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Special relativity is reformulated as a symmetry property of space-time: space-time exchange
invariance. The additional hypothesis of spatial homogeneity is then sufficient to derive the Lorentz
transformation without reference to the traditional form of the Principle of Special Relativity. The
kinematical version of the latter is shown to be a consequence of the Lorentz transformation. As a
dynamical application, the laws of electrodynamics and magnetodynamics are derived from those of
electrostatics and magnetostatics respectively. The four-vector nature of the electromagnetic
potential plays a crucial role in the last two derivations. ©2001 American Association of Physics Teachers.
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I. INTRODUCTION

Two postulates were essential for Einstein’s original a
omatic derivation1 of the Lorentz transformation~LT!: ~i! the
Special Relativity Principle and~ii ! the hypothesis of the
constancy of the velocity of light in all inertial frames~Ein-
stein’s second postulate!. The Special Relativity Principle
which states that

‘‘ The laws of physics are the same in all inertial
frames,’’ had long been known to be respected by Newton
laws of mechanics at the time Einstein’s paper was writt
Galileo had already stated the principle in 1588 in his ‘‘D
logues Concerning Two New Sciences.’’ The title of Ei
stein’s paper.1 ‘‘On the Electrodynamics of Moving Bod
ies,’’ and the special role of light in his second postula
seem to link special relativity closely to classical electrod
namics. Indeed, the LT was discovered as the transforma
that demonstrates that Maxwell’s equations may be writ
in the same way in any inertial frame, and so manifes
respect the Special Relativity Principle. The same close c
nection between special relativity and classical electro
namics is retained in virtually all textbook treatments of t
subject, obscuring the essentially geometrical and kinem
cal nature of special relativistic effects. The latter actua
transcend the dynamics of any particular physical system
was realized, shortly after the space-time geometrical na
of the LT was pointed out by Minkowski,2 that the domain of
applicability of the LT extends beyond the classical elect
dynamics considered by Einstein, and that, in fact, Einste
second postulate is not necessary for its derivation.3,4 There
is now a vast literature devoted to derivations of the LT t
do not require the second postulate.5

In a recent paper by the present author,6 the question of
the minimum number of postulates, in addition to the Spe
Relativity Principle, necessary to derive the LT was a
dressed. The aim of the present paper is somewhat diffe
The Special Relativity Principle itself is restated in a simp
mathematical form which, as will be shown below, has b
kinematical and dynamical applications. The new statem
is a symmetry condition relating space and time, which, i
conjectured, is respected by the mathematical equations
describe all physical laws.7 The symmetry condition is firs
used, together with the postulate of the homogeneity
space, to derive the LT. It is then shown that the Kinemat
Special Relativity Principle~KSRP! is a necessaryconse-
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quenceof the LT. The KSRP, which describes the reciproc
nature of similar space-time measurements made in two
ferent inertial frames,8 states that

‘‘ Reciprocal space-time measurements of similar mea
suring rods and clocks at rest in two different inertial
frames S, S8 by observers at rest in S8, S respectively,
yield identical results.’’

There is no reference here to any physical law. O
space-time events that may constitute the raw material of
observation of a physical process are considered. In the
vious literature the KSRP~or some equivalent condition ap
plied to a gedanken experiment9! has been used as a nece
sary postulate to derive the LT.

The symmetry condition that restates the Special Rela
ity Principle is

~I! ‘‘ The equations describing the laws of physics are
invariant with respect to the exchange of space and time
coordinates, or, more generally, to the exchange of the
spatial and temporal components of four vectors.’’
A corollary is

~II ! ‘‘ Predictions of physical theories do not depend on
the metric sign convention„space-like or time-like… used
to define four-vector scalar products.’’
A proof of this corollary is presented in Sec. IV.

As will become clear during the following discussion, th
operation of space-time exchange~STE! reveals an invari-
ance property of pairs of physical equations, which are fou
to map into each other underSTE. The examples of this
discussed below are: the Lorentz transformation equation
space and time, the Maxwell equations describing elec
statics ~Gauss’ law! and electrodynamics~Ampère’s law!,
and those describing magnetostatics~Gauss’ law! and mag-
netodynamics~the Faraday–Lenz law!. It will be demon-
strated that each of these three pairs of equations map
each other underSTE, and so are invariants of theSTEop-
erator. In the case of the LT equations, imposingSTEsym-
metry is sufficient to derive them from a general form of t
space transformation equation that respects the clas
limit.

The expression ‘‘The equations describing the laws
physics’’ in ~I! should then be understood as includingboth
equationsof eachSTEinvariant pair. For example, the Gaus
equation of electrostatics, considered as an indepen
physical law, clearly does not respect~I!.

For dimensional reasons, the definition of the exchan
operation referred to in~I! requires the time coordinate to b
569p/ © 2001 American Association of Physics Teachers
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multiplied by a universal parameterV with the dimensions of
velocity. The new time coordinate with dimension@L#,

x0[Vt, ~1.1!

may be called the ‘‘causality radius’’10 to distinguish it from
the Cartesian spatial coordinatex or the invariant intervals.
Since space is three dimensional and time is one dim
sional, there is a certain ambiguity in the definition of t
exchange operation in~I!. Depending on the case under di
cussion, the space coordinate may be either the magnitud
the spatial vectorx5uxW u, or a Cartesian componentx1, x2,
x3. For any physical problem with a preferred spatial dire
tion ~which is the case for the LT!, then, by a suitable choic
of coordinate system, the identificationx5x1, x25x350 is
always possible. The exchange operation in~I! is then simply
x0↔x1. Formally, the exchange operation is defined by
equations

STEx05x1, ~1.2!

STEx15x0, ~1.3!

~STE!251, ~1.4!

where STE denotes the space time exchange operator.
shown below, for problems where there is no preferred
rection, but rather spatial symmetry, it may also be usefu
define three exchange operators:

x0↔xi , i 51,2,3, ~1.5!

with associated operationsSTE( i ) analogous to STE
5STE(1) in Eqs.~1.2!–~1.4!. The operations in Eqs.~1.2!–
~1.5! may also be generalized to the case of an arbitr
four-vector with temporal and spatial componentsA0 and
A1, respectively.

To clarify the meaning of theSTEoperation, it is of inter-
est to compare it with a different operator acting on sp
and time coordinates that may be called ‘‘space-time coo
nate permutation’’~STCP!. Consider an equation of the form

f ~x0,x1!50. ~1.6!

The STEconjugate equation is

f ~x1,x0!50. ~1.7!

This equation is different from~1.6! becausex0 andx1 have
different physical meanings. In theSTCPoperation, how-
ever, thevaluesof the space and time coordinates are int
changed, but no new equation is generated. Ifx05a andx1

5b in Eq. ~1.6!, then theSTCPoperation applied to the latte
yields

f ~x05b,x15a!50. ~1.8!

This equation is identical in form to~1.6!; only its param-
eters have different values.

The physical meaning of the universal parameterV, and
its relation to the velocity of light,c, is discussed in the
following section, after the derivation of the LT.

The plan of the paper is as follows. In the following se
tion the LT is derived. In Sec. III, the LT is used to deriv
the KSRP. The space-time exchange properties of fo
vectors and the related symmetries in Minkowski space
discussed in Sec. IV. In Sec. V the space-time excha
symmetries of Maxwell’s equations are used to derive e
trodynamics ~Ampère’s law! and magnetodynamics~the
570 Am. J. Phys., Vol. 69, No. 5, May 2001
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Faraday–Lenz law! from the Gauss laws of electrostatics a
magnetostatics, respectively. A summary is given in Sec.

II. DERIVATION OF THE LORENTZ
TRANSFORMATION

Consider two inertial framesS, S8. S8 moves along the
commonx, x8 axis of orthogonal Cartesian coordinate sy
tems inS, S8 with velocity v relative toS. They, y8 axes are
also parallel. At timet5t850 the origins ofS andS8 coin-
cide. In general the transformation equation between the
ordinatex in S of a fixed point on theOx8 axis and the
coordinatex8 of the same point referred to the frameS8 is

x85 f ~x,x0,b!, ~2.1!

whereb[v/V andV is the universal constant introduced
Eq. ~1.1!. Differentiating Eq.~2.1! with respect tox0, for
fixed x8, gives

dx8

dx0U
x8

505
dx

dx0U
x8

] f

]x
1

] f

]x0 . ~2.2!

Since

dx

dx0U
x8

5
1

V

dx

dtU
x8

5
v
V

5b,

the functionf must satisfy the partial differential equation:

b
] f

]x
52

] f

]x0 . ~2.3!

A sufficient condition forf to be a solution of Eq.~2.3! is that
it is a function ofx2bx0. Assuming alsof is a differentiable
function, it may be expanded in a Taylor series:

x85g~b!~x2bx0!1 (
n52

an~b!~x2bx0!n. ~2.4!

Requiring either spatial homogeneity,11–13or that the LT is a
unique, single-valued, function of its arguments,6 requires
Eq. ~2.4! to be linear, i.e.,

a2~b!5a3~b!5¯50

so that

x85g~b!~x2bx0!. ~2.5!

Spatial homogeneity implies that Eq.~2.5! is invariant when
all spatial coordinates are scaled by any constant factoK.
Noting that

2b52
1

V

dx

dtU
x8

5
1

V

d~2x!

dt U
x8

~2.6!

and choosingK521 gives

2x85g~2b!~2x1bx0!. ~2.7!

Hence, Eq.~2.5! is invariant provided that

g~2b!5g~b!, ~2.8!

i.e., g(b) is an even function ofb.
Applying the space-time exchange operationsx↔x0,

x8↔(x0)8 to Eq. ~2.5! gives

~x0!85g~b!~x02bx!. ~2.9!
570J. H. Field
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The transformation inverse to~2.9! may, in general, be writ-
ten as:

x05g~b8!~~x0!82b8x8!. ~2.10!

The same inverse transformation may also be derived
eliminatingx between Eqs.~2.5! and ~2.9! and rearranging:

x05
1

g~b!~12b2!
„~x0!81bx8…. ~2.11!

Equations~2.10! and ~2.11! are consistent provided that

g~b8!5
1

g~b!~12b2!
~2.12!

and

b852b. ~2.13!

Equations~2.8!, ~2.12!, and~2.13! then give14

g~b!5
1

A12b2
. ~2.14!

Equations~2.5! and ~2.9! with g given by ~2.14! are the LT
equations for space-time points along the commonx, x8 axis
of the framesS, S8. They have been derived here solely fro
the symmetry condition~I! and the assumption of spatia
homogeneity, without any reference to the Principle of S
cial Relativity.

The physical meaning of the universal parameterV be-
comes clear when the kinematical consequences of the
for physical objects are worked out in detail. This is don
for example, in Ref. 6, where it is shown that the velocity
any massive physical object approachesV in any inertial
frame in which its energy is much greater than its rest ma
The identification ofV with the velocity of light, c, then
follows13,6 if it is assumed that light consists of massless~or
almost massless! particles, the light quanta discovered b
Einstein in his analysis of the photoelectric effect.15 That V
is the limiting velocity for the applicability of the LT equa
tions is, however, already evident from Eq.~2.14!. If g(b) is
real, thenb<1, that is,v<V.

III. DERIVATION OF THE KINEMATICAL
SPECIAL RELATIVITY PRINCIPLE

The LT equations~2.5! and ~2.9! and their inverses, writ-
ten in terms ofx,x8; t,t8, are

x85g~x2vt !, ~3.1!

t85gS t2
vx

V2D , ~3.2!

x5g~x81vt8!, ~3.3!

t5gS t81
vx8

V2 D . ~3.4!

Consider now observers, at rest in the framesS, S8, equipped
with identical measuring rods and clocks. The observer inS8
places a rod, of lengthl, along the commonx, x8 axis. The
coordinates inS8 of the ends of the rod arex18 , x28 , where
x282x185 l . If the observer inSmeasures, at timet in his own
frame, the ends of the rod to be atx1 , x2 then, according to
Eq. ~3.1!:
571 Am. J. Phys., Vol. 69, No. 5, May 2001
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x185g~x12vt !, ~3.5!

x285g~x22vt !. ~3.6!

Denoting byl S the apparent length of the rod, as observ
from S at time t, Eqs.~3.5! and ~3.6! give

l S[x22x15
1

g
~x182x28!5

l

g
. ~3.7!

Suppose that the observer inS8 now makes reciprocal mea
surementsx18 , x28 of the ends of a similar rod, at rest inS, at
time t8. In S the ends of the rod are at the pointsx1 , x2 ,
wherel 5x22x1 . Using Eq.~3.3!

x15g~x181vt8!, ~3.8!

x25g~x281vt8! ~3.9!

and, corresponding to~3.7!, there is the relation

l S8[x282x185
1

g
~x22x1!5

l

g
. ~3.10!

Hence, from Eqs.~3.7! and ~3.10!

l S5 l S85
1

g
, ~3.11!

so that reciprocal length measurements yield identical
sults.

Consider now a clock at rest inS8 at x850. This clock is
synchronized with a similar clock inSat t5t850, when the
spatial coordinate systems inSandS8 coincide. Suppose tha
the observer at rest inSnotes the timet recorded by his own
clock, when the moving clock records the timet. At this
time, the clock which is moving along the commonx,x8 axis
with velocity v will be situated atx5vt. With the definition
tS[t, and using Eq.~3.2!,

t5gS tS2
vx

V2D5gtSS 12
v2

V2D5
tS

g
. ~3.12!

If the observer at rest inS8 makes a reciprocal measureme
of the clock at rest inS, which is seen to be atx852vt8
when it shows the timet, then according to Eq.~3.4! with
tS8[t8,

t5gS tS81
vx8

V2 D5gtS8S 12
v2

V2D5
tS8
g

. ~3.13!

Equations~3.12! and ~3.13! give

tS5tS85gt. ~3.14!

Equations~3.11! and ~3.14! prove the Kinematical Specia
Relativity Principle as stated above. It is a necessary con
quence of the LT.

IV. GENERAL SPACE-TIME EXCHANGE
SYMMETRY PROPERTIES OF FOUR-VECTORS.
SYMMETRIES OF MINKOWSKI SPACE

The LT was derived above for space-time points lyi
along the commonx, x8 axis, so thatx5uxW u. However, this
restriction is not necessary. In the case thatxW5(x1,x2,x3),
then x and x8 in Eq. ~2.5! may be replaced byx5xW•vW /uvW u
and x85xW8•vW /uvW u, respectively, where the 1-axis is chos
571J. H. Field
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parallel tovW . The proof proceeds as before with the spa
time exchange operation defined as in Eqs.~1.2!–~1.4!. The
additional transformation equations,

y85y, ~4.1!

z85z, ~4.2!

follow from spatial isotropy.1

In the above derivation of the LT, application of theSTE
operator generates the LT of time from that of space. It is
pair of equations that is invariant with respect to theSTE
operation. Alternatively, as shown below, by a suitab
change of variables, equivalent equations may be defi
that are manifestly invariant under theSTEoperation.

The four-vector velocityU and the energy-momentum
four-vector P are defined in terms of the space-tim
four-vector,2

X[~Vt;x,y,z!5~x0;x1,x2,x3!, ~4.3!

by the equations

U[
dX

dt
, ~4.4!

P[mV, ~4.5!

wherem is the Newtonian mass of the physical object ant
is its proper time, i.e., the time in a reference frame in wh
the object is at rest. Sincet is a Lorentz invariant quantity
the four-vectorsU, P have identical LT properties to X. Th
properties ofU, P under theSTEoperation follow directly
from Eqs.~1.2! and~1.3! and the definitions~4.4! and~4.5!.
Writing the energy-momentum four-vector as

P5S E

V
;p,0,0D5~p0,p1,0,0!, ~4.6!

the STEoperations:p0↔p1,(p0)8↔(p1)8 generate the LT
equation for energy

~p0!85g~p02bp1! ~4.7!

from that of momentum

~p1!85g~p12bp0! ~4.8!

or vice versa.
The scalar product of two arbitrary four-vectorsC,D,

C•D[C0D02CW •DW , ~4.9!

can, by choosing thex-axis parallel toCW or DW , always be
written as:

C•D5C0D02C1D1. ~4.10!

Defining theSTEexchange operation for an arbitrary fou
vector in a similar way to Eqs.~1.2! and ~1.3!, then the
combined operationsC0↔C1,D0↔D1 yield

C•D→C1D12C0D052C•D. ~4.11!

The four-vector product changes sign, and so the comb
STEoperation is equivalent to a change in the sign conv
tion of the metric from space-like to time-like~or vice versa!,
hence the corollary~II ! in Sec. I.

The LT equations take a particularly simple form if ne
variables are defined which have simple transformation pr
erties under theSTEoperation. The variables are
572 Am. J. Phys., Vol. 69, No. 5, May 2001
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x15
x01x1

&
, ~4.12!

x25
x02x1

&
. ~4.13!

x1 , x2 have, respectively, even and odd ‘‘STEparity:’’

STEx15x1 , ~4.14!

STEx252x2 . ~4.15!

The manifestlySTE invariant LT equations expressed
terms of these variables are

x18 5ax1 , ~4.16!

x28 5
1

a
x2 , ~4.17!

where

a5A12b

11b
. ~4.18!

Introducing similar variables for an arbitrary four-vector,

C15
C01C1

&
, ~4.19!

C25
C02C1

&
, ~4.20!

the 4-vector scalar product ofC andD may be written as

C•D5C1D21C2D1 . ~4.21!

In view of the LT equations~4.16! and~4.17!, C•D is mani-
festly Lorentz invariant. The transformations~4.12!, ~4.13!
and ~4.19!, ~4.20! correspond to an anti-clockwise rotatio
by 45° of the axes of the usualct versusx plot. Thex1 ,x2

axes lie along the light cones of thex-ct plot ~see Fig. 1!.
The LT equations~4.16! and~4.17! give a parametric rep-

resentation of a hyperbola inx1 ,x2 space. A point on the
latter corresponds to a particular space-time point as vie
in a frameS. The pointx15x250 corresponds to the space
time origin of the frameS8 moving with velocitybc relative
to S. A point at the spatial origin ofS8 at time t85t will be
seen by an observer inS, asb ~and hencea! varies, to lie on
one of the hyperbolaeH11 ,H22 in Fig. 1:

x1x25
c2t2

2
~4.22!

with x1 ,x2.0 if t.0(H11) or x1 ,x2,0 if t
,0(H22). A point along thex8-axis at a distances from the
origin, at t850, lies on the hyperbolaeH12 ,H21 :

x1x25
2s2

2
~4.23!

with x1.0, x2,0 if s.0(H12) or x1,0, x2.0 if s
,0(H21). As indicated in Fig. 1 the hyperbolae~4.22! cor-
respond to the past (t,0) or the future (t.0) of a space-
time point at the origin ofS or S8, whereas~4.23! corre-
sponds to the ‘‘elsewhere’’ of the same space-time poin
that is, the manifold of all space-time points that are caus
572J. H. Field
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disconnected from them. These are all familiar properties
the Minkowski spacex-ct plot. One may note, however, th
simplicity of the equations~4.16!, ~4.17!, ~4.22!, and ~4.23!
containing the ‘‘lightcone’’ variablesx1 ,x2 that have
simple transformation properties under theSTEoperation.

Another application ofSTE symmetry may be found in
Ref. 16. It is shown there that the apparent distortions
space-time that occur in observations of moving bodies
clocks are related by this symmetry. For example,
Lorentz–Fitzgerald contraction is directly related to time
latation by theSTEoperations~1.2! and ~1.3!.

V. DYNAMICAL APPLICATIONS OF SPACE-TIME
EXCHANGE SYMMETRY

If a physical quantity is written in a manifestly covaria
way, as a function of four-vector products, it will evident
be invariant with respect toSTEas the exchange operatio
has the effect only of changing the sign convention for fo
vector products from space-like to time-like or vice vers
An example of such a quantity is the invariant amplitudeM
for an arbitrary scattering process in quantum field theory
this caseSTEinvariance is equivalent to Corollary II of Sec
I.

More interesting results can be obtained from equati
where components of four-vectors appear directly. It w
now be shown howSTE invariance may be used to deriv
Ampère’s law and Maxwell’s ‘‘displacement current’’ from
the Gauss law of electrostatics, and the Faraday–Lenz la
magnetic induction from the the Gauss law of magnetosta
~the absence of magnetic charges!. Thus electrodynamics an
magnetodynamics follow from the laws of electrostatics a
magnetostatics, together with space-time exchange sym
try invariance. It will be seen that the four-vector charac
of the electromagnetic potential plays a crucial role in th
derivations.

Fig. 1. Space-time points inS8 as seen by an observer inS. The hyperbolae
H11 ,H22 correspond to points at the origin ofS8 at time t85t. The
hyperbolaeH12 ,H21 correspond to points atx85s andt850. See the text
for the equations of the hyperbolae and further discussion.
573 Am. J. Phys., Vol. 69, No. 5, May 2001
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In the following, Maxwell’s equations are written in
Heaviside–Lorentz units withV5c51.17 The four-vector

potential A5(A0;AW ) is related to the electromagnetic fie
tensorFmn by the equation

Fmn5]mAn2]nAm, ~5.1!

where

]m5S ]

]t
;2¹W D5~]0;2¹W !. ~5.2!

The electric and magnetic field components,Ek andBk, re-
spectively, are given, in terms ofFmn, by the equations

Ek5Fk0, ~5.3!

Bk52e i jkFi j . ~5.4!

A time-like metric is used withCt5C05C0 , Cx5C1

52C1 , etc., with summation over repeated contravaria
~upper! and covariant~lower! indices understood. Repeate
Greek indices are summed from 1 to 4 and Roman ones f
1 to 3.

The transformation properties of contravariant and cov
ant four-vectors under theSTEoperation are now discussed
They are derived from the general condition that four-vec
products change sign under theSTEoperation@Eq. ~4.11!#.
The four-vector product~4.10! is written, in terms of contra-
variant and covariant four-vectors, as

C•D5C0D01C1D1 . ~5.5!

Assuming that the contravariant four-vectorCm transforms
according to Eqs.~1.2! and ~1.3!, i.e.,

C0↔C1, ~5.6!

the covariant four-vectorDm must transform as:

D0↔2D1 ~5.7!

in order to respect the transformation property

C•D→2C•D ~5.8!

of four-vector products underSTE.
It remains to discuss theSTEtransformation properties o

]m and the four-vector potentialAm. In view of the property
of ]m :]152]x52]/]x @Eq. ~5.2!#, which is similar to the
relationC152Cx for a covariantfour-vector, it is natural to
choose for]m a STEtransformation similar to Eq.~5.7!:

]0↔2]1 , ~5.9!

and hence, in order that]m]m change sign underSTE:

]0↔]1 . ~5.10!

This is because it is clear that the appearance of a m
sign in theSTE transformation equation~5.7! is correlated
with the minus sign in front of the spatial components o
covariant four-vector, not whether the Lorentz index is
upper or lower one. Thus]m and ]m transform in an
‘‘anomalous’’ manner underSTE as compared to the con
vention of Eqs.~5.6! and ~5.7!. In order that the four-vector
product]mAm respect the condition~5.8!, Am and Am must
then transform underSTEas:

A0↔2A1 ~5.11!

and
573J. H. Field
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A0↔A1 , ~5.12!

respectively. That is, they transform in the same way as]m

and]m , respectively.
Introducing the four-vector electromagnetic currentj m

[(r; jW), Gauss’ law of electrostatics may be written as:

¹W •EW 5r5 j 0, ~5.13!

or, in the manifestly covariant form,

~]m]m!A02]0~]mAm!5 j 0. ~5.14!

This equation is obtained by writing Eq.~5.13! in covariant
notation using Eqs.~5.1! and~5.3! and adding to the left side
the identity:

]0~]0A02]0A0!50. ~5.15!

Applying the space-time exchange operation to Eq.~5.14!,
with index exchange 0→1 @noting that]0,A0 transform ac-
cording to Eqs.~5.9! and ~5.11!, j 0 according to~5.6!, and
that the scalar products]m]m and]mAm change sign# yields
the equation

~]m]m!A12]1~]mAm!5 j 1. ~5.16!

The spatial part of the four-vector products on the left side
Eq. ~5.16! is

] i~] iA12]1Ai !5] iF
i15]2B32]3B25~¹W 3BW !1,

~5.17!

where Eqs.~5.1! and~5.4! have been used. The time part
the four-vector products in Eq.~5.16! yields, with Eqs.~5.1!
and ~5.3!,

]0~]0A12]1A0!52
]E1

]t
. ~5.18!

Combining Eqs.~5.16!–~5.18! gives

~¹W 3BW !12
]E1

]t
5 j 1. ~5.19!

Combining Eq.~5.19! with the two similar equations derive
by the index exchanges 0→2, 0→3 in Eq. ~5.14! gives

~¹W 3BW !2
]EW

]t
5 jW. ~5.20!

This is Ampère’s law, together with Maxwell’s displacemen
current.

The Faraday-Lenz law is now derived by applying t
space-time exchange operation to the Gauss law of ma
tostatics:

¹W •BW 50. ~5.21!

Introducing Eqs.~5.4! and ~5.1! into Eq. ~5.21! gives

]1~]3A22]2A3!1]2~]1A32]3A1!1]3~]2A12]1A2!50.
~5.22!

Making the exchange 1→0 of space-time indices in Eq
~5.22! and noting that]1 transforms according to Eq.~5.10!,
whereas]1,A1 transform as in Eqs.~5.9! and~5.11!, respec-
tively, gives

]0~]3A22]2A3!1]2~2]0A31]3A0!1]3~2]2A02]0A2!

50. ~5.23!
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Using Eqs.~5.1!–~5.4!, Eq. ~5.23! may be written as:

]B1

]t
1]2E32]3E250, ~5.24!

or, in three-vector notation,

~¹W 3EW !152
]B1

]t
. ~5.25!

The space-time exchanges 2→0, 3→0 in Eq. ~5.22! yield, in
a similar manner, the two- and three-components of
Faraday–Lenz law:

~¹W 3EW !52
]BW

]t
. ~5.26!

Some comments now on the conditions for the validity
the above derivations. It is essential to use the manife
covariant form of the electrostatic Gauss law, Eq.~5.14!, and
the manifestly rotationally invariant form, Eq.~5.22!, of the
magnetostatic Gauss law. For example, the 1-axis may
chosen parallel to the electric field in Eq.~5.13!. In this case
Eq. ~5.14! simplifies to

]1~]0A12]1A0!5 j 0. ~5.27!

Applying the space-time exchange operation 0↔1 to this
equation yields only the Maxwell displacement current te
in Eq. ~5.19!. Similarly, choosing the 1-axis parallel toBW in
Eq. ~5.21! simplifies Eq.~5.22! to

]1~]3A22]2A3!50. ~5.28!

The index exchange 1→0 leads then to the equation

]B1

]t
50. ~5.29!

instead of the 1-component of the Faraday–Lenz law, a
Eq. ~5.24!.

The choice of theSTEtransformation properties of contra
variant and covariant four-vectors according to Eqs.~5.6!
and~5.7! is an arbitrary one. Identical results are obtained
the opposite convention is used. However, ‘‘anomalou
transformation properties of]m,]m andAm,Am , in the sense
described above, are essential. This complication res
from the upper index on the left side of Eq.~5.2! whereas on
the right side the spatial derivative is multiplied by a min
sign. This minus sign changes theSTEtransformation prop-
erty relative to that,~5.6!, of conventional contravariant four
vectors that do not have a minus sign multiplying the spa
components. The upper index on the left side of Eq.~5.2! is
a consequence of the Lorentz transformation properties
the four dimensional space-time derivative.18

VI. SUMMARY AND DISCUSSION

In this paper the Lorentz transformation for points lyin
along the commonx,x8 axis of two inertial frames has bee
derived from only two postulates:~i! the symmetry principle
~I!, and~ii ! the homogeneity of space. This is the same nu
ber of axioms as used in Ref. 6 where the postulates were
Kinematical Special Relativity Postulate and the uniquen
condition. Since both spatial homogeneity and uniquen
require the LT equations to be linear, the KSRP of Ref. 6
here, essentially, been replaced by the space-time symm
condition ~I!.
574J. H. Field
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Although postulate~I! and the KRSP play equivalent role
in the derivation of the LT, they state in very different wa
the physical foundation of special relativity. Postulate~I! is a
mathematical statement about the structure of the equa
of physics, whereas the KSRP makes, instead, a state
about the relation between space-time measurements
formed in two different inertial frames. It is important to no
that in neither case do the dynamical laws describing
particular physical phenomenon enter into the derivation
the LT.

Choosing postulate~I! as the fundamental principle of spe
cial relativity instead of the Galilean Relativity Principle, a
in the traditional approach, has the advantage that a c
distinction is made, from the outset, between classical
relativistic mechanics. Both the former and the latter resp
the Galilean Relativity Principle but with different laws. O
the other hand, only relativistic equations, such as the LT
Maxwell’s equations, respect the symmetry condition~I!.

The teaching of, and hence the understanding of, spe
relativity differs greatly depending on how the parameterV
is introduced. In axiomatic derivations of the LT, which d
not use Einstein’s second postulate, a universal parametV
with the dimensions of velocity necessarily appears at
intermediate stage of the derivation.19 Its physical meaning,
as the absolute upper limit of the observed velocity ofany
physical object, only becomes clear on working out the
nematical consequences of the LT.6 If Einstein’s second pos
tulate is used to introduce the parameterc, as is done in the
vast majority of textbook treatments of special relativity, ju
tified by the empirical observation of the constancy of t
velocity of light, the actual universality of the theory is n
evident. The misleading impression may be given that s
cial relativity is an aspect of classical electrodynamics,
domain of physics in which it was discovered.

Formulating special relativity according to the symme
principle~I! makes clear the space-time geometrical basis2 of
the theory. The universal velocity parameterV must be in-
troduced at the outset in order even to define the space-
exchange operation. Unlike the Galilean Relativity Princip
the symmetry condition~I! gives a clear test of whether an
physical equation is a candidate to describe a universal
of physics. Such an equation must either be invariant un
space-time exchange or related by the exchange operati
another equation that also represents a universal law.
invariant amplitudes of quantum field theory are an exam
of the former case, while the LT equations for space and t
correspond to the latter. Maxwell’s equations are examp
of dynamical laws that satisfy the symmetry condition~I!.
The laws of electrostatics and magnetostatics~Gauss’ law for
electric and magnetic charges! are related by the space-tim
exchange symmetry to the laws of electrodynamics~Am-
père’s law! and magnetodynamics~the Faraday–Lenz law!,
respectively. The four-vector character20 of the electromag-
netic potential is essential for these symmetry relations.21
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