmetry may be found in ) _

Ref. 16. It is shown there that the apparent distortions ofN® covariant four-vectob,, must transform as:

space-time that occur in observations of moving bodies or  p ., —p, (5.7)

clocks are related by this symmetry. For example, the )

Lorentz—Fitzgerald contraction is directly related to time di-in order to respect the transformation property

latation by theSTEoperationg1.2) and(1.3). C.D—>—-C.D (5.9
V. DYNAMICAL APPLICATIONS OF SPACE-TIME of four-vector products unde3TE ) _
EXCHANGE SYMMETRY It remains to discuss th®8TEtransformation properties of

d* and the four-vector potenti@dl”. In view of the property
If a physical quantity is written in a manifestly covariant of g#: 9= — 9, = — 9/ 9x [Eq. (5.2)], which is similar to the
way, as a function of four-vector products, it will evidently rejationC,= — C, for a covariantfour-vector, it is natural to

be invariant with respect t8TEas the exchange operation .nqose fors* a STEtransformation similar to Eq5.7):
has the effect only of changing the sign convention for four- o

vector products from space-like to time-like or vice versa. P —at, (5.9
An example of such a quantity is the invariant amplitude
for an arbitrary scattering process in quantum field theory. |
this caseSTEinvariance is equivalent to Corollary Il of Sec. Joe 1. (5.10
I

More interesting results can be obtained from equations_ This is because it is clear that the appearance of a minus
where components of four-vectors appear directly. It willSign in theSTE transformation equatiof5.7) is correlated
now be shown howSTEinvariance may be used to derive with the minus sign in front of the spatial compqnents. of a
Ampae’s law and Maxwell’'s “displacement current” from Covariant four-vector, not whether the Lorentz md_ex is an
the Gauss law of electrostatics, and the Faraday—Lenz law ¢fPper or lower one. Thug“ and d, transform in an
magnetic induction from the the Gauss law of magnetostaticsanomalous™ manner undeSTE as compared to the con-
(the absence of magnetic chargéhus electrodynamics and Vvention of Egs(5.6) and(5.7). In order that the four-vector
magnetodynamics follow from the laws of electrostatics andoroductd, A* respect the conditio.8), A* and A, must
magnetostatics, together with space-time exchange symm#ien transform undesTEas:
try invariance. It will be seen that the four-vector character A0, _ Al (5.11)
of the electromagnetic potential plays a crucial role in these '
derivations. and

r1’;1nd hence, in order that‘d,, change sign undeSTE
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Ag—Ay, (5.12
respectively. That is, they transform in the same way/‘as
andd,, respectively.

Introducing the four-vector electromagnetic currgrit
E(p;f), Gauss’ law of electrostatics may be written as:

-

V-E=p=]", (5.13
or, in the manifestly covariant form,
(9,0 A= %9, ,A*)=]°. (5.14

This equation is obtained by writing E¢.13) in covariant

notation using Eq95.1) and(5.3) and adding to the left side

the identity:
do(°AP— g°A%) =0, (5.15

Applying the space-time exchange operation to Eql4),

with index exchange ©-1 [noting thatd®,A° transform ac-
cording to Eqgs(5.9) and (5.11), j° according to(5.6), and
that the scalar product,¢* andd,A* change sighyields
the equation

(9,0")A*=d'(9,A*) =]t (5.16

Using Eqgs.(5.1)—(5.4), Eq. (5.23 may be written as:

Bl
— 9,E3— 93E2=0, (5.24)
or, in three-vector notation,
.. oB!
(VXE)l=— - (5.25

The space-time exchanges»B, 3—0 in Eq.(5.22) yield, in
a similar manner, the two- and three-components of the
Faraday—Lenz law:

(5.2

Some comments now on the conditions for the validity of
the above derivations. It is essential to use the manifestly
covariant form of the electrostatic Gauss law, Ex14), and
the manifestly rotationally invariant form, E¢.22), of the
magnetostatic Gauss law. For example, the 1-axis may be
chosen parallel to the electric field in E&.13. In this case
Eq. (5.14 simplifies to

91(PA—9*A%) =0, (5.27)

The spatial part of the four-vector products on the left side ofaApplying the space-time exchange operation: D to this

Eq.(5.16 is

ai(dAL—g*Al) = 9,F 1= 9,B3— 9,B2=(V X B)1,
(5.17)

where Egs(5.1) and(5.4) have been used. The time part of

the four-vector products in E@5.16) yields, with Eqs.(5.1)
and(5.3),

J 1
do(PA— 9*A%) = — ——.

5 (5.18
Combining Eqs(5.16—(5.18 gives
. ... OJEY |
(VXB)l—a—IZJl. (5.19

Combining Eq.(5.19 with the two similar equations derived

by the index exchanges-©2, 0—3 in Eq.(5.14 gives

(5.20

This is Ampee’s law, together with Maxwell’s displacement

current.

equation yields only the Maxwell displacement current term
in Eq. (5.19. Similarly, choosing the 1-axis parallel B in
Eq. (5.21) simplifies Eq.(5.22 to

d1(°A%2—32A%)=0. (5.28
The index exchange-%0 leads then to the equation

78" 0 5.2

= =0 (5.29
instead of the 1-component of the Faraday—Lenz law, as in
Eq. (5.29.

The choice of th&sTEtransformation properties of contra-
variant and covariant four-vectors according to E(%6)
and(5.7) is an arbitrary one. Identical results are obtained if
the opposite convention is used. However, “anomalous”
transformation properties @f*,d, andA*,A ,, in the sense
described above, are essential. This complication results
from the upper index on the left side of E&.2) whereas on
the right side the spatial derivative is multiplied by a minus
sign. This minus sign changes tB& Etransformation prop-
erty relative to that(5.6), of conventional contravariant four-
vectors that do not have a minus sign multiplying the spatial

The Faraday-Lenz law is now derived by applying thecomponents. The upper index on the left side of &) is
space-time exchange operation to the Gauss law of magng- consequence of the Lorentz transformation properties of

tostatics:
V.B=0.
Introducing Egs(5.4) and(5.1) into Eq. (5.21) gives

A1(PA2— 2A3) + 95T A3— 3AY) + 95(2Al— 91 A?) = 0.
(5.22

(5.2))

Making the exchange 10 of space-time indices in Eq.

(5.22 and noting tha®, transforms according to E¢5.10),
whereas??, A® transform as in Eqg5.9) and(5.11), respec-
tively, gives

Io( PAZ= 2A%) + 9( — °A3+ PA0) + 95 — 9*A%— 9°A?)
=0. (5.23

574 Am. J. Phys., Vol. 69, No. 5, May 2001

the four dimensional space-time derivatie.

VI. SUMMARY AND DISCUSSION

In this paper the Lorentz transformation for points lying
along the commom,x’ axis of two inertial frames has been
derived from only two postulatesi) the symmetry principle
(), and(ii) the homogeneity of space. This is the same num-
ber of axioms as used in Ref. 6 where the postulates were the
Kinematical Special Relativity Postulate and the uniqueness
condition. Since both spatial homogeneity and uniqueness
require the LT equations to be linear, the KSRP of Ref. 6 has
here, essentially, been replaced by the space-time symmetry
condition (l).
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