Two novel special relativistic effects: Space dilatation and time contraction
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The conventional discussion of the observed distortions of space and time in special refduvity
Lorentz—Fitzgerald contraction and time dilataliasn extended by considering observations, from

a stationary frame, ofii) objects moving with constant velocity and uniformly illuminated during

a short timer_ (their “luminous proper time’} in their rest frame; these may be called “transient
luminous objects” andii) a moving, extended, array of synchronized “equivalent clocks” in a
common inertial frame. Application of the Lorentz transformatior(ijoshows that such objects,
observed from the stationary frame with coarse time resolution in a direction perpendicular to their
direction of motion, are seen to be at rest lmrtgerin the direction of the relative velocity by a

factor 1A/1— (v/c)? (space dilatationand to (i) that the moving equivalent clock at any fixed
position in the rest frame of the stationary observer is seen to be rufastegthan a similar clock

at rest by the factor 11— (v/c)? (time contraction All four space—time “effects” of special
relativity are simply classified in terms of the projective geometry of space—time, and the close
analogy of these effects to linear spatial perspective is pointed ou00® American Association of
Physics Teachers.

[. INTRODUCTION LFC) if moving away. Only an object moving strictly trans-
versely to the line of sight of a close observer shows the

In his 1905 paper on special relativitginstein showed LFC.

that time dilatatio(TD) and the Lorentz—Fitzgerald contrac- ~ However, the LFC itself is a physical phenomenon similar

tion (LFC), which had previously been introduced in a some-in many ways tdiii ). The human eye or a photograph taken

whatad hocway into classical electrodynamics, are simpleWwith a fast shutter record, as a sharp image, the photons

consequences of the Lorentz Transformafion), that is, of ~ incident on it during a short resolution time. That is, the

the geometry of space—time. image corresponds to a projection at an almost fixed time in
As an example of the LFC Einstein stated that a spheréhe frameS of observation. This implies that the photons

moving with velocityv would, “viewed from the stationary constituting the observed image are emitted at different times

system,” appear to be contracted by the fac{dr— (v/c) from the Qifferent partsalong the line of_sig_htpf an ex-
in its direction of motion where is the velocity of light in tended object. As shown below, the LFC is similarly defined

free space. It was only pointed out some 54 years later that fY @ fixed time projection in the fram& The LT then re-
“viewed” was interpreted in the conventional sense of “as 9uires that the photons constituting the image of a moving
seen by the eye, or recorded on a photograph” then the@bject are also emitted at.dlfferent times, in the. rest_fr@he
sphere does not at all appear to be contracted, but is still seét the object, from the different partdong its direction of
as a sphere with the same dimensions as a stationary one af@tion In the following Swill, in general, denote the refer-
at the same positiofr* It was shown in generdf that trans-  €nce frame of a “stationary” observeéspace—time coordi-
versely viewed moving objects subtending a small solidhatesx, y, z, t) while S’ refers to the rest frame of an object
angle at the observer appear not to be distorted in shape 8toving with uniform velocityv in the direction of the posi-
changed in size, but rather rotated, as compared to a simiive x axis relative toS (space—time coordinates, y’, z’,
larly viewed and orientated object at rest. This apparent rot’).

tation is a consequence of three distinct physical effects: The purpose of this paper is to point out that the

(i) the LFC =constant projection of the LFCsee Sec. )l and thex’

(i)  optical aberration, = constant projection of TOisee Sec. I)l are not the only

(i) different propagation times of photons emitted by dif- Physically distinct space—time measurements possible within
ferent parts of the moving object. special relativity. In fact, as will be demonstrated below,

there are two others: space dilatati®D), thet’ = constant

The effect(ii) may be interpreted as the change in direc-projection and time contractioif C), thex= constant projec-
tion of photons, emitted by a moving source, due to the LTtion. All four “effects” are pure consequences of the LT.
between the rest frames of the source and the stationary ofhe additional effects of optical aberration and light propa-
server. Correcting fofii) and(iii), the LFC can be deduced gation delays on the appearance of moving objects and syn-
as a physical effect, if not directly observed. It was alsochronized clocks have been extensively discussed
pointed out by Weinstetthat if a single observer is close to elsewheré.
a moving object, then, because of the effect of light propa- Although each of the four effects may be simply derived
gation time delays, it will appear elongated if moving towardfrom the projective geometry of the space—time LT, the LFC
the observer and contracté€tb an extent greater than the and TD give rise to more easily observable physical effects,
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so it is not surprising that they are better known. For ex-
ample the LFC is essential for the physical interpretation of
the Michelson—Morley experiment, and TD is necessary to
describe the observed lifetimes of unstable particles decaying
in flight. In contrast, the two new effects SD and TC seem to
have no similar simple observational consequences. As
pointed out below, the most interesting effects are likely to
result from SD, which is necessary to describe observations
of, for example, a rotating extended object moving with a
relativistic transverse velocity. It is easy to conceive a simple
experiment involving the observation of two synchronized
clocks in space, to test the TC effect. Although it is clearly of
interest to work out in more detail such examples, there is no NS
attempt to do so in the present paper, which is devoted to the : velocity

precise definition of the four possible space—time projections =c/B
of the LT and a discussion of their interrelations.

The t=constant projection of the LFC is the space—time
measurement appropriate to the “moving bodies” of Ein-
stein’s original paper and to the photographic recording tech- Y e - 4
nigue. This medium has no intrinsic time resolution and re- +~-<--=---- yL-------- -
lies on that provided by a rapidly moving shutter to provide
a clear image. The LFC “works” as a well-defined physical b)
phenomenon because the “measuring rod” or other physical ) _ _ _ _
object under observation is assumed to be illuminated during'g-, 1. (@) A square “transient luminous object(indicated by the zig-zag
the whole time interval required to make an observation, an “t'\'l?:\)lvaesdV;‘:"f:;g;“ﬁﬂ:?';‘g;”tr‘:‘éh']c‘;grl;?na;vriisuvkyitghfels;?; Okg‘zd
SO constitutes a continuous source of lette_d or re_ﬂeCter?;rallel to theOx’ axis. It is assumed that the Iumginous proper timeof
photons, such that some are always available in the differe e object is smallr < BL/c. The actual outlines of the objects are shown
space Ax") and time Qt’) intervals inS’ for every posi- as short dashed lines. The long dashed rectangle of widtm (b) shows
tion of the rod corresponding to the time intervat=7g;  the outline of the object when viewed with coarse time resolutigg:
around the fixed timd in the observers frame during >;_/,BL/c. The observer irS_is assumed t_o be sufficiently distant from the
which the observation is made. If, however, the physical op2Piect that the effects of light propagation delays may be neglected. The
. . . . - g object is also assumed to constitute a diffuse photon source so that optical
ject of interest has internal motiomotation, expansion, or e rration effects are negligible.
contraction or is only illuminated, in its rest framg&’, dur-
ing a short time interval, the above conditions, which assure

that thet=constant projection gives a well-defined space—space—time “effects”(observed distortions of space—time
time measurement no longer apply. All such objects, uniin special relativity may be described in a unified way in
formly illuminated for a restricted timey (their “luminous  terms of projective geometry, in close analogy with the ef-
proper time”) in their rest frames, may be called “transient fect of linear perspective in the perception of space.
luminous objects.” For such objects it is natural to define a

Cra eyt b g e conier tion 1, OgERATION OF TRANSIENT LuNOUS
’ ’ y OBJECTS IN MOTION: THE SPACE

objects is discussed in Sec. Il.
In Sec. lll time measurements other than the conventiona'PILATATION EFFECT

TD of special relativity are considered. The TD phenomenon cgnsider a square planar object centered at the origin of

refers only to a local clock, in the sense that its position iny,, moving frameS’ as shown in Fig. ). The points
the frameS’ is invariant(say at the spatial origin of coordi- P'(x'=—L/2,y'=0) and Q'(x'=L/2,y’=0) lie on the
natesx’ =0). However, the time recorded by any synchro-yertical edges of the square of silewhose boundary is
nized clock in the same inertial frame is, by definition, iden-shown in Fig. 1a) as the short dashed lines. Suppose now
tical. Einstein used such an array of “equivalent clocks” that the square is uniformly illuminated in the time interval
situated at different positions in the same inertial frame in his_ 7 /2<t'<7./2 to give the “transient luminous object”
original discussion of the relativity of simultaneftyThe qicteq by the zig-zag lines. The proper time intervalis
guestion addressed in Sec. Il is: What will an observes in the “luminous proper time” of the object. For example, the

see if he looks not only at a given local clock$, butalso g rface of the square may be covered with a mosaic of light-
at other, synchronized, equivalent clocks at different posiznitting diodes that are simultaneously switched on during a
tions inS', in comparison to a standard clock at rest in his;jme 7. The object as seen by an observer, at rest in the
own frame? It is shown that such equivalent clocks may b&aiionary systers, viewing the object in a direction perpen-
seen to run slower than, or faster than, the TD prediction foy; ,1ar 1 the plan@®’x’y’, is given by the LT connecting

a local clock. In particular they may even appearrtm e o :
faster than the standard clockhis is an example of the time space—time points in the fran# to those inS

contraction effect mentioned previously. x=y(x'+vt'), (2.7

In Sec. IV the analogy between the Lorentz—Fitzgerald
contraction effect and linear perspective in two spatial di-
mensions is described. Section V points out how all four

a)

t=7y

X/
t’+,8?), 2.2
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Table I. Space-time points on the object at resBin(see Fig. 1, at time
t’=0, as observed in the fram&s, S

Point x t’ X t
P’ L 0 At _ YR
2 2 2c
o’ 0 0 0 0
, L 7" 8L
Q 2 0 2 2
where
B=vl !
=yplc, y= .
V1-p2

It is assumed that the stationary observer is sufficiently dis-
tant from the object that the effects of light propagation

times are negligible, and that the object is diffusely illumi-
nated so that optical aberration effects may be neglécted.

this case any changes in the appearance of the moving object

when viewed from the fram8 are due solely to the LT. The
results of the transformation faf =0 andx’=—L/2,0L/2
are given in Table I. It can be seen that the poltsO’,Q
are observed at different times in the frafBeThis is the
well-known effect of the relativity of simultaneity first
pointed out in Einstein’s classic paplelt can also be seen
from Table | that the distance between the position$bf
andQ’ as observed iBis yL; that is, the object will appear
to be elongated if it is viewed with a time resolution larger
than the difference in timeySL/c, between the observations
in S of the space—time point®’ andQ’ that are simulta-
neous in the fram&’. This is the “space dilatation’{SD)
effect. It will now be discussed in more detail, taking into
account the nonzero luminous proper timeof the transient
luminous object as well as the resolution timg of the

observer, so that the general conditions under which the SD

effect occurs are established.

Space—time points of the transient luminous object may be

observed at the fixed timein S provided that

Xr’nin<X’<Xr’naxv
where

_ L er,nax T BXmin

—'y( 2+ c )—'y(z c ) (2.3
In (2.3 it is assumed thax/,;,>—L/2, X/,,,<L/2. The gen-

eral condition relatingr_ , L, v, andc ensuring the validity
of this assumption will be discussed below. Usii2gl) the
coordinates irS corresponding to/;, andx;,., are found to
be

C T

Xmax:E t+ 2_7 ) (2.9
C TL

XmmZE t— 2_')’ . (2.5

Thus the widthé of the transient luminous object observed at
time t in S[indicated by the zig-zag lines in Fig(l); the
actual boundary is shown by the short dashed lines
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while, as can be seen frof@.4) and(2.5), the observer ir8
sees a luminous object that moves with veloaitys, i.e.,
faster than the velocity of light. In the case of continuous
illumination of the object ¢, — ) the upper and lower lim-
its of the object observed at the fixed tihen S will corre-
spond to the physical boundariey;,,=—L/2, X;,,=L/2. De-
noting by /i, tmax the times inS’ corresponding to the
observation of these boundaries at tima S, then, instead
of (2.3), the following relation is obtained:

BL\ [, AL
2_C tmax_z :

Using (2.1), the boundaries of the object observedSrat
timet are then

(2.6

0= Xmax— Xmin=

t=y|thint = 2.7

L
Xmaxzz_,y+vt! (2.9
L
min:—a"-vt. (29)

The width of the object as seen 8 is then Xmyax—Xmin
=L/v, the well-known LFC effect. As can be seen fr¢n8)
and (2.9) the object is now observed to move $with ve-
locity v. Thus, in the limit7 —oo (continuous illumination
of the object the usual results of special relativity are recov-
ered.

Using(2.1) and(2.2) the upperU) and lower(L) limits of
the space—time region in the stationary fraB®wvept out by
the moving transient luminous object in Figbl are

Xu=%(L+er), (2.10
xng(—L—urL), 211
tu=5 |+ ﬁ;—L , (212
thg(—TL—%). 2.13

Taking account of the inequality:

BL L
_<_,
cC v
it can be seen that if, <BL/c the terms containing in
(2.10—(2.13 may be neglected, so that

XU_XL:’}/L, (214)
vBL

Thus the space dilatation effect of Table | is recovered in the
limit 7, —0. On the other hand, because of the inequality:

CTL

ﬂ b

then, if 7, >L/v, the terms containind. in (2.10—(2.13
may be neglected, leading to the relations:

UTL<
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Xy—X =y, (2.16 N e
ty—t =y (217) C-1|_®_ CM@ IED Co @01

| [
These are the well-known equations of special relativity de- @ oo U(wb%_g{é o
scribing the motion of a small continously illuminated object R
as observed in the fram@ The time intervalt,—t, corre- Uy Wy
ds to the TD effect and the observed velocity is | — '
ff] 0L [0 [
(Xy=x)/(ty—t)=yvr /yr =v. (2.18 = = oy o o)
b) &

The conclusions of this section are now summarized. 009 &4
Whenr <BL/c, a stationary observer ilBwith a time reso-

: P @SR T o 0.6, y=1.25 D}es
lution rg<<yBL/c, viewing the object in the direction trans- p08= []
verse to the relative velocity, sees the square object at rest in 0 X

S’ illuminated quring th? proper time imervall. as anarrow  rig. 2. (a) Positions and times of equivalent clocks on the wagons of a train
rectangular object of widtlb=cr_/(Bvy) moving with ve-  as seen by a distant observer in the rest fr&hef the train at timet’
locity ¢/ 8 and sweeping out during the timegsL/c a region =0. (b) The positions and times of the same clocks as seen by a distant
of total lengthyL. If, however, the resolution timey, of the =~ Observer inSat timet=t'=0. The same remarks concerning light propa-

. . . gation time and optical aberration effects as made in the caption of Fig. 1
observer is much larger thaysL/c, the object will appear 55y,
at rest but elongated by the factgrin the direction of mo-
tion. This is the space dilatation effect. In the contrary case
that the luminous proper time, is large (r,>L/v), the

object observed fron® moves with velocityv and has an  |apeledC,,, m=---—2,-1,0,1,2,... and are situate@ith

apparent length/y due to the well-known LFC effect. Also, the exception of the “magic clock'C,,, see the followingy

in this case, the elapsed timesSrandS' are related by the gt fixed distances. from each other, along thex’ axis,

TD effect[Eq. (2.17)]. ~_which is parallel to the train. It is assumed that the observers
It should be noted that the “narrow rectangular object” i, the framesSandS’ view the train transversely at a suffi-

referred to above corresponds to the case of uniform 'llum"ciently large distance that the effects of light propagation

nation of the square object. Actually, because of the relativiye delays may be neglected. It is clear that by considering
ity of simultaneity, different parts of the square are seen ajq jimit L0 an equivalent clock may be associated with

different times and positions by the stationary observer. Ity, ., hosition on the train and, by extending the “lattice” of

the square were illuminated using different colors: red, yel'clocks to three dimensions toy any spatial positiofSin

low, green, blue in four equal bands parallel to yfiexis, in The observer inS" will néte that each equivalent clock

the direction of increasing’,_then the_mov_ing object in Fig. (EC) indicates the same time, as shown in Fig)2lt is now

1(b) would appear red during the time intervalyBL/2C  agked how the array of EC will appear to an observer at a
<t<ypL/4c, yellow during the time- yBL/4c<t<0, and  fixed position in the frame when the train is moving with

so on. The colors will, of course, be seen shifted in frequencwebcity Bc parallel to the directio©x in S[Fig. 2b)]. It is
according to the relativistic transverse Doppler effet. assumed that the EC, is placed atx’=0 and that it is

If the square is rotated about tlyé axis by an angley, a : : 0
subtle interplay occurs between the effects of the LT andsynchromzed with the standard cloG, placed ak=0 in

light propagation time delays. Depending on the values of
and « the rectangular object may be seen, by an observer at
rest in the frameS, to move parallel tor (as in the above-

described case=0), antiparallel tov, or may even be sta- C, Cu Co G,

tionary and of lengthyL cosa. In all cases the total length

swept out by the object in the direction of motion is a) @ @ @ @ \:|>
yL cosa. These effects have been described in detall

elsewheré. t'=0.451 0.2t 0.0 -0.451

[ll. OBSERVATION OF AN ARRAY OF

EQUIVALENT MOVING CLOCKS: THE TIME
CONTRACTION EFFECT

C-2 C-1 CM CO
In this section space—time measurements of an array oP) @ @ @ @ C{>
synchronized clocks situated in the inertial fraBfewill be
T

considered. These clocks may be synchronized by any con t'=1.77 1.5 0.87
venient procedure(see, for example, Ref.)1For an ob-

server inS' all such clocks are “equivalent” in the sense t=t Cs

that each of them records, independently of its position, the

. , , ;
proper t_'meT of the frameS’. For convenience, the array of _Fig. 3. (a) Times of equivalent clocks on the trai€(,,Cy ,Cy,C;) and
ClOst_B assumed to be placgd on the wagons of a traifhe stationary clociCs, as seen by a distant observerSt timet=0. (b)
which is at rest inS’, as shown in Fig. @). The clocks are  The same, at time=r. It is assumed thag8=0.6, y=1.25.
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Table Il. Times observed i8 of equivalent clocks on the moving train in Fig. 2, at the tirhe® andt= 7 of

the stationary standard clo€ks .

Cs c., C, Cy Co C, C,
0 2(3/2—1)7 (3?—1)7 (7—1)T 0 _(f—l)T _2(32—1) i
Y Y Y Y Y
, (2y-1) . e , T (Y2 . (Y3 .
Y Y b Y
S, whent=t’=0. All the clocks are similar, that i€5 and Lt
eachC,, record exactly equal time intervals when they are 7~ %_ ; (3.8
situated in the same inertial frame.
The appearance of the moving array of EC to an observef0 that
in Satt=0 is shown in Fig. &), and in more detail in Fig. t'=yr. (3.9

3 for botht=0 andt= . The periodr is the time between
the passage of successive EC fiast The big hand ofCgin
Fig. 3 rotates through 180° during the time Explicit ex-

The EC at the origin oBatt= r shows a later time tha@sg,
i.e., it is apparently runnindasterthan Cg. This is an ex-

pressions for the observed times are presented in Table 1. @MPle of time contractioTC). The time contraction effect
Figs. 2b) and 3 the times indicated by the clocks are showr!S exhibited by the EC observed at any fixed position.imS
for B=0.6. These times are readily calculated using the LTact if the observer ir§ can see the EC only when they are

equations(2.1), (2.2). Consider the time indicated by, at
t=0. The space—time points are

S':(L,t"), S:(x,0).
Hence, Egs(2.1) and(2.2) give
x=7y(L+vt"), (3.1
L
0=y t’+B—), (3.2
c
which have the solutiohC,(t=0)]:
,__BL
t'=— < (3.3
- (3.9
X=—. )
Y

As shown in Fig. 2b), the wagons of the train appear
shorter due to the LFC effefEq. (3.4)] and alsahe wagons
at the front end of the train are seen at an earlier proper
time than those at the rear en@hus at=0 snapshot irS
corresponds, not to a fixed in S, but one which depends
onx’:t'=—Bx’/c. This is a consequence of the relativity of
simultaneity of space-time events B and S', as first

near to Cg he (or she will inevitably conclude that the
clocks on the train run fast, not slow as in the classical TD
effect(see the followin@ Suppose that the observer is sitting
in a waiting room with the cloclCs and notices the time on
the train(the same a€) by looking atC, as it passes the
waiting room window. If hgor she then compare€ _; as it
passes the window witB¢ it will be seen to be running fast
relative to the latter. In order to see the TD effect the ob-
server would(as will now be shownhave to note the time
shown by, for exampleC,, at timet= 7 as recorded b g

in comparison with that shown by theame clock @ at t
=0. Using Eq.(3.8), Eq. (3.3) may be written ag C,(t
=0)]:

(Y*=1)7
t'=—R2yr=—--__ "7
By 5

This is the formula for the observed time reported in Table
Il. Now considerC, at timet= 7. The space—time points are

(3.10

pointed out by Einstein in Ref. 1. Here it appears in a par-

ticularly graphic and striking form. Consider now the time
indicated byC_, att=r, i.e., whenC_ is at the origin ofS.
The space—time points are

S":(—-L,t"), S:(0,7).
Hence, Egs(2.1) and(2.2) give
0=y(—L+uvt"), (3.5
L
e 5
with the solutiondC_4(t=17)]:
L
t'=—, (3.7
v
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S:(0t"), Si(x,7).
Hence, Eqgs(2.1) and(2.2) give
x=yut’, (3.11
T=yt', (3.12
with the solutiond Cy(t=17)]:
t'=1lvy, (3.13
x=v7r=L/vy. (3.19

Sothe EC G at time t= 7 indicates an earlier time, and so
is apparently running slower than £ This is the classical
time dilatation(TD) effect. It applies to observations of all
local clocksin S’ (i.e., those situated at a fixed valuexdf
as well as any other EC that has the same value' of

As a last example consider the “magic clockC), shown
in Fig. 2(a) at timet= 7. With the space—time points

S':((—L/I(1+y),t"), Si(x7),
Egs.(2.1) and(2.2) give
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xXtx the pin hole. The object space is how compared to the rest
pr frameS'’ of the moving object, with the following correspon-
IMAGE g A dences:
SPACE ROD
\ X'ex', Tet,
f : a while the image space is compared to the fragef the
ot : stationary observer with the following correspondences:
= i Xex, Tet.
4] q
T | T An arbitrary point with coordinatesX’,T’) on the rod will
a j project into the image space the line:
i oo e o
i ¢ X'T
res OBJECT X==—, 4.1)
g SPACE
which may be compared to the LT equation:
PLANE
PARTITION 1
SCREEN WITH PIN-HOLE x=—x'+vt. (4.2
ATO Y
Fig. 4. An example of linear spatial perspective analogous to the Lorentz—Taking theT: T:_ConStant projeCtion in4.1), ie., setting
Fitzgerald contraction effect. the screen in the image space parallel to the planar surface at
the distancer from it, gives for the lengtlv, of the image of
the rod:
X= —L/(1+ +ot’ y 3.1 7 ' ' T
A=ty B9 L x= S XXy =L, 43
, B
=yt = C L1+, (3.16  where the points 1, 2 denote the ends of the rod or of its
_ ) image. Similarly taking the = constant projection ir(4.2)
with the solutiond Cy(t=17)]: gives, for the apparent length of a rod, parallel to the
t'=r (3.17  axis, of true length:
x=yv7/(1+y), (3.18

1
[ =X1—Xo=—(X]—X3) = — (4.9
where the relatiorL= yv 7 from Eq. (3.8) has been used. ' Y Y .
Thus Gy shows the same time ag@tt= 7. Similar moving ~ corresponding to the LFC effect. The role of the factoy itf
“magic clocks” can be defined that show the same time aghe LT is replaced, in the case of linear perspective, by the
Cg at any chosen timé in S. Such a clock is, in general, ratio 7/ 7", which specifies the relative position and orienta-
situated a’ = —ct(y— 1)/8y. All of the other clock times  tion of the object and the screen on which it is observed.
presented in Table Il and shown in FiggbR 3 are calcu-
lated in a similar way to the above-mentioned examples b
choosing appropriate values »f andt. )(/ DISCUSSION

The combined effects of the LT and light propagation de-  The different space—time effectebserved distortions of
lays for light signals moving parallel to the traiiorre-  space or timpin special relativity that have been discussed
sponding to observations of the array of equivalent clocks byove are summarized in Table Ill. These are the well-
observers on, or close to the traihave been described in ynown LFC and TD effects, space dilatatitBD) introduced
detail elsewhere.The observed spatial distortions of the j, gec, ||, and time contractiofTC) introduced in Sec. II.
train in. Et_)hls situation were previously considered by o effect is an observed differenag (q=x,x’,t,t') of
Weinstein: two space or time coordinates\§=q;—q,) and corre-
sponds to a constant projecti@i constant, i.e.AG=0 (G
#q), in another of the four variables x’, t, t’ of the LT.

As shown in Table Ill, the LFC, SD, TC, and TD effects
correspond, respectively, to constant’, x, andx’ projec-

The analogy between the observed distortions of spacelions. After making this projection, the four LT equations
time in special relativity and linear spatial perspective is il-9ive two relations among the remaining three variables. One
lustrated in Fig. 4. The “object space” on the right is sepa-Of these describes the “space—time distortion” relatiiy
rated from the “image space” on the left by a plane partitionand At or Ax’ and Ax while the other gives the equation
containing a small apertur@in hole. Light reflected from  shown in the last columfiabeled “Complementary Effect’
the rodPQ in the object space can pass through the pin holén Table Ill. These equations relate eith®x to At (for SD
and produce an image on a screen located in the image spae@md TD or Ax’ to At’ (for LFC and TQ. It can be seen
To facilitate the comparison with the Lorentz transformation,from the complementary effect relations that the two space—
the Cartesian axes in the obj¢thaged space are denoted by time points defining the effe¢bf space—time distortiorare
(X', T") [(X,T], respectively(see Fig. 4 TheT, T’ axes are space-like separated for LFC and SD and time-like separated
perpendicular to the plane of the partition and pass througfor TC and TD.

V. ANALOGY WITH LINEAR PERSPECTIVE IN
TWO-DIMENSIONAL SPACE
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Table Ill. Different observed distortions of space—time in special relatigige the text

Name Observed quantity Projection Effect Complementary effect
) 1 c
Lorentz—Fitzgerald Ax At=0 Ax= — Ax’ AX'=— EAt’
contraction(LFC) Y
c

Space dilatation AXx At'=0 Ax=yAXx’ Ax= EAt
(SD)
Time contraction At’ Ax=0 At'=yAt AX'=—cB At’
(TC)

1
Time dilatation At’ Ax'=0 At'= — At Ax=cp At
(TD) 7

For example, for the LFC wheh=t,=t, the LT equa- ReplacingAs, As’ by cAt, cAt’ yields the last row of

tions for the two space—time points are Table 11l which describes the TD effect. Similarly TC can be
X, = (X~ vt), (5.1) derived from SD(or vice versaby successively applying the
transformationsr'l, T2.
Xo=y(Xa—vt), (5.2 The “complementary effects” listed in Table Ill have the
Bx following geometrical interpretations:
’ 1
tl—V(t—T)' (5.3 LFC [AX’ = —(c/B)At']. This is the locus of all the
8 points in S’ that are observed at the same time
X o
té=’y<t——2). (5.4) (At=0) inS
c SD[Ax=(c/B)At]. The locus of the moving object
Subtracting(5.1) from (5.2) and(5.3) from (5.4) gives as observed s [see Fig. 1b)].
AX' = yAX, (5.5) TC[AX'=—CcBAt ].. The locus of the p05|.t|on of N
the local clock inS' observed at a fixed position
B (Ax=0) in S
At'=——AXx. 5.6
c X 59 TD (Ax=cpBAt). The locus of the position of the

Equation (5.5) describes the LFC effect, while combining moving local clock observed i6.
Egs. (5.5 and (5.6 to eliminateAx yields the equation for A remark on the “observed quantities” in Table Ill. For
the complementary effect. By taking other projections thethe LFC, SD effects the observed quantity is a length interval
other entries of Table Ill may be calculated in a similar fash-jn the frameS. The observed space distortion occurs because
ion. It is interesting to note that the TD effect can be derivediig length differs from the result of a similar measurement
directly fr_om the LFC gffect by usin_g the symmetry of the made on the same object in its own rest frame’ is not
LT eq.uatlons.. Introducing the notatioa=ct, the LT may directly measured at the time of observation of the LFC or
be written as: SD. It is otherwise with the time measurements TD, TC.

x'=y(x—Bs), (5.7 Here the time intervals indicated their own rest framéy a

s = y(s— BX) 5.9 local moving clock(TD), or different equivalent clocks at

' ' the same position i8S (TC), are supposed to be directly

These equations are invari&ninder the following transfor-  observed and compared with the time intenl registered

mations: by an unmoving clock in the observer’s rest frame. Thus the
T1l: x—s, X' <s', (5.9 effect refers to two simultaneous observationstlhy same
observernot to separate observations byo different ob-
T2: xeox!, ses, f——p. (510 serversas in the case of the LFC and SD.
Writing out the LFC entries in the first row of Table 1ll,  Einstein’s first paper on special relativitghowed, for the
replacingt, t' by s/c, s'/c; gives first time, that the LFC and TD effects could be most simply
Ax/ As' understood in terms of the geometry of space—time, in con-
AX, As=0, Ax=——o1, Ax'=——. trast to the previous works of Fitzgerald, Larmor, Lorentz,
B and Poincarewhere dynamical and kinematical consider-
App|y|ng T1 to each entry in this row results in ations were always miXéﬂHOWEVGr it can also be argued
, , that special relativity has a dynamical aspect due to the
As. Ax=0. As= A_S As' = — A_X changes in the electromagnetic field induced by the LT. In-
' ' ’ B deed, by calculations of the equilibrium positions of an array

of point charges in both stationary and uniformly moving

Applying T2,
PPYINg frames, Sorensen has shown that the LFC may be derived
As' Ax'=0 As' = E’ As= ﬂ from dynamical consideratiort8 By considering several dif-
' ' v’ B ferent “electromagnetic clocks” either at rest or in uniform
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WARTIME APPLICATIONS OF MATHEMATICS

There is one purpose at any rate which the real mathematics may serve in war. When the world
is mad, a mathematician may find in mathematics an incomparable anodyne. For mathematics is,
of all the arts and sciences, the most austere and the most remote, and a mathematician should be
of all men the one who can most easily take refuge where, as Bertrand Russell says, ‘one at least
of our nobler impulses can best escape from the dreary exile of the actual world'.

G. H. Hardy,A Mathematician’s ApologyCambridge University Press, 1969; reprint of 1940 edjtign 143.
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