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The conventional discussion of the observed distortions of space and time in special relativity~the
Lorentz–Fitzgerald contraction and time dilatation! is extended by considering observations, from
a stationary frame, of:~i! objects moving with constant velocity and uniformly illuminated during
a short timetL ~their ‘‘luminous proper time’’! in their rest frame; these may be called ‘‘transient
luminous objects’’ and~ii ! a moving, extended, array of synchronized ‘‘equivalent clocks’’ in a
common inertial frame. Application of the Lorentz transformation to~i! shows that such objects,
observed from the stationary frame with coarse time resolution in a direction perpendicular to their
direction of motion, are seen to be at rest butlonger in the direction of the relative velocityv by a
factor 1/A12(v/c)2 ~space dilatation! and to ~ii ! that the moving equivalent clock at any fixed
position in the rest frame of the stationary observer is seen to be runningfasterthan a similar clock
at rest by the factor 1/A12(v/c)2 ~time contraction!. All four space–time ‘‘effects’’ of special
relativity are simply classified in terms of the projective geometry of space–time, and the close
analogy of these effects to linear spatial perspective is pointed out. ©2000 American Association of

Physics Teachers.
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I. INTRODUCTION

In his 1905 paper on special relativity1 Einstein showed
that time dilatation~TD! and the Lorentz–Fitzgerald contra
tion ~LFC!, which had previously been introduced in a som
what ad hocway into classical electrodynamics, are simp
consequences of the Lorentz Transformation~LT!, that is, of
the geometry of space–time.

As an example of the LFC Einstein stated that a sph
moving with velocityv would, ‘‘viewed from the stationary
system,’’ appear to be contracted by the factorA12(v/c)2

in its direction of motion wherec is the velocity of light in
free space. It was only pointed out some 54 years later th
‘‘viewed’’ was interpreted in the conventional sense of ‘‘
seen by the eye, or recorded on a photograph’’ then
sphere does not at all appear to be contracted, but is still
as a sphere with the same dimensions as a stationary on
at the same position.2–4 It was shown in general3,4 that trans-
versely viewed moving objects subtending a small so
angle at the observer appear not to be distorted in shap
changed in size, but rather rotated, as compared to a s
larly viewed and orientated object at rest. This apparent
tation is a consequence of three distinct physical effects

~i! the LFC,
~ii ! optical aberration,
~iii ! different propagation times of photons emitted by d

ferent parts of the moving object.

The effect~ii ! may be interpreted as the change in dire
tion of photons, emitted by a moving source, due to the
between the rest frames of the source and the stationary
server. Correcting for~ii ! and ~iii !, the LFC can be deduce
as a physical effect, if not directly observed. It was a
pointed out by Weinstein5 that if a single observer is close t
a moving object, then, because of the effect of light pro
gation time delays, it will appear elongated if moving towa
the observer and contracted~to an extent greater than th
367 Am. J. Phys.68 ~4!, April 2000
-

re

if

e
en
and

d
or
i-
-

-

b-

-

LFC! if moving away. Only an object moving strictly trans
versely to the line of sight of a close observer shows
LFC.

However, the LFC itself is a physical phenomenon simi
in many ways to~iii !. The human eye or a photograph tak
with a fast shutter record, as a sharp image, the pho
incident on it during a short resolution timetR . That is, the
image corresponds to a projection at an almost fixed time
the frameS of observation. This implies that the photon
constituting the observed image are emitted at different tim
from the different parts,along the line of sight, of an ex-
tended object. As shown below, the LFC is similarly defin
by a fixed time projection in the frameS. The LT then re-
quires that the photons constituting the image of a mov
object are also emitted at different times, in the rest frameS8
of the object, from the different partsalong its direction of
motion. In the followingS will, in general, denote the refer
ence frame of a ‘‘stationary’’ observer~space–time coordi-
natesx, y, z, t! while S8 refers to the rest frame of an obje
moving with uniform velocityv in the direction of the posi-
tive x axis relative toS ~space–time coordinatesx8, y8, z8,
t8!.

The purpose of this paper is to point out that thet
5constant projection of the LFC~see Sec. II! and thex8
5constant projection of TD~see Sec. III! are not the only
physically distinct space–time measurements possible wi
special relativity. In fact, as will be demonstrated belo
there are two others: space dilatation~SD!, the t85constant
projection and time contraction~TC!, thex5constant projec-
tion. All four ‘‘effects’’ are pure consequences of the LT
The additional effects of optical aberration and light prop
gation delays on the appearance of moving objects and
chronized clocks have been extensively discus
elsewhere.6

Although each of the four effects may be simply deriv
from the projective geometry of the space–time LT, the LF
and TD give rise to more easily observable physical effe
367© 2000 American Association of Physics Teachers
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so it is not surprising that they are better known. For e
ample the LFC is essential for the physical interpretation
the Michelson–Morley experiment, and TD is necessary
describe the observed lifetimes of unstable particles deca
in flight. In contrast, the two new effects SD and TC seem
have no similar simple observational consequences.
pointed out below, the most interesting effects are likely
result from SD, which is necessary to describe observat
of, for example, a rotating extended object moving with
relativistic transverse velocity. It is easy to conceive a sim
experiment involving the observation of two synchroniz
clocks in space, to test the TC effect. Although it is clearly
interest to work out in more detail such examples, there is
attempt to do so in the present paper, which is devoted to
precise definition of the four possible space–time projecti
of the LT and a discussion of their interrelations.

The t5constant projection of the LFC is the space–tim
measurement appropriate to the ‘‘moving bodies’’ of E
stein’s original paper and to the photographic recording te
nique. This medium has no intrinsic time resolution and
lies on that provided by a rapidly moving shutter to provi
a clear image. The LFC ‘‘works’’ as a well-defined physic
phenomenon because the ‘‘measuring rod’’ or other phys
object under observation is assumed to be illuminated du
the whole time interval required to make an observation,
so constitutes a continuous source of emitted or reflec
photons, such that some are always available in the diffe
space (Dx8) and time (Dt8) intervals inS8 for every posi-
tion of the rod corresponding to the time intervalDt5tR
around the fixed timet in the observer’s frameS during
which the observation is made. If, however, the physical
ject of interest has internal motion~rotation, expansion, o
contraction! or is only illuminated, in its rest frameS8, dur-
ing a short time interval, the above conditions, which ass
that thet5constant projection gives a well-defined spac
time measurement no longer apply. All such objects, u
formly illuminated for a restricted timetL ~their ‘‘luminous
proper time’’! in their rest frames, may be called ‘‘transie
luminous objects.’’ For such objects it is natural to define
length measurement by taking thet85constant projection in
S8. The observation, from the stationary frameS, of such
objects is discussed in Sec. II.

In Sec. III time measurements other than the conventio
TD of special relativity are considered. The TD phenomen
refers only to a local clock, in the sense that its position
the frameS8 is invariant~say at the spatial origin of coordi
natesx850!. However, the time recorded by any synchr
nized clock in the same inertial frame is, by definition, ide
tical. Einstein used such an array of ‘‘equivalent clock
situated at different positions in the same inertial frame in
original discussion of the relativity of simultaneity.1 The
question addressed in Sec. III is: What will an observer iS
see if he looks not only at a given local clock inS8, but also
at other, synchronized, equivalent clocks at different po
tions in S8, in comparison to a standard clock at rest in h
own frame? It is shown that such equivalent clocks may
seen to run slower than, or faster than, the TD prediction
a local clock. In particular they may even appear torun
faster than the standard clock. This is an example of the time
contraction effect mentioned previously.

In Sec. IV the analogy between the Lorentz–Fitzger
contraction effect and linear perspective in two spatial
mensions is described. Section V points out how all fo
368 Am. J. Phys., Vol. 68, No. 4, April 2000
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space–time ‘‘effects’’~observed distortions of space–tim!
in special relativity may be described in a unified way
terms of projective geometry, in close analogy with the
fect of linear perspective in the perception of space.

II. OBSERVATION OF TRANSIENT LUMINOUS
OBJECTS IN MOTION: THE SPACE
DILATATION EFFECT

Consider a square planar object centered at the origin
the moving frameS8 as shown in Fig. 1~a!. The points
P8(x852L/2,y850) and Q8(x85L/2,y850) lie on the
vertical edges of the square of sideL whose boundary is
shown in Fig. 1~a! as the short dashed lines. Suppose n
that the square is uniformly illuminated in the time interv
2tL/2,t8,tL/2 to give the ‘‘transient luminous object’
indicted by the zig-zag lines. The proper time intervaltL is
the ‘‘luminous proper time’’ of the object. For example, th
surface of the square may be covered with a mosaic of lig
emitting diodes that are simultaneously switched on durin
time tL . The object as seen by an observer, at rest in
stationary systemS, viewing the object in a direction perpen
dicular to the planeO8x8y8, is given by the LT connecting
space–time points in the frameS8 to those inS:

x5g~x81vt8!, ~2.1!

t5gS t81b
x8

c D , ~2.2!

Fig. 1. ~a! A square ‘‘transient luminous object’’~indicated by the zig-zag
outline! as viewed in the frameS8 in which it is at rest.~b! The same object
as viewed at a fixed time from the frameS moving with velocity 2bc
parallel to theOx8 axis. It is assumed that the luminous proper timetL of
the object is small:tL!bL/c. The actual outlines of the objects are show
as short dashed lines. The long dashed rectangle of widthgL in ~b! shows
the outline of the object when viewed with coarse time resolution:tR

@gbL/c. The observer inS is assumed to be sufficiently distant from th
object that the effects of light propagation delays may be neglected.
object is also assumed to constitute a diffuse photon source so that op
aberration effects are negligible.
368J. H. Field
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where

b[v/c, g[
1

A12b2
.

It is assumed that the stationary observer is sufficiently
tant from the object that the effects of light propagati
times are negligible, and that the object is diffusely illum
nated so that optical aberration effects may be neglected6 In
this case any changes in the appearance of the moving o
when viewed from the frameSare due solely to the LT. The
results of the transformation fort850 andx852L/2,0,L/2
are given in Table I. It can be seen that the pointsP8,O8,Q
are observed at different times in the frameS. This is the
well-known effect of the relativity of simultaneity firs
pointed out in Einstein’s classic paper.1 It can also be seen
from Table I that the distance between the positions ofP8
andQ8 as observed inS is gL; that is, the object will appea
to be elongated if it is viewed with a time resolution larg
than the difference in time,gbL/c, between the observation
in S of the space–time pointsP8 and Q8 that are simulta-
neous in the frameS8. This is the ‘‘space dilatation’’~SD!
effect. It will now be discussed in more detail, taking in
account the nonzero luminous proper timetL of the transient
luminous object as well as the resolution timetR of the
observer, so that the general conditions under which the
effect occurs are established.

Space–time points of the transient luminous object may
observed at the fixed timet in S provided that

xmin8 ,x8,xmax8 ,

where

t5gS 2
tL

2
1

bxmax8

c D 5gS tL

2
1

bxmin8

c D . ~2.3!

In ~2.3! it is assumed thatxmin8 .2L/2, xmax8 ,L/2. The gen-
eral condition relatingtL , L, v, andc ensuring the validity
of this assumption will be discussed below. Using~2.1! the
coordinates inS corresponding toxmin8 andxmax8 are found to
be

xmax5
c

b S t1
tL

2g D , ~2.4!

xmin5
c

b S t2
tL

2g D . ~2.5!

Thus the widthd of the transient luminous object observed
time t in S @indicated by the zig-zag lines in Fig. 1~b!; the
actual boundary is shown by the short dashed lines# is

Table I. Space–time points on the object at rest inS8 ~see Fig. 1!, at time
t850, as observed in the framesS8, S.

Point x8 t8 x t

P8 2
L

2
0 2

gL

2
2

gbL

2c
O8 0 0 0 0

Q8
L

2
0

gL

2

gbL

2c
369 Am. J. Phys., Vol. 68, No. 4, April 2000
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ctL

bg
, ~2.6!

while, as can be seen from~2.4! and~2.5!, the observer inS
sees a luminous object that moves with velocityc/b, i.e.,
faster than the velocity of light. In the case of continuo
illumination of the object (tL→`) the upper and lower lim-
its of the object observed at the fixed timet in S will corre-
spond to the physical boundariesxmin8 52L/2, xmax8 5L/2. De-
noting by tmin8 , tmax8 the times inS8 corresponding to the
observation of these boundaries at timet in S, then, instead
of ~2.3!, the following relation is obtained:

t5gS tmin8 1
bL

2c D5gS tmax8 2
bL

2c D . ~2.7!

Using ~2.1!, the boundaries of the object observed inS at
time t are then

xmax5
L

2g
1vt, ~2.8!

xmin52
L

2g
1vt. ~2.9!

The width of the object as seen inS is then xmax2xmin

5L/g, the well-known LFC effect. As can be seen from~2.8!
and ~2.9! the object is now observed to move inS with ve-
locity v. Thus, in the limittL→` ~continuous illumination
of the object! the usual results of special relativity are reco
ered.

Using ~2.1! and~2.2! the upper~U! and lower~L! limits of
the space–time region in the stationary frameSswept out by
the moving transient luminous object in Fig. 1~b! are

xU5
g

2
~L1vtL!, ~2.10!

xL5
g

2
~2L2vtL!, ~2.11!

tU5
g

2 S tL1
bL

c D , ~2.12!

tL5
g

2 S 2tL2
bL

c D . ~2.13!

Taking account of the inequality:

bL

c
,

L

v
,

it can be seen that iftL!bL/c the terms containingtL in
~2.10!–~2.13! may be neglected, so that

xU2xL.gL, ~2.14!

tU2tL.
gbL

c
. ~2.15!

Thus the space dilatation effect of Table I is recovered in
limit tL→0. On the other hand, because of the inequality

vtL,
ctL

b
,

then, if tL@L/v, the terms containingL in ~2.10!–~2.13!
may be neglected, leading to the relations:
369J. H. Field
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xU2xL.gvtL , ~2.16!

tU2tL.gtL . ~2.17!

These are the well-known equations of special relativity
scribing the motion of a small continously illuminated obje
as observed in the frameS. The time intervaltU2tL corre-
sponds to the TD effect and the observed velocity is

~xU2xL!/~ tU2tL!5gvtL /gtL5v. ~2.18!

The conclusions of this section are now summariz
WhentL!bL/c, a stationary observer inSwith a time reso-
lution tR!gbL/c, viewing the object in the direction trans
verse to the relative velocity, sees the square object at re
S8 illuminated during the proper time intervaltL as a narrow
rectangular object of widthd5ctL /(bg) moving with ve-
locity c/b and sweeping out during the timegbL/c a region
of total lengthgL. If, however, the resolution timetR of the
observer is much larger thangbL/c, the object will appear
at rest but elongated by the factorg in the direction of mo-
tion. This is the space dilatation effect. In the contrary ca
that the luminous proper timetL is large (tL@L/v), the
object observed fromS moves with velocityv and has an
apparent lengthL/g due to the well-known LFC effect. Also
in this case, the elapsed times inS andS8 are related by the
TD effect @Eq. ~2.17!#.

It should be noted that the ‘‘narrow rectangular objec
referred to above corresponds to the case of uniform illu
nation of the square object. Actually, because of the rela
ity of simultaneity, different parts of the square are seen
different times and positions by the stationary observer
the square were illuminated using different colors: red, y
low, green, blue in four equal bands parallel to they8 axis, in
the direction of increasingx8, then the moving object in Fig
1~b! would appear red during the time interval2gbL/2c
,t,gbL/4c, yellow during the time2gbL/4c,t,0, and
so on. The colors will, of course, be seen shifted in freque
according to the relativistic transverse Doppler effet.

If the square is rotated about they8 axis by an anglea, a
subtle interplay occurs between the effects of the LT a
light propagation time delays. Depending on the values ov
anda the rectangular object may be seen, by an observe
rest in the frameS, to move parallel tov ~as in the above-
described casea50!, antiparallel tov, or may even be sta
tionary and of lengthgL cosa. In all cases the total length
swept out by the object in the direction of motion
gL cosa. These effects have been described in de
elsewhere.6

III. OBSERVATION OF AN ARRAY OF
EQUIVALENT MOVING CLOCKS: THE TIME
CONTRACTION EFFECT

In this section space–time measurements of an arra
synchronized clocks situated in the inertial frameS8 will be
considered. These clocks may be synchronized by any
venient procedure7 ~see, for example, Ref. 1!. For an ob-
server inS8 all such clocks are ‘‘equivalent’’ in the sens
that each of them records, independently of its position,
proper timet8 of the frameS8. For convenience, the array o
clocks is assumed to be placed on the wagons of a t
which is at rest inS8, as shown in Fig. 2~a!. The clocks are
370 Am. J. Phys., Vol. 68, No. 4, April 2000
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labeled Cm , m5¯22,21,0,1,2,... and are situated~with
the exception of the ‘‘magic clock’’CM , see the following!
at fixed distancesL from each other, along theOx8 axis,
which is parallel to the train. It is assumed that the observ
in the framesS andS8 view the train transversely at a suffi
ciently large distance that the effects of light propagat
time delays may be neglected. It is clear that by consider
the limit L→0 an equivalent clock may be associated w
each position on the train and, by extending the ‘‘lattice’’
clocks to three dimensions, to any spatial position inS8.

The observer inS8 will note that each equivalent cloc
~EC! indicates the same time, as shown in Fig. 2~a!. It is now
asked how the array of EC will appear to an observer a
fixed position in the frameS when the train is moving with
velocity bc parallel to the directionOx in S @Fig. 2~b!#. It is
assumed that the ECC0 is placed atx850 and that it is
synchronized with the standard clockCS , placed atx50 in

Fig. 3. ~a! Times of equivalent clocks on the train (C21 ,CM ,C0 ,C1) and
the stationary clockCS , as seen by a distant observer inS at time t50. ~b!
The same, at timet5t. It is assumed thatb50.6, g51.25.

Fig. 2. ~a! Positions and times of equivalent clocks on the wagons of a tr
as seen by a distant observer in the rest frameS8 of the train at timet8
50. ~b! The positions and times of the same clocks as seen by a dis
observer inS at time t5t850. The same remarks concerning light prop
gation time and optical aberration effects as made in the caption of Fi
apply.
370J. H. Field
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Table II. Times observed inSof equivalent clocks on the moving train in Fig. 2, at the timest50 andt5t of
the stationary standard clockCS .

CS C22 C21 CM C0 C1 C2

0 2
~g221!

g
t

~g221!

g
t

~g21!

g
t 0 2

~g221!

g
t 22

~g221!

g
t

t
~2g221!

g
t gt t
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g
2

~g222!
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t 2

~2g223!
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S, when t5t850. All the clocks are similar, that isCS and
eachCm record exactly equal time intervals when they a
situated in the same inertial frame.

The appearance of the moving array of EC to an obse
in S at t50 is shown in Fig. 2~b!, and in more detail in Fig.
3 for both t50 andt5t. The periodt is the time between
the passage of successive EC pastCS . The big hand ofCS in
Fig. 3 rotates through 180° during the timet. Explicit ex-
pressions for the observed times are presented in Table I
Figs. 2~b! and 3 the times indicated by the clocks are sho
for b50.6. These times are readily calculated using the
equations~2.1!, ~2.2!. Consider the time indicated byC1 at
t50. The space–time points are

S8:~L,t8!, S:~x,0!.

Hence, Eqs.~2.1! and ~2.2! give

x5g~L1vt8!, ~3.1!

05gS t81
bL

c D , ~3.2!

which have the solution@C1(t50)#:

t852
bL

c
, ~3.3!

x5
L

g
. ~3.4!

As shown in Fig. 2~b!, the wagons of the train appea
shorter due to the LFC effect@Eq. ~3.4!# and alsothe wagons
at the front end of the train are seen at an earlier prop
time than those at the rear end. Thus at50 snapshot inS
corresponds, not to a fixedt8 in S8, but one which depend
on x8:t852bx8/c. This is a consequence of the relativity
simultaneity of space–time events inS and S8, as first
pointed out by Einstein in Ref. 1. Here it appears in a p
ticularly graphic and striking form. Consider now the tim
indicated byC21 at t5t, i.e., whenC21 is at the origin ofS.
The space–time points are

S8:~2L,t8!, S:~0,t!.

Hence, Eqs.~2.1! and ~2.2! give

05g~2L1vt8!, ~3.5!

t5gS t82
bL

c D , ~3.6!

with the solutions@C21(t5t)#:

t85
L

v
, ~3.7!
hys., Vol. 68, No. 4, April 2000
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t8

g
, ~3.8!

so that

t85gt. ~3.9!

The EC at the origin ofSat t5t shows a later time thanCS ,
i.e., it is apparently runningfaster than CS . This is an ex-
ample of time contraction~TC!. The time contraction effec
is exhibited by the EC observed at any fixed position in S. In
fact, if the observer inS can see the EC only when they a
near to CS he ~or she! will inevitably conclude that the
clocks on the train run fast, not slow as in the classical
effect~see the following!. Suppose that the observer is sittin
in a waiting room with the clockCS and notices the time on
the train~the same asCS! by looking atC0 as it passes the
waiting room window. If he~or she! then comparesC21 as it
passes the window withCS it will be seen to be running fas
relative to the latter. In order to see the TD effect the o
server would~as will now be shown! have to note the time
shown by, for example,C0 , at timet5t as recorded byCS

in comparison with that shown by thesame clock C0 at t
50. Using Eq. ~3.8!, Eq. ~3.3! may be written as@C1(t
50)#:

t852b2gt52
~g221!t

g
. ~3.10!

This is the formula for the observed time reported in Ta
II. Now considerC0 at timet5t. The space–time points ar

S8:~0,t8!, S:~x,t!.

Hence, Eqs.~2.1! and ~2.2! give

x5gvt8, ~3.11!

t5gt8, ~3.12!

with the solutions@C0(t5t)#:

t85t/g, ~3.13!

x5vt5L/g. ~3.14!

So the EC C0 at time t5t indicates an earlier time, and so
is apparently running slower than CS . This is the classical
time dilatation~TD! effect. It applies to observations of a
local clocksin S8 ~i.e., those situated at a fixed value ofx8!
as well as any other EC that has the same value ofx8.

As a last example consider the ‘‘magic clock’’CM shown
in Fig. 2~a! at time t5t. With the space–time points

S8:~2L/~11g!,t8!, S:~x,t!,

Eqs.~2.1! and ~2.2! give
371J. H. Field
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x5g@2L/~11g!1vt8#, ~3.15!

t5gF t82
b

c
L/~11g!G , ~3.16!

with the solutions@CM(t5t)#:

t85t, ~3.17!

x5gvt/~11g!, ~3.18!

where the relationL5gvt from Eq. ~3.8! has been used
Thus CM shows the same time as CS at t5t. Similar moving
‘‘magic clocks’’ can be defined that show the same time
CS at any chosen timet in S. Such a clock is, in genera
situated atx852ct(g21)/bg. All of the other clock times
presented in Table II and shown in Figs. 2~b!, 3 are calcu-
lated in a similar way to the above-mentioned examples
choosing appropriate values ofx8 and t.

The combined effects of the LT and light propagation d
lays for light signals moving parallel to the train~corre-
sponding to observations of the array of equivalent clocks
observers on, or close to the train! have been described i
detail elsewhere.6 The observed spatial distortions of th
train in this situation were previously considered
Weinstein.5

IV. ANALOGY WITH LINEAR PERSPECTIVE IN
TWO-DIMENSIONAL SPACE

The analogy between the observed distortions of spa
time in special relativity and linear spatial perspective is
lustrated in Fig. 4. The ‘‘object space’’ on the right is sep
rated from the ‘‘image space’’ on the left by a plane partiti
containing a small aperture~pin hole!. Light reflected from
the rodPQ in the object space can pass through the pin h
and produce an image on a screen located in the image s
To facilitate the comparison with the Lorentz transformatio
the Cartesian axes in the object@image# space are denoted b
(X8,T8) @~X,T!#, respectively~see Fig. 4!. TheT, T8 axes are
perpendicular to the plane of the partition and pass thro

Fig. 4. An example of linear spatial perspective analogous to the Loren
Fitzgerald contraction effect.
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the pin hole. The object space is now compared to the
frameS8 of the moving object, with the following correspon
dences:

X8⇔x8, T8⇔t8,

while the image space is compared to the frameS of the
stationary observer with the following correspondences:

X⇔x, T⇔t.

An arbitrary point with coordinates (X8,T8) on the rod will
project into the image space the line:

X52
X8T

t8
, ~4.1!

which may be compared to the LT equation:

x5
1

g
x81vt. ~4.2!

Taking theT5t5constant projection in~4.1!, i.e., setting
the screen in the image space parallel to the planar surfa
the distancet from it, gives for the lengthLI of the image of
the rod:

LI5X22X15
t

t8
~X182X28!5

t

t8
L, ~4.3!

where the points 1, 2 denote the ends of the rod or of
image. Similarly taking thet5constant projection in~4.2!
gives, for the apparent lengthl I of a rod, parallel to thex
axis, of true lengthl:

l I5x12x25
1

g
~x182x28!5

l

g
~4.4!

corresponding to the LFC effect. The role of the factor 1/g in
the LT is replaced, in the case of linear perspective, by
ratio t/t8, which specifies the relative position and orient
tion of the object and the screen on which it is observed

V. DISCUSSION

The different space–time effects~observed distortions o
space or time! in special relativity that have been discuss
above are summarized in Table III. These are the w
known LFC and TD effects, space dilatation~SD! introduced
in Sec. II, and time contraction~TC! introduced in Sec. III.
Each effect is an observed differenceDq (q5x,x8,t,t8) of
two space or time coordinates (Dq5q12q2) and corre-
sponds to a constant projectionq̃5constant, i.e.,Dq̃50 (q̃
Þq), in another of the four variablesx, x8, t, t8 of the LT.
As shown in Table III, the LFC, SD, TC, and TD effec
correspond, respectively, to constantt, t8, x, andx8 projec-
tions. After making this projection, the four LT equation
give two relations among the remaining three variables. O
of these describes the ‘‘space–time distortion’’ relatingDt8
and Dt or Dx8 and Dx while the other gives the equatio
shown in the last column~labeled ‘‘Complementary Effect’’!
in Table III. These equations relate eitherDx to Dt ~for SD
and TD! or Dx8 to Dt8 ~for LFC and TC!. It can be seen
from the complementary effect relations that the two spac
time points defining the effect~of space–time distortion! are
space-like separated for LFC and SD and time-like separ
for TC and TD.

–
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Table III. Different observed distortions of space–time in special relativity~see the text!.

Name Observed quantity Projection Effect Complementary eff

Lorentz–Fitzgerald
contraction~LFC!

Dx Dt50 Dx5
1
g

Dx8 Dx852
c

b
Dt8

Space dilatation
~SD!

Dx Dt850 Dx5gDx8 Dx5
c

b
Dt

Time contraction
~TC!

Dt8 Dx50 Dt85gDt Dx852cb Dt8

Time dilatation
~TD!

Dt8 Dx850 Dt85
1
g

Dt Dx5cb Dt
g
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For example, for the LFC whent15t25t, the LT equa-
tions for the two space–time points are

x185g~x12vt !, ~5.1!

x285g~x22vt !, ~5.2!

t185gS t2
bx1

c D , ~5.3!

t285gS t2
bx2

c D . ~5.4!

Subtracting~5.1! from ~5.2! and ~5.3! from ~5.4! gives

Dx85gDx, ~5.5!

Dt852
gb

c
Dx. ~5.6!

Equation ~5.5! describes the LFC effect, while combinin
Eqs. ~5.5! and ~5.6! to eliminateDx yields the equation for
the complementary effect. By taking other projections
other entries of Table III may be calculated in a similar fas
ion. It is interesting to note that the TD effect can be deriv
directly from the LFC effect by using the symmetry of th
LT equations. Introducing the notation:s[ct, the LT may
be written as:

x85g~x2bs!, ~5.7!

s85g~s2bx!. ~5.8!

These equations are invariant8 under the following transfor-
mations:

T1: x↔s, x8↔s8, ~5.9!

T2: x↔x8, s↔s8, b→2b. ~5.10!

Writing out the LFC entries in the first row of Table III
replacingt, t8 by s/c, s8/c; gives

Dx, Ds50, Dx5
Dx8

g
, Dx852

Ds8

b
.

Applying T1 to each entry in this row results in

Ds, Dx50, Ds5
Ds8

g
, Ds852

Dx8

b
.

Applying T2,

Ds8, Dx850, Ds85
Ds

g
, Ds5

Dx

b
.
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ReplacingDs, Ds8 by cDt, cDt8 yields the last row of
Table III which describes the TD effect. Similarly TC can b
derived from SD~or vice versa! by successively applying the
transformationsT1, T2.

The ‘‘complementary effects’’ listed in Table III have th
following geometrical interpretations:

LFC @Dx852(c/b)Dt8#. This is the locus of all the
points in S8 that are observed at the same tim
(Dt50) in S.

SD @Dx5(c/b)Dt#. The locus of the moving object
as observed inS @see Fig. 1~b!#.

TC @Dx852cbDt8#. The locus of the position of
the local clock in S8 observed at a fixed position
(Dx50) in S.

TD (Dx5cbDt). The locus of the position of the
moving local clock observed inS.

A remark on the ‘‘observed quantities’’ in Table III. Fo
the LFC, SD effects the observed quantity is a length inter
in the frameS. The observed space distortion occurs beca
this length differs from the result of a similar measureme
made on the same object in its own rest frame.Dx8 is not
directly measured at the time of observation of the LFC
SD. It is otherwise with the time measurements TD, T
Here the time intervals indicatedin their own rest frameby a
local moving clock~TD!, or different equivalent clocks a
the same position inS ~TC!, are supposed to be directl
observed and compared with the time intervalDt registered
by an unmoving clock in the observer’s rest frame. Thus
effect refers to two simultaneous observations bythe same
observernot to separate observations bytwo different ob-
serversas in the case of the LFC and SD.

Einstein’s first paper on special relativity1 showed, for the
first time, that the LFC and TD effects could be most simp
understood in terms of the geometry of space–time, in c
trast to the previous works of Fitzgerald, Larmor, Loren
and Poincare´ where dynamical and kinematical conside
ations were always mixed.9 However it can also be argue
that special relativity has a dynamical aspect due to
changes in the electromagnetic field induced by the LT.
deed, by calculations of the equilibrium positions of an arr
of point charges in both stationary and uniformly movin
frames, Sorensen has shown that the LFC may be der
from dynamical considerations.10 By considering several dif-
ferent ‘‘electromagnetic clocks’’ either at rest or in unifor
373J. H. Field
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motion, Jefimenko has demonstrated that the TD effect m
also be dynamically derived.11 Similar considerations, em
phasizing the ‘‘dynamical’’ rather than the ‘‘kinematical
aspects of special relativity, have been presented in an ar
by Bell.12 Such calculations, based on the properties of e
tromagnetic fields under the LT, demonstrate the consiste
of classical electromagnetism with special relativity, but
pointed out by Bell,12 in no way supersede the simpler ge
metrical derivations of the effects. It is not evident to t
present author how similar ‘‘dynamical’’ derivations of th
new SD and TC effects could be performed.

In conclusion, the essential characteristics of the t
‘‘new’’ space–time distortions discussed above are sum
rized.

Space Dilatation (SD): If a luminous object lying along
the Ox8 axis, at rest in the frameS8, is uniformly illumi-
nated for a short timetL in this frame it will be observed
from a frameS, in uniform motion relative toS8 parallel to
Ox8 at the velocity2bc, in a direction perpendicular to th
relative velocity, as a narrow strip of widthctL /(bg), per-
pendicular to thex axis, moving with the velocityc/b in the
same direction as the object. The total distance swept
along thex axis by the strip during the timebL/(cA12b2),
for which it is visible, isL/A12b2, whereL is the length
alongOx8 of the object as observed inS8. Thus the apparen
length of the object when viewed with a time resolutiontR

much larger thanbL/(cA12b2) is L/A12b2.
Time Contraction (TC): The equivalent clocks in the mov

ing frameS8, viewed at the same position in the stationa
frameS, apparently run faster by a factor 1/A12b2 relative
to a clock at rest inS.
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WARTIME APPLICATIONS OF MATHEMATICS

There is one purpose at any rate which the real mathematics may serve in war. When the world
is mad, a mathematician may find in mathematics an incomparable anodyne. For mathematics is,
of all the arts and sciences, the most austere and the most remote, and a mathematician should be
of all men the one who can most easily take refuge where, as Bertrand Russell says, ‘one at least
of our nobler impulses can best escape from the dreary exile of the actual world’.

G. H. Hardy,A Mathematician’s Apology~Cambridge University Press, 1969; reprint of 1940 edition!, p. 143.
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