Psychological Review
1981, Vol. 88, No. 2, 135-170
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Many adaptive neural network theories are based on neuronlike adaptive elements
that can behave as single unit analogs of associative conditioning. In this article
we develop a similar adaptive element, but one which is more closely in accord
with the facts of animal learning theory than elements commonly studied in
adaptive network research. We suggest that an essential feature of classical
conditioning that has been largely overlooked by adaptive network theorists is
its predictive nature. The adaptive element we present learns to increase its
response rate in anticipation of increased stimulation, producing a conditioned
response before the occurrence of the unconditioned stimulus. The element also
is in strong agreement with the behavioral data regarding the effects of stimulus
context, since it is a temporally refined extension of the Rescorla-Wagner model.
We show by computer simulation that the element becomes sensitive to the most
reliable, nonredundant, and earliest predictors of reinforcement. We also point
out that the model solves many of the stability and saturation problems en-
countered in network simulations. Finally, we discuss our model in light of recent
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advances in the physiology and biochemistry of synaptic mechanisms.

One way to bridge the gap between be-
havioral and neural views of learning is to
postulate neural analogs of behavioral mod-
ification paradigms. Hebb’s suggestion that
when a cell A repeatedly and persistently
takes part in firing another cell B, then A’s
efficiency in firing B is increased, is the most
familiar of these postulates (Hebb, 1949).
This rule for synaptic plasticity is a neural
analog of associative conditioning and con-
tinues to exert a powerful influence on the-
oretical and experimental research in learn-
ing and memory. Neural network models
designed to explore the behavioral possibil-
ities of modifiable structures typically em-
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ploy a pre- and postsynaptic correlation rule
for altering connectivities as a mathematical
representation of Hebb’s postulate (e.g.,
Anderson, Silverstein, Ritz, & Jones, 1977,
Brindley, 1969; Grossberg, 1974; Kohonen,
1977; Marr, 1969; von der Malsburg, 1973).
However, in addition to the fact that there
is no direct experimental support for the
Hebbian rule as a model of neural plasticity,
several different bodies of evidence have ac-
cumulated which suggest that such simple
contiguity rules can account neither for the
behavioral facts of learning nor for the the-
oretical necessities of successful adaptation.

The analysis of elemental processes of
learning has a long tradition within animal
learning theory. To a large extent it has been
successful: Fundamental laws of wide, if not
complete, applicability have been found,
Animal learning theory constitutes a large
body of carefully explored and tested theo-
ries about fundamental processes of learn-
ing. Given this, it is surprising how little con-
tact and interaction there has been between
animal learning theory and adaptive systems
theory, particularly insofar as the latter at-
tempts to mimic neural networks or biolog-
ical adaptive systems in general.
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Numerous adaptive systems papers have
made brief reference to basic animal learn-
ing processes such as classical and in-
strumental conditioning. However, almost
exclusively, inadequate models of these
conditioning processes have been used, and
in some cases they are so inadequate that
although a theorist derives support for his
model by citing a learning process, in reality
the experimental evidence and modern
learning theory contradict even the simplest
predictions of the model. Classical condi-
tioning involves an interplay between expec-
tations and stimulus patterns that is too com-
plex to incorporate into a simple correlation
rule such as Hebb’s. The common modifi-
cations of a correlation rule, for example,
the introduction of delay in input or output
pathways, result in model behavior still not
in agreement with experimental data. More-
over, as we argue below, the phenomena ac-
tually observed in classical conditioning may
perhaps be crucial for sophisticated adaptive
behavior.

The history of attempts to construct adap-
tive networks of neuronlike components also
suggests that something essential is not pre-
served by the Hebbian model and its vari-
ants. Network approaches to adaptive sys-
tem design have been notable in their failure
to produce learning behavior beyond a rather
low level of sophistication. The information
processing success of adaptive networks is
restricted almost entirely to moderate suc-
cess in the recognition, processing, and as-
sociative storage and retrieval of spatial pat-
terns. There is a conspicuous absence of
nontrivial processing of temporal patterns.
It may well be true that in the brain some
kinds of temporal patterns are processed by
being represented spatially, as, for example,
suggested by Lashley (1951), and some mod-
els use this principle (e.g., Fukushima, 1973;
Grossberg, 1969; Spinelli, 1970). However,
little progress has been achieved in our un-
derstanding of how a system can both learn
and effectively use knowledge while inter-
acting in real time with a complex environ-
ment. Yet these temporal aspects of a sys-
tem’s interaction with its environment are
central to much intelligent behavior.

In the time since the first computational
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experiments with adaptive networks were
carried out, remarkable advances in the un-
derstanding of the cellular basis of behavior
have occurred. In recent years invertebrate
animals have been successfully used to study
aspects of the neural basis of behavioral
modifications (e.g., Kandel, 1976, 1978).
Although this approach has not yet eluci-
dated the cellular basis of associative learn-
ing, simpler but possibly related forms of
nonassociative learning have been success-
fully analyzed at the cellular level. These
studies reveal that neurons employ a wide
variety of biochemical modulatory processes
that interact in complex ways with electrical
activity and that this interaction mediates
forms of behavioral modification (Kandel,
1976, 1978).

Despite this evidence that neurons are ca-
pable of very complex information process-
ing, adaptive network theorists continue to
produce idealized neural element designs
that are constrained by the early view that
neurons are essentially switching elements,
with little internal processing power. Al-
though one of the most important aspects of
model building is simplification, the lack of
significant progress in adaptive network the-
ory, together with the high complexity of
cellular and synaptic machinery, suggests
that these idealizations leave out some mech-
anisms that are essential for producing so-
phisticated adaptive behavior.

In this article we introduce an adaptive
element model that is more reasonably in
accord with the facts of modern animal
learning theory than models commonly used
in adaptive network research. After discuss-
ing several forms that adaptive element an-
alogs of classical conditioning have taken in
the past, we briefly introduce our model. We
then present the basic elements of a view of
classical conditioning that is more realistic
than that commonly used in adaptive net-
work studies. We show how the behavior of
our model is in good agreement with a va-
riety of aspects of animal learning data. We
then discuss how our model relates to a va-
riety of other adaptive elements that form
part of adaptive system theory., No attempt
is made to be exhaustive. Learning theory
is a complex subject with many controver-
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sies, and adaptive system theory is extremely
diverse. We have tried to abstract from the
very large animal learning theory literature
those points on which there is a reasonable
amount of agreement and that we consider
to be most pertinent for adaptive network
modeling and simulation.

Despite recent advances, it is still pre-
mature to propose a testable molecular
model] of associative learning. However, even
though we see our model as being of interest
primarily from behavioral and theoretical
perspectives, we speculate as to how the cel-
lular mechanisms that are beginning to be
elucidated could implement the required
computations. Qur purpose in doing this is
two-fold. First, we desire to demonstrate that
processing of the proposed complexity is
clearly possible at a cellular or simple net-
work level. Second, some aspects of the pro-
posed learning rule can be implemented so
naturally by known mechanisms that a dis-
cussion of these mechanisms in light of our
behavioral and theoretical observations, al-
though speculative, may contribute to ex-
perimental efforts to understand neuronal
plasticity.

Although we restrict attention in this ar-
ticle to classical conditioning, our research
was motivated by an interest in more com-
plex forms of learning and, in particular, the
novel suggestion by Klopf (1979, in press,
Note 1) that neurons may be reinforcement
learning devices of a kind fundamentally
different from those previously proposed in
neural theories. The aspects of classical con-
ditioning that we consider here form a nec-
essary prelude to moving beyond the restric-
tions of the classical conditioning paradigm.

Finally, although our theory is an attempt
to explore the consequences of attributing
quite complex computational power to in-
dividual adaptive elements, it is not our in-
tention to suggest that all of the mechanisms
must necessarily reside in each element.
Rather, our program of endowing a single
adaptive element with behavior that has de-
tailed properties of classical conditioning
represents our feeling that these properties
are fundamental to adaptive behavior. In
particular, what we call an adaptive element
may not correspond to a single neuron.
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Adaptive Element Analogs
of Classical Conditioning

In a simple classical conditioning experi-
ment, the subject is repeatedly presented
with a neutral conditioned stimulus (CS),'
that is, a stimulus that does not cause a re-
sponse other than orienting responses, fol-
lowed by an unconditioned stimulus (UCS),
which reflexively causes an unconditioned
response (UCR). After a number of such
pairings of the CS and the UCS-UCR, the
CS comes to elicit a response of its own, the
conditioned response (CR), which closely
resembles the UCR or some part of it. For
example, a dog is repeatedly presented with
first the sound of a bell (the CS) and then
its food (the UCS), which causes the dog to
salivate (the UCR). Eventually, the sound
of the bell alone causes salivation (the CR).

In studies of the cellular basis of learning
and in purely theoretical studies of adaptive
systems, it is frequently convenient to pos-
tulate neuronlike mechanisms that embody
various types of “learning rules.” The rules
describe how the strengths of interconnec-
tivity change between units that are intended
to be crude models of neurons. In keeping
with this tradition, we shall sometimes refer
to synapses, synaptic weights, and so forth,
but the reader should remain mindful that
the relationship between models of this form
and neural plasticity is often one of coarse
analogy. We prefer to think of the rules as
describing the behavior of adaptive ele-
ments.

Figure 1 shows an element with input sig-
nals x,, ..., X, connection weights w,,
..., W, output y; and a specialized “teacher”
input z. Since in this article we wish to focus
only on rules for changing the weights, w;,
we will not pay particular attention to the
input—output function of the element. For
our purposes, it suffices to say that y is some
function of the weighted sum of the inputs,
that is, for any time ¢,

! Strictly speaking, this stimulus is not a conditioned
stimulus until the animal has begun to be conditioned
to it. However, as is often done, we simplify notation
in this article by referring to any stimulus that is meant
to be considered as eventually or potentially becoming
conditioned as a conditioned stimulus.
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HO = f1Z wDxOl (1)
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where f is a function that may look some-
thing like the one shown in Figure 2.2 Of
course, when an adaptive element is pro-
posed as an analog of animal learning, the
form of this function becomes crucial in
making precise predictions about behavioral
data. In these cases, the function is related
to response mapping rules (e.g., Frey &
Sears, 1978). If the adaptive element is pro-
posed as a neuron model, this function re-
lates, for example, the firing frequency of a
neuron to its membrane potential.

For an adaptive element analog of con-
ditioning, the presence of CS,,i=1,...,n,
is indicated by activity on the corresponding
input pathway x;. For example, if x,(¢) de-
notes the signal on pathway x; at time ¢, then
the presence of CS; at time ¢ can be indicated
by letting x,(t) = 1. If CS; is not present,
x{t) = 0. The associative strength of each
CS; at time ¢ is w(t), the weight associated
with pathway x,. The CR is identified with
the output y so that by Equation 1 the as-
sociative strengths of the CS,,i=1, ..., n,
determine the magnitude of the CR. Learn-
ing rules take the form of equations for
changing the values of the weights w;, i =
1, ..., n, over time as functions of various
aspects of the element’s input and output.
Usually the element’s behavior is intended
only to qualitatively resemble animal learn-
ing data.

Figure 1. An adaptive element with » modifiable input
pathways x;, i = 1, ..., n; connection weights w;, i =
1,..., n aspecialized input z required by some adaptive
elements to transmit the signals of a “teacher”; and an
output labeled y.
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Figure 2. A common form of nonlinear input-output
function used in neural and adaptive element models.
(When these models are used in analogs of conditioning
experiments, this function becomes a response mapping
rule.)

The most well-known example of an adap-
tive element analog of classical conditioning
is based on Hebb’s neural postulate that per-
sistent pairing of pre- and postsynaptic ac-
tivity increases a pathway’s efficacy (Hebb,
1949). Although Hebb did not provide a
mathematical formulation of this rule, the
following expression has been widely used
to implement his postulate:

wilt + 1) = w(t) + ex (1), (2)

where ¢ is a positive constant determining
the rate of learning. Here, and throughout
this article, we use a time step of one uni-
dentified unit that can be set equal to various
values to suit particular interpretations of a
model. For the case in which the input sig-
nals x; and the output signal y are binary
valued, w; is incremented by ¢ whenever an
input pulse arrives and the cell fires and is
unchanged otherwise. For the case of real
valued signals, w; becomes a rough measure
of the correlation between input signal x; and
output signal y. Unlike several other rules,
this rule does not require the specialized
“teacher” input shown in Figure 1.

It is easy to see how a learning rule of the
Hebbian kind can implement a simultaneous
contiguity view of classical conditioning
(Figure 3). Suppose a Hebbian adaptive ele-
ment has an excitatory UCS input pathway

? According to Equation 1, the adaptive element com-
putes its output y instantaneously from its inputs x;. In
order to remedy the problematic consequences of this
when networks are considered, one can assume a small
delay exists in the communication links between ele-
ments. For our present purposes we do not need to con-
sider this detail.
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Figure 3. A Hebbian element as an analog of classical
conditioning. (The weight wycs associated with the UCS
pathway is sufficiently large so that UCS occurrence
causes the element to respond with the UCR. The weight
wcs of the CS pathway is initially too small for the CS
alone to elicit a response but increases with repeated
simultaneous pairing of the CS and UCS until the CS
alone can elicit a response—the CR.)

with weight wycs sufficiently large so that
UCS occurrence causes the element to re-
spond with the UCR. If the element also has
an input pathway for the CS with an initially
low weight wes, then after sufficient simul-
taneous pairing of the UCS and CS, wcg
will increase to a value at which the CS will
elicit a response, the CR, in the absence of
the UCS.

One reason the Hebbian ruie has re-
mained influential among theorists is that it
provides a very simple hypothesis to account
for a stimulus substitution view of classical
conditioning. It is a common, though not
universally accepted, theoretical position
that in classical conditioning the CS comes
to elicit a CR by effectively substituting for
the UCS. This explains the similarity be-
tween the CR and the UCR, since it implies
that the two responses occur via the same
response pathway’s being activated by two
different stimulus pathways. This view,
known as stimulus substitution theory, has
proved to be a reasonable generalization
from the data (see discussion and review in
Mackintosh, 1974, pp. 100-109). In the
Hebbian model of classical conditioning
(Figure 3), the CR and UCR share the same
pathway, so one would expect them to be
similar.

Other adaptive element analogs of clas-
sical conditioning do not provide so natural
an account of the similarity between CR and
UCR because they require the UCS to be
a specialized input to the adaptive element
that does not excite it (Figure 4). In these
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cases, separate pathways are required for the
CR and UCR. To account for the similarity
of the CR and UCR, it is necessary to pos-
tulate that the CR and UCR pathways con-
verge in some manner “downstream” from
the adaptive element. The “perceptron” of
Rosenblatt (1962} and the “informon” of
Uttley (1979) require this organization to
form analogs of classical conditioning.
Aside from providing a simple explanation
for the similarity of the CR and UCR, that
the UCS is an unspecialized input in the case
of the Hebbian element also means that the
activity of any input pathway can cause
changes in other pathways. In particular,
pathways whose efficacies have become
strengthened through previous training can
further affect other pathways. A model with
this property can produce behavior sugges-
tive of higher order conditioning in animals:
A previously conditioned CS can act as a
UCS for a second CS. This property has also
contributed to the interest in the Hebbian
rule among theorists. It is not necessary to
fix from the start the source of reinforce-
ment. Any correlations among the input sig-
nals to an element will tend to be reflected
in the connection weight values. The require-
ment for reinforcement to be provided only
from a fixed source, on the other hand, raises
the problem of somehow providing appro-
priate reinforcing signals at the appropriate
times. The significance of this problem may
be reflected in the lack of success in con-
structing powerful adaptive networks of per-

» UCR

ucs

cs CR

Figure 4. An adaptive element with a specialized UCS
pathway. (Some adaptive element analogs of classical
conditioning require a specialized UCS pathway that
causes modifications in the CS pathway but does not
have an excitatory effect on the element. This implies
that the UCR and CR pathways are separate so that
stimulus substitution does not occur at the element.
Additional assumptions must be made to account for
the similarity of the UCR and CR.)
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ceptron elements (see Minsky & Papert,
Note 2; Minsky & Selfridge, Note 3).

In this article we present a new adaptive
element analog of classical conditioning that
uses the stimulus substitution organization
shown in Figure 3. We briefly introduce the
model here and discuss it in detail in the
following sections. In addition to the stim-
ulus signals x;, i = 1, ..., n, and the output
signal y, our model requires the use of sev-
eral other variables, First, for each stimulus
signal x,, i = 1,..., n, we require a separate
stimulus trace, which we denote by x;. By
this we mean that the occurrence of CS; at
time ¢, indicated by x,(z) = 1, initiates a pro-
longed trace given by nonzero values of a
separate variable X; for some period of time
after 7. This is accomplished by letting ¥,(¢)
be a weighted average of the values of x, for
some time period preceding ¢. Similarly, we
require a trace of the output y. Let j(¢) de-
note a weighted average of the values of the
variable y over some time interval preceding
t. In the computer simulations that produced
the data shown below we generated these
traces using the first-order linear difference
equations

x(t + 1) = ax(t) + x(2) (3)

and
Ja+1)=gie) + (1 - gy(r), (4)

where « and @ are positive constants, and
0<a, 8<1. Appendix A gives the values
actually used in the simulations,

The behavior of the adaptive element is
therefore described by the values over time
of the two variables y and y and the values
of the three variables x;, X;, and w; for each
input pathwayi = 1,. .., n Interms of these
variables, the model takes the form of a set
of difference equations for successively gen-
erating the values of the associative strengths:
Foreachi, i=1,...,n,

wilt + 1) = wlt) + c[p(1) — (#)1x(2), (5)

where ¢ is a positive constant determining
the rate of learning.

We can describe the process given by
Equation 5 as follows: Activity on any input
pathway i, i = 1, ..., n, possibly causes an
immediate change in the element output y
but also causes the connection from that

RICHARD S. SUTTON AND ANDREW G. BARTO

pathway to become “tagged” by the stimulus
trace X; as being eligible for modification for
a certain period of time (the duration of the
trace X;). A connection is modified only if
it is eligible and the current value of y differs
from the value of the trace y of y.

The effectiveness of the reinforcement for
the conditioning process depends on the dif-
ference y(t) — y(¢), which determines how
the eligible connections actually change. The
simplest case, and the one used in our sim-
ulations, results from letting 8 = 0 in Equa-
tion 4 so that jX¢)=y(¢+—1). Then
y(t) — t) = y(t) — y(t — 1), which is a dis-
crete form of the rate of change of the vari-
able y.

Our use of stimulus traces to create pe-
riods of “eligibility” was borrowed from the
neural hypothesis by Klopf (in press, Note
1) that the temporal characteristics of con-
ditioning, both classical and instrumental,
can be produced if one set of conditions
makes synapses eligible for modification of
their transmission efficacies, but actual mod-
ifications occur due to other influences dur-
ing periods of eligibility. This differs from
related theories in that eligibility is seen as
being indicated in some way completely sep-
arate from electrical activity. That is, in-
stead of being marked as eligible for modi-
fication by a transient increase in efficacy
or by prolonged presynaptic activation, a
pathway would be marked by some mech-
anism that does not participate directly in
the electrical signaling of the cell, such as
a transient increase in the concentration of
a particular chemical.

The weight change rule given by Equation
5 can be roughly understood by analogy with
the Hebbian rule. Whereas the Hebbian rule
detects correlations between input and out-
put signals, this rule detects correlations be-
tween traces of input stimuli and changes in
output. These differences have subtle and
sometimes surprising consequences, which
will be discussed in the following sections.

Temporal Relationships

The use of the stimulus traces x; and the
output trace y in our model permits it to
reproduce some of the intratrial temporal
relationships between stimuli and responses
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observed in classical conditioning experi-
ments, Here we discuss interstimulus inter-
val dependency and CR latency and review
how earlier adaptive element models account
for these aspects of classical conditioning.
We then present simulation experiments
which show that our model produces behav-
ior in good agreement with experimental
data.

We have said a pairing between the CS
and the UCS is necessary for a classical con-
ditioning association to form. In fact, many
aspects of the temporal relationship between
CS and UCS will affect the strength and
rapidity of conditioning. The words pairing
and associative learning commonly used in
reference to classical conditioning seem to
imply a symmetrical relationship between
the CS and the UCS, and many theorists
have created models in which associations
are formed when CS and UCS (or their the-
oretical analogs) occur simultaneously. Ex-
perimentally, however, simultaneous presen-
tation of CS and UCS typically results in
very poor conditioning, if any (e.g., Smith,
Colman, & Gormezano, 1969).

An effective pairing of CS and UCS in
classical conditioning is not a symmetric
one—the CS must occur first. The crucial
variable with respect to the CS-UCS tem-
poral relationship is the time interval be-
tween the onset of the CS and the onset of
the UCS (the interstimulus interval, or ISI).
Associative strength between the CS and the
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CR is usually found to be an inverted-U-
shaped function of this interval, being zero
at simultaneous presentation, being maximal
at intermediate values (that depend strongly
on the particular response system), and then
falling toward zero at longer ISIs. Condi-
tioning for negative ISIs, or backward con-
ditioning, is generally considered not to oc-
cur (see Mackintosh, 1974, pp. 58-60).
Figure 5 shows an example of this relation-
ship.

A second important aspect of the intratrial
temporal relationships in classical condition-
ing is the time of occurrence of the CR rel-
ative to the CS and UCS. The time differ-
ence between CS onset and CR onset is
called the CR latency. For a particular re-
sponse there is usually a finite minimum
value for the CR latency due to intrinsic
delays of various kinds. For the nictitating
membrane response, for example, the min-
imum CR latency is on the order of 70-80
msec. When the ISI is shorter than the min-
imum CR latency, then the CR necessarily
occurs after UCS onset. In the more usual
case in which the ISI is longer than the
minimum CR latency, the CR begins before
the UCS (Mackintosh, 1974, p. 61). Two
examples are shown in Figure 6.

In Figure 6, Panel a, the CR begins nearly
immediately after the CS just as the UCR
begins nearly immediately after the UCS.
However, in many experiments posttraining
behavior much like that shown in Figure 6,

100
&—@ Data from Smith et al. (1969)
D~—0 Data from Schneiderman and

80 Gormezano (1964)

60

%CRs
40
20
0
o] 5 1 2 3 4

Interstimulus Intervai (sec)

Figure 5. Asymptotic associative strength versus interstimulus interval in rabbit nictitating membrane
response delay conditioning. (Optimal ISI times vary widely from small fractions of a second for some
response systems to up to a minute and perhaps longer for others.)
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Figure 6. Tracings of CRs and UCRs in studies of leg flexion and eyelid conditioning. (In each case CR
onset occurs before UCS onset. Panel a shows leg flexion CR and UCR in dogs [after Kellogg, 1938].
Panel b shows eyelid CR and UCR in a human subject {after Hilgard, 1936].)

Panel b, is observed, in which the CR begins
much later than a minimum CR latency af-
ter CS onset. This phenomenon, known as
inhibition of delay, appears to be the result
of the animal’s discriminating between ear-
lier and later parts of the CS and treating
them as different CSs. The CR initially be-
gins soon after the overt CS onset and then
gradually shifts to later with continued
training (Kimmell, 1965). This shifting is
made more rapid by increasing the discrim-
inability of earlier and later parts of the CS.
In these cases also the CR is experimentally
found to precede the UCS. Summarizing we
can state: Except in the case of an ISI less
than the minimum CR latency, a classically
conditioned CR will begin before its UCS
(Mackintosh, 1974, p. 61).

It is on the basis of these temporal rela-
tionships that we say that the CS is a pre-
dictor of the UCS and the CR is a prediction
of the UCS. Many learning theorists (e.g.,
Dickinson & Mackintosh, 1978; Kamin,
1969) have emphasized the importance of
the CS’s being an informative predictor of
the UCS rather than just occurring appro-
priately paired with the UCS. To this we
add that in order for the predictive infor-
mation made available by the CS to be use-
ful, it must be available before the event
predicted. This suggests that the fact that

the CR usually begins before the UCS in
classical conditioning may be an important
aspect of the classical conditioning behavior.

However, not one of the adaptive element
models currently in the literature is capable
of producing behavior whose temporal struc-
ture is in agreement with that observed in
animal learning as described above. It is
usual practice to add additional mecha-
nisms, such as a delay in the CS pathway,
in order to account for some of the temporal
relationships between stimuli and responses.
In most cases, however, the resulting adap-
tive elements display only superficial aspects
of this temporal structure.

Delays

As a first step it is important to understand
what can and what cannot be achieved by
the addition of delays in input or output
pathways of elements requiring simulta-
neous pairing for changing weights. Con-
sider the two different ways of using adap-
tive elements to model classical conditioning
that we have described with reference to
Figures 3 and 4. These models differ in that
the latter have a specialized UCS pathway
and a UCR pathway that is different from
the CR pathway.

First consider the consequences of adding
a delay in the CS pathway in either type of



EXPECTATION AND PREDICTION

model (Figure 7, Panel a). When the delayed
CS and the UCS temporally overlap, the
associative strength of the CS increases. This
means that maximal learning occurs when
the UCS follows the CS by the time of the
delay, thus exhibiting a rough form of the
experimentally observed ISI dependency.
Suppose now that conditioning continues
until the CS elicits the CR. Since the CS is
delayed, the CR is also delayed, so that it
cannot begin earlier than the UCS, that is,
the CR latency is always greater than or
equal to the ISI. The delay in the CS path-
way necessarily also delays the CR, thus
preventing it from being a useful prediction.

For the case in which there are separate
pathways for the CR and the UCR (Figure
4), one can consider adding delays to both
the CS and the UCR pathways, as is done,
for example, by Uttley (1975). In this case,
the CR cannot begin earlier than the UCS
for the same reason discussed above, but it
can begin earlier than the UCR due to the
delay in the UCR pathway (Figure 7, Panel
b). However, in classical conditioning it is
the UCS that is anticipated by the CR. That
is, an animal can predict stimuli by becom-
ing sensitive to external signals that regu-

ucs
a)
delay
ucs
[
delay
b)
delay
ucs
cs
delay
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larly precede those stimuli. Merely produc-
ing a response earlier than it previously
appeared, but not before the previously elic-
iting stimulus, simply results in increased
speed of response. This is indeed a useful
strategy, but it can be accomplished more
simply by reducing the delay in the UCR
pathway. In classical conditioning, on the
other hand, a response can begin earlier than
the occurrence of the stimulus that previ-
ously elicited it. This, of course, requires the
availability of predictive information in the
environment (a CS).

For elements requiring simultaneous pair-
ing of stimuli for forming associations, no
combination of simple delays in the CS,
UCS, and UCR pathways can produce this
kind of anticipatory response. The delays
essentially just slow the system down. In
addition, delays on the order of seconds or
even longer required for this approach are
very hard to justify neurophysiologically.

Stimulus Traces

The notion that a stimulus sets up an in-
ternal neural trace that persists after the
stimulus ends has a long history in theories

cs 1
UCR
&CR Delayed CS [
ucs [ 1
UCR
UCR [
CR CR l
(2 e
UCR Dolayed CS [ __
UCR 1
cR L

Figure 7. The use of delays in attempts to approximate the temporal relationships observed in classical
conditioning. (Panel a shows that a delay in the CS pathway of both types of classical conditioning
models necessarily also delays the CR. Panel b shows that delays in the CS and UCR pathways permit

the CR to precede the UCR but not the UCS.)



144

cs M
CS trace N

ucs R nsms B
CcR I

s 1

CS trace /\

ucs | A
S~

T~

e

associative strength 0 181
versus S|

UCS trace

Figure 8. Stimulating stimulus traces. (Panel a shows
that if the CS initiates a prolonged stimulating trace
and the UCS does not, then the CR can anticipate the
UCS, but the CR will tend also to be prolonged unless
some additional mechanism is postulated. Panel b shows
that if both the CS and the UCS initiate traces which
stimulate one of the adaptive elements described in the
text, then there will always be backward conditioning.
Shown here is an ISI dependency curve for the case in
which the CS and UCS produce identically decaying
exponential traces.)

of learning, notably in Hull's (1943), and
has been used in neural network theories, as,
for example, by Grossberg (1974). Although
a simple delay is one form of stimulus trace,
the kind of trace to be considered now is one
that unlike a delayed signal, persists in some
form throughout the temporal interval. In
particular, such a trace is present in the in-
terval’s early as well as late portions. There
are two general classes of possibilities for
stimulus trace mechanisms: (a) traces are
maintained by the firing levels of some neu-
rons, possibly by means of reverberatory cir-
cuits, and (b) they are maintained by some-
thing other than neuronal electrical activity,
perhaps by chemical concentrations. From
our theoretical point of view, the most im-
portant difference between these two possi-
bilities is that the former employs the same
means for storing traces as is used for sig-
naling stimuli and producing responses. In
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the latter case, these two functions are per-
formed by separate mechanisms. The first
type of trace, which we call a stimulating
trace, is more frequently hypothesized, and
we discuss this possibility first.

Suppose the CS gives rise to a stimulating
trace that persists long enough to span the
interval between CS and UCS presentations
(Figure 8, Panel a). If this trace serves as
the CS input to an adaptive element require-
ing simultaneous pairing, and the UCS does
not produce such a trace, one can obtain an
ISI dependency curve whose shape resem-
bles that of the stimulus trace function.’ If
the UCS leaves a similar stimulus trace that
acts as input to the adaptive element, then
the ISI dependency curve shows substantial
learning for negative CS-UCS intervals,
that is, for cases in which the UCS onset
precedes the CS onset (Figure 8, Panel b).
Uttley (1975) suggests the use of a long CS
trace and a short UCS trace in order to
minimize (but not eliminate) backward con-
ditioning.

A stimulus trace consisting of a prolonged
CS signal does permit the CR to anticipate
the UCS, since the signal trace, unlike a
delayed signal, is present at the beginning
as well as the end of the ISL. For example,
if we assume that an element produces a
response whenever the weighted sum of its
input signals exceeds a threshold, then after
sufficient training the CS will elicit a CR
whenever the CS trace, multiplied by the
connection weight of the CS pathway, ex-
ceeds the threshold (Figure 8, Panel a). As
training continues one would expect the du-
ration of the CR to lengthen as longer in-
tervals of the stimulus trace exceed thresh-
old. Although various characteristics of the
CR change as training continues, there are

* Hull (1943) apparently believed that an experimen-
tal ISI curve could be accounted for by assuming a
neural trace of the same shape. As Hilgard and Bower
(1975) point out, however, level of conditioning is such
a complex function of the ISI along with many other
factors that this form of explanation is untenable. It
should be noted, though, that since we are discussing
adaptive elements out of which adaptive systems can
presumably be constructed, this objection holds less
force, since externally observed behavior is likely to be
a product of the interaction of a variable mixture of
local traces.
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no data indicating a tendency for the CR to
persist throughout the ISI: The CR gener-
ally resembles the UCR. Some additional
mechanism would have to be postulated to
prevent the prolonged stimulating trace from
being manifested in overt behavior as a pro-
longed response.

Nonstimulating Traces

We now consider what one would expect
if the stimulus trace were provided by a sig-
nal different from the stimulating signal.
Several proposed mechanisms fall into this
category. It has been suggested, for example,
that a stimulus might leave a temporarily
persistent trace in the form of an altered
threshold of the postsynaptic element (Mil-
ner, 1957; Rosenblatt, 1962, p. 55) or that
a transient increase in synaptic efficacy fol-
lows presynaptic activity and is made more
permanent by subsequent firing of the post-
synaptic cell (Rosenblatt, 1962, p. 57).

The use of a stimulus trace variable en-
tirely separate from the major signaling vari-
able has been proposed by Klopf (1979, in
press, Note 1). He suggests that when ac-
tivity at a synapse satisfies certain criteria,
then that synapse becomes eligible for mod-
ification and remains eligible for a period of
several seconds. The extent to which an el-
igible synapse is modified depends on the
reinforcement level during the period of el-
igibility. Each synapse is therefore viewed
as possessing its own local trace mechanism,
which mediates synaptic modification but
does not directly alter any other aspect of
the unit’s behavior. Such a trace can persist,
as Klopf suggests, for the relatively very long
times suggested by classical (and instrumen-
tal) conditioning data without interfering
with ongoing signal transmission. Further,
the large variation in IS1 dependency for
different response systems might be ac-
counted for by variations in eligibility trace
durations. This is the kind of stimulus trace
provided by the term X; in our model.

Our model implies that a synapse becomes
eligible for modification whenever a presyn-
aptic signal occurs there and that eligibility
forms a curve like that of the trace in Figure
8, Panel a (see also Figure 10). Since learn-
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ing occurs due to an interaction between the
UCS signal and a nonstimulating eligibility
trace initiated by the CS, important tem-
poral aspects of classical conditioning can
be produced. In particular, the CR will begin
immediately after the CS onset and, unlike
the case of a stimulating trace, the CR will
not extend in duration as conditioning pro-
ceeds (see below). This is possible because
the trace is different from the stimulating
signal.

Although either stimulating or nonstim-
ulating traces might be postulated to account
for temporal aspects of classical condition-
ing, a nonstimulating trace has the advan-
tage of permitting a clear distinction to be
maintained between actual stimuli and traces
of stimuli. There are two countervailing re-
quirements that need to be met. First, fast
electrical signals are necessary to indicate
as precisely as possible the time of occur-
rence of specific events. It is to an organism’s
advantage to perceive events as occurring as
closely as possible to their actual time of
occurrence, and particularly as early as pos-
sible. Second, it is necessary to retain the
knowledge of these occurrences so that they
can be associated with later events. In a two-
variable system, these two requirements are
both satisfied, whereas in a single-variable
system, such as one using reverberatory ac-
tivity, one of these requirements can only be
satisfied at the expense of the other. If the
association of events depends on their precise
temporal relationship, as indeed it appears
to, then we can expect there to be a high
priority on precise temporal localization of
events. Thus, it seems most reasonable not
to confuse the need for a short, distinct signal
with the need for a prolonged trace by using
a single trace for both purposes.

A common argument for a reverberatory
activity theory is based on certain studies of
attention and distraction and their effect on
learning. These studies indicate that rever-
beratory activity is probably important in
the central nervous system. However, this we
do not mean to debate. Reverberatory ac-
tivity can be expected to play an important
role—for example, it can determine what
information is picked up or relayed to higher
centers. We believe it is unwarranted, how-
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X,=UCS

X, = CS,
x,=C8§,

¥ =UCR & CR

X,=C8,

Figure 9. Our adaptive element as an analog of classical
conditioning. (There are n modifiable CS input path-
ways and a pathway with fixed weight w, that carries
the UCS. The element output y represents both the
UCR and the CR.)

ever, to proceed from this to the conclusion
that reverberatory activity is the primary
mechanism for spanning the time between
the sequential events on which learning is
contingent.

Model Behavior in Classical Conditioning
With a Single CS

One uninteresting steady state of our
model occurs when all the connection weights
are equal to zero. In this case y remains at
zero so that no modifications to the weights
can occur. A simple way to exclude this
steady state is to set at least one weight to
a fixed nonzero value. In an analog of clas-
sical conditioning, this fixed input pathway
carries the UCS, and the resultant effect on
the element is the UCR (see Figure 9).

It is useful to consider the simplest special
case of a single rectangular CS signal that
ends when the UCS starts. The discussion
is also simplified if we assume that the UCS
is sufficiently long so that all synapses have
lost their eligibility by the time of its offset.
Figure 10 shows this CS and the eligibility
it generates as well as a UCS and the re-
inforcement signal generated. We have as-
sumed that w, the associative strength of the
CS, is initially equal to zero and that the
term j takes the simplest form, j(z) =
y(t— 1), resulting from letting =0 in
Equation 4. This makes y — 7 a rough form
of the derivative of y. The rectangular CS
signal causes an increase in the eligibility of
the CS pathway that persists for some time
after the CS offset. The rectangular UCS
signal, active through a fixed excitatory in-
put of strength A, causes a positive change
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in y at its onset and an equal but negative
change at its offset. The weight, or associa-
tive strength, of the CS experiences a net
increase: At the UCS onset it increases by
a certain amount and decreases by a lesser
amount at the UCS offset (in this case the
decrease is zero, since the eligibility has de-
cayed to zero by the time of UCS offset).
After one trial w is positive so that on the
next trial the occurrence of the CS increases
the output level y. Consequently, CS onset
causes a transient increase in y — y, which
has no effect on the CS pathway, since CS
pathway eligibility is zero at CS onset. How-
ever, the level of y is raised by the CS so
that UCS occurrence causes less of an in-
crease in y than it did on the preceding trial.
This means that the value of y — jy at the
time of UCS onset causes a further increase
in w, but one of smaller magnitude than in
previous trials. With additional trials this
process continues until the value of y — y at
the UCS onset is equal to zero, that is, until
the CS produces activity equal to that pro-
duced by the UCS (Figure 11). Growth in

veg ———— I
gy — 1 I
CS=1 ——I——-I
ENlgibility = X ___k__
_¥- N
Y y(vn—yu—n U
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Figure 10. Time courses of element variables for a trial
in which a neutral (associative strength w = 0) CS is
followed by a UCS. (For ease of explanation CS offset
and UCS onset coincide and the UCS is of sufficient
duration so that X is zero at UCS offset. The trace X
of the CS signal x indicates the eligibility for modifi-
cation of the CS pathway. This trace increases during
CS presentation and persists after CS offset. Element
output y shows no change during CS presentation, since
w = 0, but since the UCS stimulates the element via a
fixed positive weight, the shape of the time course of y
follows that of the UCS signal. This causes y — y to
indicate UCS onset with a positive pulse and UCS offset
with a negative pulse. The CS associative stength w
changes according to the product of X and y — 7. Con-
sequently, w increases at UCS onset and decreases by
a lesser amount [here, by zero] at UCS offset, thus
experiencing a net increase.)
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Figure 11. Time courses of element variables after the
asymptotic CS associative strength has been reached
due to a series of trials. (Element output y changes at
CS onset, since w is now positive. UCS onset causes no
additional increase in y over the level produced by the
CS. The CS pathway eligibility ¥ is zero for the positive
pulse of y — 7 and, assuming a sufficiently long UCS,
also zero for the negative pulse. Under these circum-
stances w does not change.)

associative strength therefore is negatively
accelerated and stops when y remains con-
stant during CS pathway eligibility. Figure
14, Trials 0-10, shows the form of the ac-
quisition curve produced by computer sim-
ulation.

The equilibrium reached after a number
of trials and shown in Figure 11 has the fol-
lowing important properties. First, the CS
has an excitatory effect on the adaptive ele-
ment when the effect of the UCS is also
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excitatory. This permits a stimulus substi-
tution model of classical conditioning in
which the CR and UCR share the same
pathway (Figure 3). Second, the CR pro-
duces an output level y of magnitude equal
to that produced by the UCS, and third, the
CR begins earlier than the UCS. The ele-
ment increases its output level in anticipa-
tion of UCS occurrence.

Similar behavior is produced when UCS
onset precedes or follows CS offset by some
time interval or when the eligibility trace
outlasts the UCS. In these cases, however,
the CR will differ in magnitude from the
UCR in a manner depending on the precise
temporal arrangement of the CS and UCS.,
In addition, the equalibria in these cases are
dynamic rather than static. The CS associa-
tive strength continues to change during
each trial, but eventualily there is zero net
change per trial. The behavior approaches
a stable limit cycle. Appendix B contains a
related formal analysis.

Figure 12 shows the resultant asymptotic
connection weight for a series of simulation
experiments in which the time interval be-
tween CS onset and UCS onset is varied.
The connection weight becomes the strong-
est when the CS ends just as the UCS begins
(ISI = 3 time steps). At ISIs less than 3 time
steps there is less time for the eligibility of

cs —--r‘
S I e N
ucs : =
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X.—
Asymptotic
connection
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tS1 (simuiation time steps)

Figure 12. Asymptotic connection weight versus interstimulus interval in a simulated classical condi-
tioning paradigm. (The interstimulus interval {ISI] was varied between 0 and 40 time steps, CS length
was 3 time steps, and UCS length was 30 time steps.)
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Figure 13. Temporal relationship between stimuli in the
second part of a standard blocking experiment. (Learn-
ing to each of the component stimuli CS, and CS, will
depend on the associative strength of the other com-
ponent stimulus.)

CS,

the CS pathway to increase before the ar-
rival of the UCS. At ISIs greater than 3
intervals, the eligibility decays toward zero,
since the CS is not present for some interval
between CS offset and UCS onset. These
results have the same overall form as those
observed in animals,

However, in animal experiments optimal
ISIs are not so strongly tied to overt CS du-
ration, although longer optimal ISIs have
been observed for long fixed delay CSs than
for short trace CSs (Schneiderman, 1966).
The behavior of our adaptive element can
be reconciled with the experimental obser-
vations if it is assumed that “‘effective,” or
“internal,” CS duration is not identical to
overt, external CS duration. A long CS is
ignored shortly after it begins, whereas even
an instantaneous overt CS causes an internal
representation of some significant duration.
This internal duration, rather than overt CS
duration, then, would determine optimal ISI,

Behavior similar to that discussed above
is produced by our model if y is a more pro-
longed trace than that used for the preceding
discussion. Letting 8 be nonzero (but still
less than one) in Equation 4 results in an
exponentially decaying trace y similar to the
eligibility trace X. In this case, the term
y — y used in our model is a measure of the
deviation of the current output level from an
average of past values. The low-pass filtering
characteristic of this measure prevents high-
frequency fluctuations in y from signifi-
cantly influencing the associative strengths.
Equation 4 implies that for any 8, 0 <
B8 < 1, if y remains constant over time, then
y — y will approach zero, thus providing for
deceleration of the learning process in a
manner qualitatively similar to that pro-
duced when 8 = 0,
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These illustrations of our model’s behavior
show that it is sensitive to the temporal re-
lationships between stimuli within classical
conditioning trials and is capable of produc-
ing CRs that begin before the UCS onset.
It is evident from our discussion of how these
properties follow from Equations 3, 4, and
5 that considerable behavior subtlety can be
generated by the interaction of eligibility
traces and a measure of output change. In
general, the quantitative aspects of our
model’s behavior depend on the timing, du-
rations, and shapes of the CS and UCS sig-
nals, the forms of the eligibility traces X; and
the output trace y, and the character of the
output mapping function /. This complex of
dependencies provides considerable latitude
for making quantitative predictions about
particular response systems, and we restrict
our attention in this article to the qualitative
aspects of our model’s behavior. Appendix
B contains a mathematical analysis of some
of these dependencies for a simplified version
of our model.

Context and Expectation

Another aspect of classical conditioning
that should be included in even a very simple
theory is the effect of the context of a CS.
The associative strengths of the stimuli that
act as context for a CS on a trial can nullify
or even reverse the effect of the occurrence
of the UCS on that trial. This can be seen
in numerous experimental paradigms, of
which the simplest is known as blocking.

In blocking, as in all stimulus context ex-
periments, a compound stimulus consisting
of at least two stimulus components (one of
which is frequently thought of as a conglom-
erate background stimulus component) is
used as a CS. In Part 1 of a typical blocking
experiment, one stimulus component CS,,
which might be a light, is paired with a UCS
at an appropriate ISI until associative
strength between CS, and the CR reaches
its asymptotic value. In Part 2, the experi-
menter continues to pair CS, with the UCS
but also pairs CS,, say a bell, with identical
temporal relationship as diagrammed in Fig-
ure 13. In effect, the compound stimulus
CS, + C8; is being paired with the UCS.

The result of this procedure is that CS,,
which is appropriately paired with the UCS
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in Part 2, conditions very poorly, if at all,
compared to a control group without Part
1 conditioning to CS,. This is not an isolated
result. Effects of the associative strengths of
context stimuli on conditioning occur in a
great variety of experimental paradigms, in
both classical and instrumental conditioning,
of which blocking, overshadowing, and con-
ditioned inhibition are only some of the more
prominent examples (see Hilgard & Bower,
1975, pp. 571-573). Context stimuli can
have such large effects on resultant associa-
tive strength that they cannot satisfactorily
be ignored by a nontrivial theory of classical
conditioning.

The simplest and most successful theory
describing the effects of stimulus context is
generally considered to be that of Rescorla
and Wagner (1972). They state their theory
in cognitive terms as follows:

Organisms only learn when events violate their expec-
tations. Certain expectations are built up about the
events following a stimulus complex; expectations ini-
tiated by the complex and its component stimuli are
then only modified when consequent events disagree
with the composite expectation. (p. 75)

Applying this analysis to the blocking ex-
periment, Part 1 builds up an expectation
that the UCS will follow CS,. The events of
Part 2 do not violate this expectation, so
there is no learning. Other stimulus context
effects can be dealt with in similar fashion,
However, similar ideas have been advanced
by others. What distinguishes Rescorla and
Wagner’s theory is that it is given a precise
mathematical form:

AV 4= a B[N — Vaxl, (6)
where AV, is the change in associative
strength to a CS A, X is the asymptotic value
of associative strength possible with the
UCS, V..x is the associative strength already
present to the stimulus complex A+ X,
where X is a conglomerate background stim-
ulus, and a, and B are positive constants
depending respectively on the CS being
changed (A) and the particular UCS used.
Implicit here is that Equation 6 is only ap-
plied to a CS A if it is present on the trial
and that the complex 4 + X is precisely all
stimuli present on the trial. Using the sim-
plest assumption that V=V, + Vy, with
¢ = a 40, and letting S be the set of (indexes
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of) all stimuli present on a trial, Equation
6 can be written as

C[)\ - 2 VCS]] forieS
0 Jes fori & S.

Part 1 of the blocking experiment causes
Vs, to reach the value X because CS, is the
only stimulus present. In Part 2, Vs, =0
initially, and since

2 Ves;=Ves, + Ves, =A+ 0=,

jes

AVCS, = (7)

no changes in associative strength take place.
It should be clear how this equation imple-
ments Rescorla and Wagner’s cognitive the-
ory expressed in the quotation cited above:
The expectations that are built up are the
associative strengths, and these are modified
when events such as the UCS, represented
by A, differ from the composite expectation
(the summation of associative strengths of
present stimuli).

This theory can account for blocking and
a wide range of the other stimulus context
effects. The theory is not a completely sat-
isfactory one, the two most prominent and
best established shortcomings being the fol-
lowing: (a) There has been repeated failure
to demonstrate the extinction of conditioned
inhibitors predicted by the Rescorla-Wagner
model (the return to zero of negative asso-
ciative strengths when their stimuli occur
without any correlation to the UCS; Zim-
mer-Hart & Rescorla, 1974). (b) The strict
application of the Rescorla and Wagner
equation requires the prediction of a strictly
negatively accelerated acquisition curve.
The consensus is that this curve is initially
positively accelerating (Mackintosh, 1974,
p. 11).

The Rescorla-Wagner theory also does
not correctly predict the microstructure of
individual response sequences (Prokasy &
Gormezano, 1979). Recent extensions to the
Rescorla-Wagner model have been proposed
to remedy some of these problems (Frey
& Sears, 1978).

Our adaptive element uses a form of ex-
pectation closely related to that of the Res-
corla-Wagner model. Whereas in that model
the associative strengths are changed based
on the difference between received and ex-
pected UCS levels, in our model weights are
changed based on the difference between
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actual activity level y and expected activity
level y. In fact, our model results in all the
stimulus context behavior of the Rescorla-
Wagner model.

This can be seen most clearly by consid-
ering another special case. Assume that
there are many CS pathways, on which rect-
angular pulse CSs may or may not be pres-
ent, and that all CSs present on a trial begin
simultaneously (and, as before, end as the
UCS begins). If the UCS signaled by x,
begins at time T and has a duration longer
than the eligibility traces, then the connec-
tion weight w,, corresponding to CS;, can
only change at T. This is the only time at
which y changes when an input pathway can
be eligible. Then the total change in w; on
a particular trial is Aw(T).

From Equation 5 we have:

Aw(T) = c[p(T) — AT)]%LT).

Taking the simplest case p(¢) = y(r — 1),
and x(t) = x(t — 1):

Aw(T) = c[y(T) — é wix (T — 1)]

X x,(T "l).

Letting y(T) = woxo(T) = A, and noting that
x{T — 1) = 0, we obtain

Aw(T) = [\ — é wix(T — D) ]x{T — 1).
=

And since x(T — 1) = 1 indicates CS pres-
ence, we can write

-2 w] fori€s
0 J=8 fori & S,

where S is the set of stimuli present on the
trial. Since Aw/(T) is the total change in con-
nection weight on the trial, this result is
identical to the Rescorla-Wagner equation
(Equation 7).

Computer simulations illustrate this result
in a variety of standard stimulus context ex-
periments. The results of a computer simu-
lation of our model in a blocking experiment
is illustrated in Trials 0-20 of Figure 14. For
the first 10 trials of the simulation experi-
ment, CS, is presented alone and followed
by the UCS as discussed earlier. The con-

Aw(T) =
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nection weight w, of CS, quickly rises to the
UCS level A = .6 (see Figure 14, Trials 0—
10; Figure 11 shows the steady state element
behavior; additional details on the simula-
tions are in Appendix A). The acquisition
curve is purely negatively accelerated as in
the Rescorla-Wagner theory.

For Trials 11-20, CS, is presented iden-
tically paired with CS,, and both are fol-
lowed by the UCS. This is the blocking par-
adigm. Since it provides no new information
about UCS arrival, CS, is redundant. Dur-
ing these trials, w, and w, do not change, as
shown in Figure 14, This result can be under-
stood by examining the behavior of the rel-
evant element variables during one of these
trials (Figure 15). The decrease in y occurs
too long after the occurrence of the CSs for
them to still be eligible, and the increase in
y occurs just as the CSs begin, and thus be-
fore they are eligible.

Elements that implement the Rescorla-
Wagner equation find input signals whose
presence is associated with the UCS and that
are not redundant. Each such signal gener-
ates an expectation equal to the additional
UCS magnitude indicated by its presence.
If there are many signals, the sum of their
expectations is of appropriate magnitude.
For example, if the compound stimulus
CS, + CS, is paired with a UCS of strength
A = .6 while CS, alone is concurrently paired
with a UCS of strength A = .4, then the two
associative strengths (connection weights)
w, and w, will stabilize at .4 and .2, respec-
tively (assuming x; = 1 indicates CS; present;
in general, w,x; and w,x, will stabilize at
.4 and .2). A simulation experiment con-
firmed this conclusion for the adaptive ele-
ment we have introduced (Figure 16).

Elements that implement the Rescorla-
Wagner equation also have a tendency to
find the input pathways whose activity is
most reliably associated with the UCS and
to ignore all others. For example, let CS, be
paired with 100% of the UCSs while CS, is
paired with only 75% of the UCSs. Even if
CS, is initially dominant in terms of asso-
ciative strength (w, = \, w; = 0), eventually
CS, becomes completely dominant (w, =
A, wy = 0). This result contrasts strongly with
the blocking experiment in which equally
reliable CSs do not change their dominance
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Stimulus contiguration :

Trials 0-10 :

Trials 11-20:

151

Trials 21-35 :
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Figure 14. The connection weights at the end of each trial in a simulation experiment. (The intratrial
time courses of the variables involved are not shown. In Trials 0-10, presentation of CS, alone followed
by the UCS results in w, increasing. In Trials 11-20, CS, and CS, presented together followed by the
UCS produces no change, since CS, is redundant, This is the blocking paradigm. In Trials 21-35, CS,
begins earlier than CS,. The element becomes sensitive to the earlier predictor and loses sensitivity to

the later,)

relation (Figure 14, Trials 11-20). A sim-
ulation of our element in this situation pro-
duced results shown in Figure 17.

These simulations confirm that when
viewed at the trial level and given the as-
sumptions made above, our model behaves
like the Rescorla-Wagner model and, in par-
ticular, produces the stimulus context effects
of that model. When viewed at the level of
trials, our model also shares the shortcom-
ings of the Rescorla-Wagner model regard-
ing extinction of conditioned inhibitors and
the shape of the acquisition curve. Exten-
sions of the Rescorla-Wagner model pro-
posed to eliminate these shortcomings (Frey
& Sears, 1978) are also applicable to our
model. However, even with these extensions,
the Rescorla-Wagner model applies only at
the level of trials. It cannot supply predic-
tions about the effects on conditioning of the
intratrial temporal relationships between
stimuli. As we have seen, our model does
apply to this intratrial structure for the case
of a single CS, having behavior consistent
with data on CR latency and ISI depen-
dence. In addition, our model provides an

extension of the Rescorla-Wagner use of ex-
pectation to a form having meaning within
trials. This leads to several novel and inter-
esting forms of model behavior.

ves —— | |
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Figure 15. Intratrial time courses of element variables
in Part 2 of a blocking experiment (Trials I1-20 shown
in Figure 14). (Since the weight associated with CS;
has already reached its asymptotic value of \, y — 7 is
zero whenever CS, pathway eligibility X, is nonzero.
Consequently, no changes in weight values occur.)
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Figure 16. Simulation resuits of an experiment with two CSs, each of which accounts for a particular
portion of the UCS's reinforcement. (Trials of CS, paired with a UCS of strength A = .4 were alternated
with trials in which the compound CS, + CS, was paired with a UCS of strength A = .6.)

The adaptive element we have presented
finds the earliest predictors and ignores re-
dundant later predictors. A CS that arrives
simultaneously with or after a UCS is useless
as a predictor. By the same reasoning, pre-
dictors that occur earlier than others are in
some sense more predictive and potentially
more useful. A later predictor can be re-
dundant to an earlier one in the same sense
that an unreliable predictor can be redun-
dant to an identically timed but reliable pre-
dictor. For example, let CS, and CS, both
always be followed by reinforcement, but let
CS, start earlier than CS,. Then even if ini-

tially CS, is dominant (w; =\, w,=0),
eventually CS,, the earlier predictor, will
completely dominate CS, as a predictor of
the UCS (eventually w;, = 0, w, = A). The
result of a simulation of this experiment is
shown as Trials 21-35 of Figure 14 (recall
that at Trial 20, w, =X and w, =0). Al-
though both stimuli are being presented in
Trials 11-20 and in Trials 21-35, in the for-
mer case CS, is blocked by CS,, whereas in
the latter the associative strength of CS, in-
creases quickly and CS, comes to completely
dominate CS,. In the earlier trials CS, is
redundant to CS,, which had already been

A=.8 el
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Figure 17. Simulation results of an experiment with two CSs differentially associated with the UCS.
(CS, precedes every UCS and CS, is absent every fourth UCS. Although initially CS, is dominant [w, =
0, w; = A}, eventually CS,, the more reliably associated CS, dominates [w; = A, w, = 0].)
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conditioned, but in these later trials CS, pro-
vides important new information: It is the
earliest indicator that the UCS will occur.,
This advantage, combined with the fact that
CS, is totally redundant to CS,, produces
complete conditioning to CS, and the elim-
ination of conditioning to CS,.

The approach to this steady state is quick
and orderly, but the reasons for this behavior
are somewhat difficult to explain. Very
briefly, on each trial the associative strength
w, of CS, increases and then decreases by
a lesser amount for a net gain, whereas the
associative strength w; of CS, only de-
creases: w, increases because CS, predicts
the onset of CS,’s excitation, and both w,
and w, decrease at the offset of CS, and CS,
because these two stimuli together produce
too much expectation.

Although this property of the adaptive
element to become sensitive only to earliest
predictors of a UCS when the later ones
provide no new information is reminiscient
of some learning theory results (notably the
work of Egger & Miller, 1962, on condi-
tioned reinforcement), our primary interest
in it stems from adaptive systems consider-
ations. We feel that a simple mechanism that
finds the earliest, most reliable, and nonre-
dundant predictors of important events is
potentially very useful for constructing pow-
erful adaptive systems.

Xr‘l\l

Connection
weight
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Higher Order Conditioning

Although much of the discussion has been
in terms of fixed pathways that (correspond-
ing to UCSs) cause changes in plastic path-
ways, signals on these plastic pathways, since
they also can affect y, can also cause such
changes. The simplest example of this cor-
responds to what is known as higher order
conditioning in animal learning theory. A
signal on a plastic pathway (CS,) is paired
with a fixed input (UCS) until the connec-
tion weight w, reaches its asymptotic value.
Then a signal on a second plastic pathway
(CS,) is paired with a signal on the first plas-
tic pathway (CS,). In this second pairing
CS, acts as a reinforcing UCS for CS,. With
repeated pairings, the second connection
weight w, grows to the level of wy, but w,,
since its use is not followed by a UCS, grad-
ually falls to zero. The result is that w, rises
to the level of w, and then follows w, to zero.
The results of a simulation of this experi-
ment are shown in Figure 18.

Adaptive System Theory

In this section we discuss how the model
we have presented is related to a variety of
other learning rules used in adaptive system
research. This discussion will serve to place
the model within a theoretical framework
and indicate how it differs from learning

~A
*"“‘H*
- -+ .h... ..—:.
| Il |

Triale

20

Figure 18. Connection weight values at the end of each trial in a simulation of higher order classical
conditioning. (CS, has been paired with a UCS until the weight w, reached the asymptotic value . For
the trials shown, CS, and CS, are sequentially presented in the absence of the UCS causing w, to
increase as CS, acts as a reinforcing stimulus for CS,. Since CS, is not being followed by the UCS, w;,

decreases to zero, causing a similar decrease in w,.)
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Figure 19. An associative memory network consists of
a bank of m adaptive elements sharing the same »n input
pathways. (Any of the many types of adaptive elements
proposed can be studied in this configuration. Although
each type of element leads to different storage and re-
trieval capabilities, all such networks show the proper-
ties of generalization, noise resistance, and content ad-
dressability that have stimulated interest in these
structures.)

rules proposed in the past. The history of
adaptive systems research is too long and too
diverse to review exhaustively here. Useful
reviews are provided by Minsky (1963),
Minsky and Selfridge (Note 3), Hawkins
(1961), Holland (1975), and Klopf (1979).
Even by restricting attention to adaptive sys-
tems based on “neural” mechanisms, we
would be unable to give more than a cursory
treatment. Arbib, Kilmer, and Spinelli
(1976) provide a good, though also nonex-
haustive, review of adaptive neural models.
Here we focus only on rules that have re-
ceived the most attention and are most
closely related to our model.

Consider a generalized learning rule (as
in Amari, 1977a): A synaptic weight in-
creases or decreases in proportion to a re-
inforcement signal r:

wlt + 1) = wlt) + cr(1), (8)

where ¢ = positive learning rate constant,
wi(t) = weight of synapse { at time ¢, and
r{t) = reinforcement signal to synapse i at
time . We are using the term reinforcement
signal simply to denote the signal that de-
termines the changes in connection weights.
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For some of the learning rules, this signal
only vaguely resembles what would be called
reinforcement in animal learning studies.

Hebbian Rule

Within this framework the Hebbian pos-
tulate, in the form which we briefly discussed
above, is formulated by lettering r(z) =
x{t)y(¢) in Equation 8. The most well-de-
veloped application of the Hebbian learning
rule is its use in networks that implement
associative information storage (e.g., Amari,
1977a, 1977b; Anderson et al., 1977; Ko-
honen, 1977; Nakano, 1972; Wigstrom,
1973). The network shown in Figure 19
transforms stimulus patterns X = (x,, ...,
X,) to response patterns Y = (y), ..., V).
The inputs z; act on the elements in exactly
the same manner as the inputs x; but are
used to specify patterns Z=(z,, ..., z,,) to
be associated with the stimulus patterns X.
Repeated presentations of k different pair-
ings of stimulus patterns (X,, Z,), ..., (X,
Z,), causes the network to learn, using the
Hebbian learning rule, to elicit Z, when pre-
sented with X, alone, o= 1, ..., k. This
occurs provided the patterns X, ..., X,
form an orthogonal set, The matrix of syn-
aptic weights [w;] converges to the corre-
lation matrix of the patterns X, and Z,,
a=1,...,k?

What accounts most strongly for the cur-
rent widespread interest in associative mem-
ory networks is that they exhibit properties
suggestive of the aspects of memory empha-
sized by Gestalt or mass action theorists
(e.g., Freeman, 1975; John & Schwartz,
1978). Since information can be stored in
distributed form, associative performance
may not be seriously impaired by various
kinds of “lesions” (e.g., Wood, 1978). Dis-
tributed storage also provides for interesting
forms of generalization and content address-
ability (e.g., Kohonen, 1977; Nakano, 1972;
Wigstrom, 1973).

These models provide evidence that learn-
ing rules that are essentially connectionistic

4 It actually converges to the correlation matrix, also
called the covariance matrix, only if the averages of the
input patterns X, and Z, are zero. Amari (1977a) shows
how the Hebbian rule can be modified to remove this
restriction.
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in character need not imply a locationalistic
view of memory. The theory of associative
memory networks is well understood, and as
research continues on mechanisms of this
type, the result emerging is that any appli-
cation of simultaneous, or spatial, correla-
tion can be cast in a form that a Hebbian
rule can implement.

However, as we indicated when discussing
temporal relationships, the temporal subtle-
ties of classical conditioning are not pro-
duced by the Hebbian rule even with the use
of delays and other modifications. One would
therefore not expect the processing capabil-
ities of networks of Hebbian adaptive ele-
ments to extend far beyond spatial correla-
tion,

Widrow-Hoff Rule

For the Widrow-Hoff rule the reinforce-
ment signal is defined as follows:

ri(t) = [2(t) = y()]x{(1), 9)

where

W)= 2 wlO)xA2), (10)
-

and z(¢r) and x/¢) are real numbers. This
rule requires the use of a specialized signal
z that acts differently from the other input
signals due to its special role in Equation 9
and the fact that it does not participate at
all in the computation of the output y given
by Equation 10. This rule causes the weights
to converge so that the response is a partic-
ular desired real number for each stimulus.
If, for example, during the presentation of
each stimulus pattern X,,a = 1, ..., k, the
value to be associated with it is presented as
z, call it z,, then after sufficient repetitions
of the pairs (X,, z,.), the element will respond
with z, when presented with X, alone, a =
1, ..., k. The rule implements an iterative
algorithm for computing a solution to a set
of linear equations. A solution exists if the
stimulus patterns X, ..., X, are linearly
independent.

If the stimulus patterns are not linearly
independent, convergence can still occur if
the rule is modified by making the learning
rate parameter ¢ a variable whose value ap-
proaches zero as the trials continue, for ex-
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ample, ¢(¢) = ¢/t. In this case, and provided
the pairs (X, z,) occur with sufficient fre-
quency in the input sequence, the weights
converge so as to minimize the sum of the
squared error over the stimulus patterns,
that is,

k
2 Ve — 2a)?

is minimized where y, is the element’s output
for pattern X,, and z, is the desired output.
In this form the Widrow-Hoff rule is an it-
erative algorithm for forming the Moore-
Penrose pseudoinverse of a linear operator,
which is the same as saying that it computes
a linear regression. Duda and Hart (1973)
provide a useful discussion of this and closely
related stochastic approximation proce-
dures. This rule was proposed in the form
of an adaptive element by Widrow and Hoff
(1960).

Amari (1977a, 1977b) discusses associa-
tive memory networks of neuronlike ele-
ments that rely on the Widrow-Hoff rule to
form associations. In discussing the associa-
tive network shown in Figure 19, we said
that when Hebbian synapses are employed,
perfect recall of z, on presentation of X,,
a=1, ..., k, was possible only when the
stimulus patterns formed an orthogonal set.
Using the Widrow-Hoff rule, perfect recall
occurs even if the stimulus pattern set is only
linearly independent. Amari (1977a, 1977b)
calls this orthogonal learning, since nonor-
thogonal patterns are “orthogonalized” by
the network. For sets of stimulus patterns
that are not linearly independent, recall of
the best pattern in the least-mean-square
sense can be achieved.

A fact that is not generally realized is that
the Widrow-Hoff rule is essentially identical
to the Rescorla-Wagner equation. To see
this, identify ¢ with the trial number, each
input with a CS, and the z signal with the
UCS, so that z = A when the UCS is present
and z = 0 otherwise. In the Rescorla-Wagner
equation (Equation 7), the presence of a CS;
input signal on a trial is indicated by the set
notation i € S, whereas the Widrow-Hoff
form uses x; nonzero to indicate input signal
presence on a trial and x; = 0 to denote ab-
sence. The relevant equations are, for Res-
corla-Wagner,
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A= 2 Ves] fori€S

AVes,=1g s for i & S;

for Widrow-Hoff,

n
Aw, = c[z — 2 wix;]x.
=

The correspondences between the two equa-
tions are (a) w; = Vs, (b) z = X if the UCS
is present, otherwise z = 0; and (¢) x; = |
if CS; is present, otherwise x; = 0.

That these two models are, in fact, iden-
tical is striking, since they were constructed
for very different purposes. The Widrow-
Hoff rule was formulated as an algorithm
to solve sets of linear equations, and its the-
ory addresses convergence properties. Not
only are stimulus context effects not dis-
cussed in this theory, but their existence is
entirely incidental. The Rescorla-Wagner
theory was proposed to compactly describe
a wide variety of effects observed in animal
learning experiments. That it also provides
an important algorithm with a strong con-
nection to very useful areas of applied math-
ematics is fortuitous. We feel that the con-
fluence of mathematical and empirical facts
represented by what we shall call the Res-
corla-Wagner/Widrow-Hoff rule might have
considerable significance for understanding
associative learning.

Due to its similarity to the Rescorla-Wag-
ner model, the Widrow-Hoff rule provides
a more adequate model of classical condi-
tioning than does the Hebbian model. Unlike
the Hebbian model, however, it does not
provide a simple explanation for a stimulus
substitution view of conditioning. Figure 4
shows the Widrow-Hoff rule as a model of
classical conditioning. The specialized input
z corresponds to the UCS. Since z does not
directly influence the element’s output, the
UCR and CR must use separate pathways
(compare to Figure 3). Also unlike the Hebb
rule, the Rescorla-Wagner/Widrow-Hoff
rule has the property that weight modifi-
cations can only be driven by the specialized
“teacher” input z.

A learning rule closely related to the Res-
corla-Wagner/Widrow-Hoff rule is the per-
ceptron rule of Rosenblatt (1962). If z(¢) in
Equation 9 is restricted to taking only the
values 0 and 1 and the output is similarly
restricted by the use of a threshold, Equation
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9 gives the fixed increment perceptron rule.
This rule is an iterative procedure for solving
a set of linear inequalities. A solution exists
if the desired response is a linearly separable
function of the stimulus patterns. Nilsson
(1965) provides several proofs of conver-
gence, and Minsky and Papert (1969) dis-
cuss its limitations as a pattern recognition
system. Despite these limitations, the per-
ceptron learning rule has resurfaced, in
slightly disguised form, as a way of storing
data in associative memory structures (Al-
bus, 1979; Amari, 1977a, 1977b). These ap-
plications illustrate that in certain applica-
tions and using certain ways of representing
data, the limitations of linear learning rules
are not as devastating as once thought.

The perceptron seems to be most often
thought of as a model of instrumental con-
ditioning in which reinforcement is contin-
gent on the response rather than of classical
conditioning, which involves no response
contingencies. This view, however, is mis-
taken. If the error signal z(z) — y(¢) in Equa-
tion 9 is taken as being computed by the
perceptron’s environment, then the percep-
tron can be viewed as a response-contingent
system: If the response is correct, the error
is 0; if it is incorrect, the error is 1 or —1.
However, this feedback through the envi-
ronment is of such stereotyped form that it
can be eliminated, for arbitrary environ-
ments, by just letting the error be computed
by the perceptron itself, with the environ-
ment always simply providing the desired
response rather than an error signal. Viewed
in this manner, the perceptron is essentially
the same as the Rescorla-Wagner model: It
compares its own response (expectation)
with the correct one (UCS) and modifies the
weights in order to make them agree. The
instrumental conditioning paradigm, on the
other hand, involves essential feedback
through the organism’s environment, that is,
feedback that cannot be eliminated in a uni-
form way for all environments. Nontrivial
forms of response-contingent learning have
received very little attention by adaptive net-
work theorists.

Rescorla-Wagner/Widrow-Hoff Predictor

The Rescorla-Wagner/Widrow-Hoff rule
does not produce the predictive aspect of
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classical conditioning. Here we discuss the
minimal modifications to that rule which
enable it to produce predictive or anticipa-
tory responses. From the resulting rule,
which we call the Rescorla-Wagner/Wid-
row-Hoff predictor, it is possible to see what
additional properties our model provides.
Although we know of no instance in which
the Rescorla-Wagner/Widrow-Hoff predic-
tor is used in an adaptive network theory,
it is an example of a linear prediction pro-
cedure and is part of a larger theory of pre-
diction or forecasting (see, for example, Box
& Jenkins, 1976).

For the Rescorla-Wagner/Widrow-Hoff
predictor the reinforcement signal is defined
as follows:

(1)

where y(¢) is as defined by Equation 10 and
T is some positive constant. Changes in con-
nection weights are such as to reduce the
difference between z(¢) and y(¢ — 7) so that
an equilibrium is approached at which z-
(1) = y(t — 1), 0r z(t + 7) = p(¢). This means
that the element will learn to produce activ-
ity that anticipates by r the activity of the
UCS pathway z, if the input contains enough
predictive information. More precisely, with
reference to the discussion of the Widrow-
Hoff rule above, if c is allowed to decrease
as conditioning proceeds, this element will
produce a best least squares prediction by
7 of the signal z. All of the stimulus context
effects of the Rescorla-Wagner/Widrow-
Hoff rule are also produced by the predictor.

The process defined by the predictor can
be described as follows: Activity on an input
pathway possibly causes a response but also
causes the connection from that pathway to
become eligible for modification a certain
period of time (r) later. An eligible connec-
tion is modified only if the UCS signal
strength differs from the expected strength.
Thus, each time z(¢) deviates from y(z —
7), the input pathways that were active ear-
lier (and thus eligible) will modify their con-
nection weights, or associative strengths, w;.
The reinforcement signal is a measure of
how strongly the current UCS confirms or
contradicts the previously formed expecta-
tion or prediction.

As a model of classical conditioning, the

rt) = c[2(2) = p(t = 7)Ixlt = 7),
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predictor defined by Equation 11 requires an
ISI exactly equal to r for any conditioning
to occur. This limitation can be eliminated,
along with the arbitrariness of the choice of
7, by replacing the delayed signals x(z—
1) and y(¢ — 7) in Equation 11 by more gen-
eral forms of traces such as those used in our
model. Let x;(¢) and 7(¢) be some weighted
averages of their respective function values
over some time interval preceding ¢, pro-
duced using Equations 3 and 4. Then the
reinforcement signal for the Rescorla-Wag-
ner/Widrow-Hoff predictor becomes

rdt) = c[2(1) — FOIx(D).  (12)
The temporal relationships implied by this
rule depend on the characteristics of the CS
and UCS, the form of the traces X; and J,
and the parameters of the experimental par-
adigm. Some details of these dependencies
are presented in Appendix B.

Uttley's Informon

Uttley (1970, 1975, 1976a, 1976b, 1976¢,
1979) has suggested a learning rule that is
closely related to the Rescorla-Wagner/
Widrow-Hoff procedure except that it con-
forms to some of the constraints of the Heb-
bian rule. Starting with the Widrow-Hoff
rule (Equation 9), let z(7) = —woxo(t), where
wy is a fixed positive number. That is, let the
specialized ‘““teacher” input be a signal to a
fixed inhibitory pathway. If it is further as-
sumed that this fixed signal participates in
the computation of the output y just like any
other input signal, then Equation 9 can be
rewritten as follows:

(1) = [~woxa(t) — ,E Wl )]xD)

= _[é wi()x,(£)]1x{t)

= —p(£)x,(2). (13)

This is the Hebbian rule except for the
minus sign. Uttley argues that this change
of sign is desirable because it changes the
positive feedback inherent in the Hebbian
rule to negative feedback desirable for its
stabilizing influence. Coincidence of pre-
and postsynaptic discharges decreases rather
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than increases synaptic strength, and equi-
librium weight values are those that result
in zero total input to the element. Uttley
notes the similarity of this rule to the Res-
corla-Wagner model and illustrates how it
can produce much of the same behavior
(Uttley, 1975).

Uttley describes his model in the manner
discussed above but actually simulates a
more complex model based on the concept
of mutual information. He uses exponen-
tially weighted time averages to estimate the
negative of the mutual information between
input and output signals. At each time step
the weights are set to these estimates. Al-
though the concept of mutual information
led Uttley to the informon model and pro-
vides an interesting view of the stimulus con-
tingencies that produce learning, it is an un-
necessary complication to what is essentially
the Widrow-Hoff rule.

If the special input labeled z in Figure 4
is regarded as a fixed inhibitory input, then
that figure shows the use of Uttley’s element
in an analog of the classical conditioning
paradigm. This is identical to the corre-
sponding situation for the Rescorla-Wag-
ner/Widrow-Hoff and perceptron models.
Here, however, there is the additional con-
sequence that the UCS actually inhibits the
CR both before and after learning. This is
due to the treatment of the UCS as an in-
hibitory signal that is used in the compu-
tation of the element’s output. In the Res-
corla-Wagner/Widrow-Hoff and perceptron
models, the UCS is a special input that never
influences the output of the element except
indirectly through the learning process.

In order to obtain the stability and stim-
ulus context effects of the Rescorla-Wag-
ner/Widrow-Hoff rule while at the same
time adhering to the basic constraints of the
Hebbian rule, Uttley had to abandon the
simple stimulus substitution view of condi-
tioning provided by the Hebbian rule and
make the behaviorally unsupportable as-
sumption that the UCS inhibits the CR.

Since it retains the form of the Hebbian
rule, however, the informon has the property
that even though there are fixed, prespeci-
fied, classifying input channels, these chan-
nels are not the only source of signals that
can cause weight modifications. This is an
important property, but it can be obtained
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in an entirely different manner (as illus-
trated by our model) that also has the ad-
vantage of the Rescorla-Wagner/Widrow-
Hoff rule but retains a stimulus substitution
view, produces appropriate ISI dependency,
and permits the CR to occur before the
UCS. Although we feel that Uttley’s ap-
proach represents an independent discovery
of the advantages of the Rescorla-Wagner/
Widrow-Hoff rule, we also feel that it need-
lessly adheres too closely to the original
Hebbian postulate.

Our Model

Within the framework provided by Equa-
tion 8, our model uses a reinforcement signal
defined as follows:

rdt) = [y() = JO)x(n),  (14)

where y is as defined by Equation 10 and yv
and x; are traces of their respective sig-
nals as described above. This differs from
the Rescorla-Wagner / Widrow-Hoff predic-
tor (Equation 12) by the substitution of y(¢)
for the specialized reinforcing signal z(¢).
This eliminates the requirement that rein-
forcement be provided only by a fixed rein-
forcing pathway. Since y(¢) can be affected
by activity on any input pathway, any input
signal can bring about changes in the effi-
cacies of other pathways. This permits the
adaptive element to extract predictive rela-
tionships among its inputs in the same way
that a Hebbian element or the informon ex-
tracts simultaneous associations. Unlike the
informon, however, our model retains the
stimulus substitution properties of the Heb-
bian model, since the CR and the UCR share
the same pathway.

We have been able to eliminate the need
for a distinct channel for reinforcing signals
by, in effect, providing a distinct time (with
respect to a CS) for reinforcement. This was
suggested by the work of Klopf (in press,
Note 1) in which a similar method was pro-
posed for eliminating the requirement that
response-contingent reinforcement be deliv-
ered over a specialized channel. We have
restricted this idea to classical conditioning
and must postpone a discussion of its impli-
cations for the response-contingent case to
a later paper.
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We note that it is possible to use our model
in an associative memory system such as
those described above that rely on the Heb-
bian rule or the Rescorla-Wagner/Widrow-
Hoff rule. This would result in a network
capable of exhibiting the properties of our
model together with the properties of dis-
tributed, associative information storage.
We have not yet systematically explored the
implications of such a system, but it is un-
likely that it would lack any of the properties
that have stimulated interest in this kind of
associative memory structure. In particular,
such a system would show that our model,
although connectionistic in character, need
not imply a locationalistic theory of memory.

Stability and Saturation

Some issues that were not directly ad-
dressed in the preceding section concern
technical problems that occur when net-
works of elements based on various learning
rules are simulated. For example, a literal
application of the Hebb postulate implies a
positive feedback loop (increases in excit-
atory synaptic weights cause higher corre-
lation between pre- and postsynaptic activity
and hence further weight increases). Excit-
atory synaptic weights tend to become large
irrespective of the significance of the input
signals, and some additional mechanism is
required to prevent the strengths of all con-
nections from growing without bound or
from reaching and remaining at their max-
imum values. Early computer simulations
illustrated the importance of solving these
problems for preventing network “seizures”
(Rochester, Holland, Haibt, & Duda, 1956).

Here we discuss several approaches to
solving the stability and saturation problems
associated with the Hebb rule and relate
them to the solution provided by the learning
rule we have developed. Our point is to show
that learning rules that are based on the
Rescorla-Wagner/Widrow-Hoff rule, such
as ours and the one proposed by Uttley, not
only provide more valid models of classical
conditioning than the Hebbian rule but also
solve these technical problems in a simple
way. Although there is no logical or empir-
ical necessity for the stimulus context effects
accounted for by the Rescorla-Wagner/
Widrow-Hoff rule to arise at a cellular level,
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it is suggestive that if they did then addi-
tional mechanisms would not be required in
order to solve stability and saturation prob-
lems.

Some of the current approaches for solv-
ing these problems (notably, Grossberg’s,
1969, 1974, 1976a, 1976b) stress the im-
portance of careful network design and use
of inhibitory connections for controlling net-
work stability. Other approaches attempt to
achieve similar results by modifying the
original Hebbian postulate so as to incor-
porate local stabilizing mechanisms that op-
erate irrespective of an element’s network
environment, This latter approach has not
been shown to be sufficient for solving net-
work stability problems but does contribute
to their solution by making the adaptive
changes inherently more manageable. Al-
though we feel that network level consider-
ations (i.e., a priori structure) are very im-
portant, they are strongly influenced by the
choice of local learning rules, and here we
focus on element level issues.

There are two fundamentally different
ways of preventing unbounded weight growth
in theoretical models of plastic synapses. The
first technique is to impose an upper bound
at some fixed, predetermined value. Whether
this is done by setting the weight back to the
preset maximum whenever an increment
makes it larger or by modifying the learning
rule in order to make the value asymptoti-
cally approach a preset finite limit, the same
problem arises: Unless weights decrease in
some circumstances, all excitatory weights
will tend to reach and remain at their max-
imum values, Saturation of some weights
may be desirable, but if all the weights al-
ways eventually reach their maximum value,
then all learning eventually ceases and all
stored information is eventually forgotten.
Either learning must occur slowly enough to
postpone this ultimate state of forgetfulness
for as long as necessary, the plasticity of
some connections must be temporary, or a
means for decreasing weights must be intro-
duced.

The second technique for preventing un-
bound weight growth relies on the bound-
edness of the reinforcement signal that
drives the weight modification process. In-
stead of a fixed, predetermined limit’s being
enforced by the learning rule, the limit is a
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function of the external reinforcing input to
the element. Larger reinforcement can al-
ways cause weights to increase, but—and
this is the crucial point—arbitrarily pro-
longed periods of nonzero reinforcement
must not produce arbitrarily large weights.
Several of the methods discussed below solve
stability and weight saturation problems in
this manner.

Normalization

One of the most common techniques used
in simulations invokes a ‘“‘conservation of to-
tal synaptic strength,” or normalization,
principle. This technique is a particular way
of presetting weight bounds. The total sat-
uration problem is avoided by requiring
some weights to decrease in order to main-
tain the sum of all the weights at a constant
value. New weight values w} are computed
according to the Hebbian rule, and then each
w; is divided by the sum of all of the w; to
obtain the actual next weight values, that is
(cf. von der Malsburg, 1973),

wlt+ 1) =wi/Sw, (15
i=1
where
wi = wlt) + ex()y(e). (16)

This normalization procedure is successful
in permitting those pathways to dominate
whose activity is most strongly correlated
with postsynaptic activity. One can view syn-
aptic strength modification computed in this
way as a competition among pathways for
proportions of the sum. In many models, this
procedure is absolutely essential, not only for
stable operation of the model but also for
the generation of behavior that resembles
exper)imental data (e.g., von der Malsburg,
1973).

Although it adequately solves some of the
technical problems associated with the Heb-
bian rule, this normalization procedure has
several deficiencies. First, it was pointed out
by Uttley (1976a) that although perfect nor-
malization often produces desired results,
small departures from this ideal can cause
rather drastic changes in behavior. If, for
example, one synapse is consistently favored
by even a very small amount in the nor-
malization process, then it can gain much
more than its share of the total synaptic
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strength. The weight values can reflect nor-
malization asymmetries rather than the de-
sired correlation measures.

A second criticism of the normalization
procedure holds to the extent that a faithful
representation of classical conditioning phe-
nomena is desired. Although stimulus con-
text effects are produced by normalization,
they are different from those observed ex-
perimentally. For example, suppose each in-
put x;, i = 1,..., n, to an adaptive element
using a normalized Hebbian scheme has a
constant value x(¢) =x; for all ¢. Using
Equations 15 and 16, it is not hard to show
that the equilibrium weights are

wi=x;/ Zx, i=1,...,n (17)
j=1

These equilibrium values are independent of
the initial weight values. The stimulus con-
text effects observed experimentally, how-
ever, require that the associative strengths
at the beginning of a series of trials crucially
determine their values at its end.

Consider blocking, for example. Suppose
an element has two binary valued inputs x,
and x, corresponding to conditioned stimuli
CS, and CS, and an input of arbitrary fixed
strength representing an unconditioned stim-
ulus. Assume that the associative strengths
w; and w;, of CS, and CS,; initially equal zero
and are thereafter required always to sum
to one. Pairing CS; with the UCS until
equilibrium is reached results by Equation
17 in w; = 1 and w, = 0. Now, starting with
these values and pairing both CS, and CS,
with the UCS results by Equation 17 in
equilibrium values w, = w, = .5. This is the
same result that would have been produced
if the weights were both zero at the com-
mencement of the paired trials. Blocking, on
the other hand, would occur if the series of
paired trials did not change the weights from
the values they had when it began, that is,
wy = 1, wy = 0.

Another criticism of the normalization
technique can be made if a model using this
method is intended to reflect what might
occur in actual neurons. Although it has
been suggested that synaptic modifications
and normalization may be the result of the
redistribution of a constant amount of re-
ceptor protein (Stent, 1973), this hypothesis
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goes far beyond available data, given the
lack of corroborative support from other
lines of evidence. One way of meeting the
criticism that normalization is an unlikely
cellular mechanism is to postulate that nor-
malization occurs at a network rather than
at a cellular level. The work of Grossberg
and his colleagues (Ellias & Grossberg,
1975; Grossberg, 1974, 1976a, 1976b) ex-
emplifies this approach.

Autonomous Decay

If it is assumed that synaptic strength
slowly decays in the absence of a reinforce-
ment signal, then a bound on weight size is
imposed that is a function of reinforcement
level and the decay rate. A weight can al-
ways increase when its reinforcement signal
increases, but if the reinforcement signal re-
mains bounded, then no matter how long the
signal persists the weight also remains
bounded. Thus, learning can occur whatever
the system’s *‘age,” but experiences are al-
ways “forgotten” within a certain period of
time. In system theoretic terms, the adaptive
element has definite memory: It cannot re-
member anything that occurred arbitrarily
far in the past. Moreover, the weight bound
is inversely proportional to the length of time
that memory traces can be retained. That
is, if weights are to be kept below rather low
levels, then the decay of the weights must
be rather fast. The normalization method
described above, in contrast, has indefinite
memory, meaning that information is not
lost unless actively replaced by new infor-
mation.

Despite the lack of indefinite memory,
learning rules incorporating autonomous de-
cay lead to behavior that can be understood
in mathematical terms. For example, if the
decay is sufficiently slow, then the long-term
statistical properties of the reinforcement
signal can be reflected in the weight values
(e.g., Amari, 1977a, 1977b; Uttley, 1976a,
1976b, 1976c¢).

Negative Feedback

Although normalization and autonomous
decay schemes employ negative feedback,
rules resembling the Rescorla-Wagner/
Widrow-Hoff procedure use a more explicit
form. Uttley (1976a) directly eliminates the
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positive feedback inherent in the Hebbian
rule by changing it into negative feedback
by reversing the sign (Equation 13). Coin-
cidence of pre- and postsynaptic discharges
decreases rather than increases the synaptic
strength. This produces the stimulus context
effects observed in classical conditioning ex-
periments while at the same time solving
stability and saturation problems (and pro-
ducing the undesirable consequences dis-
cussed earlier). However, it is not the precise
form of Uttley’s model that produces these
solutions, but rather its resemblance to the
Rescorla-Wagner/Widrow-Hoff rule.

Recall that for the Rescorla-Wagner/
Widrow-Hoff rule, weights change accord-
ing to

Awi(e) = clz(2) - 2 Wl O)%0) T 0).

A weight therefore cannot change if either
the input signal on that pathway is zero
(x{2) = 0) or the total stimulus strength,

jé wj(t)xj(t)’

equals the training signal z(z). Thus, the
weights are always bounded, yet never be-
come saturated so as to be insensitive to fur-
ther changes in the environment. Negative
feedback is provided in the form of the ex-
pectation term

—2"3 wi2)x,(2).
=

Learning can always occur when the rein-
forcement differs from the expected level,
and the asymptotic weight values depend on
the magnitude of the reinforcement signal.
Moreover, the rule permits memory of events
that occurred arbitrarily far in the past, that
is, it has indefinite memory.’ A weight will

® It is curious that the model Uttley actually simulates
does not possess indefinite memory. Exponentially
weighted time averages are used to estimate the negative
of the mutual information between input and output
signals. This makes the informon’s stability an obvious
property, but memory traces always decay to zero due
to the exponential decay used to estimate mutual in-
formation. He discusses an additional hysteresis mech-
anism that produces indefinite memory (Uttley, 1970).
If no estimates of mutual information were used, then
indefinite memory would be present without an addi-
tional mechanism, and none of the rule’s other advan-
tages would be lost.
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not decrease unless a stimulus occurs that
is not reinforced to the expected level.

The model we have presented uses nega-
tive feedback in the form of an expectation
term that is a weighted average of past val-
ues of the element’s output. The weight as-
sociated with a pathway cannot change un-
less that pathway is eligible and the current
output value differs from the weighted av-
erage of past output values. As a weight
grows, the signals arriving on that pathway
cause larger output values and hence larger
expectations. As the expectations grow they
exert negative effects on weight growth. The
stability of this method is evident from the
simulation results shown above.

One consequence of this form of negative
feedback in our element is that if a signal
arrives via a modifiable pathway, for ex-
ample, as a positive rectangular pulse, but
is not followed by other activity within the
eligibility period, then the weight of that
pathway will, if positive, decrease toward
zero. This will occur because this signal’s
offset will coincide with positive eligibility
to cause a negative change in weight. With
repeated presentations of stimuli not directly
followed by other activity, weights will con-
verge to zero, This is why in the simulations
of classical conditioning presented above, we
required the UCS to arrive over a pathway
of fixed weight A. If this weight were not
fixed, then UCS presentation would even-
tually have no effect on the output of the
adaptive element. This does not imply, how-
ever, that our model has definite memory.
In the absence of incoming signals, a path-
way will exhibit no change (since it will
never be eligible for modification) no matter
how long the period of inactivity lasts.

It is useful to compare the form of neg-
ative feedback employed by models resem-
bling the Rescorla-Wagner/Widrow-Hoff
rule with that of normalization schemes. In
the former case, the feedback signal is the
total stimulus strength,

,é wit)x,(1),

whereas in the latter it is simply the sum of
the weights,

En) w[r).

J=1
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Although one form of feedback is additive
and the other is multiplicative, the major
difference is that the Rescorla-Wagner/
Widrow-Hoff rule uses information from the
current stimulus pattern, whereas the nor-
malization scheme does not, Without this
information, the stimulus context effects ob-
served experimentally cannot be produced.
Further, if one is arguing for the cellular
plausibility of a learning rule, then negative
feedback in the form of total stimulus
strength is easier to account for than feed-
back in the form of total synaptic efficacy.
Since total stimulus strength is reflected in
neurons by the membrane potential, it is
plausible to hypothesize that this signal is
available, at least approximately, at each
synaptic site.

We have seen, then, that not only does the
Rescorla-Wagner/Widrow-Hoff rule pro-
vide a strong model of classical conditioning
and a powerful iterative method for solving
sets of linear equations, it also solves some
of the technical problems that always ac-
company the use of the Hebbian rule. Our
model retains these advantages while ac-
counting for some of the intratrial temporal
structure of classical conditioning.

Cellular Mechanisms

There is always a risk in speculating about
cellular mechanisms for learning processes.
On the one hand, not enough is known about
the cellular changes that occur during as-
sociative learning to permit the construction
of detailed models, and on the other hand,
experimental progress in this area is occur-
ring so rapidly that any postulated mecha-
nism is likely to be soon invalidated by con-
crete fact. Despite these hazards, we feel
that a discussion of our model in light of
current electrophysiological and biochemical
knowledge of cellular mechanisms can be of
value, since the model is empirically sup-
ported at a behavioral level and is of interest
from a theoretical perspective. In addition,
the concepts of “eligibility” and *“‘expecta-
tion” in our model are not only of critical
importance in accounting for animal learn-
ing behavior and, we believe, essential for
adaptive behavior of artificial systems but
can be associated quite naturally, albeit
speculatively, with certain processing capa-
bilities of neurons.
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There are four aspects of our rule to con-
sider. First, the notion of eligibility would
be realized if a synapse were “tagged” by
a nonstimulating trace for some period of
time after each discharge of the presynaptic
cell. This indication of previous stimulation
would be required to endure for a period on
the order of at least a few seconds rather
than a few milliseconds. This trace should
remain local to the synapse. Second, some
way of registering changes in the postsyn-
aptic cell’s firing rate from its previous level
is required. This determines the reinforce-
ment that facilitates or inhibits eligible syn-
apses. The length of time over which the
reference firing rate is determined is not crit-
ical but should be relatively long, perhaps
with a time scale similar to that of eligibility.
Third, it is necessary for the measure of el-
igibility, which is local to the synapse, to
interact with the reinforcement signal, which
is a global feature of the postsynaptic cell.
This interaction should occur at each syn-
apse. Finally, the result of the interaction
between the eligibility of a synapse and the
reinforcement level must regulate modifi-
cations of the transmission efficacy of that
synapse.

The notion of a synaptic marker indicating
previous presynaptic discharge could be re-
alized either postsynaptically or presynap-
tically, We discuss a postsynaptic site for
eligibility first. There is good evidence that
in some cells the binding of a neurotrans-
mitter to its receptor site regulates postsyn-
aptic concentrations of a adenosine 3', 5'-
monophosphate (cyclic AMP) or guanosine
3', 5'-monophosphate (cyclic GMP). It has
been hypothesized that these cyclic nucleo-
tides may mediate, as second messengers,
the action of several neurotransmitters in
generating slow postsynaptic potentials, This
hypothesis is supported by several lines of
electrophysiological and pharmacological
evidence. For reviews see Greengard (1976),
Nathanson (1977), or Rasmussen, Jensen,
Lake, Friedmann, & Goodman (1975).

However, some studies have suggested
that postsynaptic increases in cyclic nucleo-
tide concentrations may have roles other
than the generation of postsynaptic poten-
tials. For example, it has been shown that
the administration of cyclic AMP and cyclic
GMP to cells in a sympathetic ganglion of
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the bullfrog does not cause appreciable
changes in membrane potential even though
synaptic stimulation increases both cyclic
AMP and cyclic GMP in these cells (Busis,
Weight, & Smith, 1978). It has been sug-
gested that in addition to the role cyclic nu-
cleotides may play in simple neurotransmis-
sion, they may also carry more indirect
messages that might, for example, mediate
a stimulus trace that temporally links events
in associative learning at a cellular molec-
ular level (Woody, 1976).

Although the role of cyclic nucleotides in
synaptic transmission and its regulation is
not yet clear, it is evident that in some cells,
and for some neurotransmitters, postsynap-
tic concentrations of cyclic nucleotides do
reflect the amount of presynaptic stimulation
received and can register previous stimula-
tion for a time that is very long compared
to the millisecond times of electrical activity.
A difficulty, however, with the hypothesis
that postsynaptic chemical concentrations
provide stimulus traces as required by our
model is that these traces would probably
not remain local to their initiating synapses.

The locality of the trace suggests that a
presynaptic site might be more plausible.
Studies of the presynaptic mechanisms that
are responsible for the nonassociative phe-
nomena of post-tetanic facilitation and ha-
bituation suggest that the notion of eligibil-
ity could be represented presynaptically.
Since these phenomena involve time scales
much longer than that of electrical activity,
we might postulate that some of the same
mechanisms realize the notion of eligibility
used in our model of classical conditioning.
For example, intracellular concentration of
free Ca** or Ca®* conductance characteris-
tics (e.g., voltage dependence) could provide
relatively prolonged records of presynaptic
activity. The mechanisms that result in
post-tetanic facilitation or habituation for
some temporal stimulus patterns might pro-
vide important record keeping facilities that
operate whatever the stimulus characteris-
tics are.

If eligibility were recorded presynapti-
cally, then we would need to postulate some
way in which the activity of the postsynaptic
cell could influence the presynaptic terminal.
Although it has been shown that postsyn-
aptic activity can influence a presynaptic ter-



164

X, X X,

Xi \.%
C

.
? )
y

L)

Figure 20. The adaptive element implemented via a
feedback interneuron. (Eligibility X; is computed pre-
synaptically, and the difference between actual and ex-
pected firing rates, computed by the feedback interneu-
ron, modulates synaptic strengths through synapto—
synaptic connections.)
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minal by altering the ionic content of the
surrounding medium (Weight & Erulkar,
1976), we discuss instead mechanisms whose
roles in plasticity are much better under-
stood. These involve presynaptic facilitation
via synapto-synaptic connections. Figure 20
shows a simple circuit in which presynaptic
modulation is provided by extracellular feed-
back from the postsynaptic cell. The figure
shows a single feedback interneuron, but a
multisynaptic pathway is clearly also possi-
ble. In fact, the feedback pathway could pass
through a brain region that integrates the
signal with other information in a manner
not accounted for by our model. For ex-
ample, the signal may be integrated with
other stimulus context information by the
septo-hippocampal complex in a way similar
to that suggested by Moore (1979). Figure
20 also shows episynaptic connections from
the interneuron to all of the incoming fibers.
As formulated here our model requires this
feature, but it should be regarded as a con-
venient simplification. Fibers not contacted
by the interneuron would not exhibit plas-
ticity (or, at least, not plasticity of the same
form), and episynaptic connections carrying
signals from other than the postsynaptic cell
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would permit processing of a form more
complex than that considered here.

It remains to suggest how the feedback
signal from the interneuron could represent
the reinforcement signal, that is, the devia-
tion of the postsynaptic cell’s firing rate from
previous levels. Perhaps the simplest possi-
bility is that the interneuron, or the network
of interneurons, responds only to changes in
its input, as has been commonly observed for
some cells responding to sensory stimuli. A
more complex hypothesis would be that the
presynaptic input from the feedback inter-
neuron produces two superimposed effects
on each synapse it modulates. One effect
would be a fast change in the voltage de-
pendence of the Ca®* conductance so that
depolarization would cause increased Ca®*
influx. The amplitude of this effect would
depend on the eligibility of the modulated
terminal determined by its previous history
of depolarization. This increased influx of
Ca?* would facilitate the transmission effec-
tiveness of the synapse by increasing trans-
mitter release. The second effect would be
a slower and less dramatic decrease in the
peak Ca?* conductance during depolariza-
tion that would cause decreased transmitter
release. The magnitude of this second effect
would also depend on the terminal’s eligi-
bility. If one assumed that these two effects
linearly superimpose and that the effects of
different discharges of the presynaptic ter-
minal superimpose, then the resultant change
in synaptic efficacy would depend on eligi-
bility and the amount of change in activity
of the feedback pathway as required by our
model. Summing the fast positive and slow
negative effects would produce a form of
differentiation. The “expectation” would be
represented by the negative component of
the presynaptic effect.

We summarize this discussion of cellular
mechanisms by making several observations.
The model of classical conditioning we have
presented was formulated on the basis of
empirical evidence from behavioral experi-
ments and from a sensitivity to the technical
difficulties that have beset theoretical adap-
tive network studies. Although the evidence
that this model or some variant of it might
be implemented at the level of single neural
units or simple neural circuits is not strong,
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there is evidence that the relatively long last-
ing and nonstimulating memory of previous
activity required by the notion of eligibility
is indeed present at a cellular level. The
monosynaptic phenomena of post-tetanic fa-
cilitation and habituation show that syn-
apses themselves do possess nontrivial forms
of short term memory that do not require
one to hypothesize that reverberatory elec-
trical activity provides the means for storing
reflections of previous activity. Other evi-
dence exists suggesting that within a single
cell there can exist mechanisms for short-
term stimulus traces as well as longer term
memory (e.g., Alkon, 1979; Libet, Kobay-
ashi, & Tanaka, 1975; von Baumgarten,
1970; Weight, Schulman, Smith, & Busis,
1979; Woody et al., 1974).

Summary and Conclusions

Although the spirit of Hebb’s theory still
seems to be relevent, there is little support
for the use of a literal interpretation of the
Hebbian rule in adaptive network studies.
As a model of classical conditioning, it is not
up to the standard of sophistication now
readily available in the learning theory lit-
erature. As a model of neural plasticity, it
lacks experimental support and is based on
a view of the processing capabilities of neu-
rons and synapses that does not take into
account the wealth of data now available.
Although networks employing Hebbian rules
have been successful in producing some in-
teresting effects, their behavior is far from
the level of sophistication required for com-
plex tasks. Finally, models relying on Heb-
bian rules require rather ad hoc additional
mechanisms to ensure stable and flexible
behavior.

The Rescorla-Wagner/ Widrow-Hoff rule,
to which the perceptron and Uttley’s infor-
mon are closely related, provides a more
valid model of classical conditioning by in-
corporating stimulus context effects while at
the same time cleanly solving a number of
stability and saturation problems. That the
Rescorla-Wagner equation was developed to
account for animal learning behavior,
whereas the nearly identical Widrow-Hoff
rule was formulated to approximate the so-
lutions of sets of linear equations, suggests
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that these rules describe some ingredient
essential for adaptive behavior. One impor-
tant aspect of the Rescorla-Wagner/Wid-
row-Hoff rule’s behavior is the extraction of
reliable and nonredundant information that
correlates with reinforcement. The experi-
mental results regarding stimulus context
effects in classical conditioning indicate that
animals similarly form reliable and nonre-
dundant associations.

We have presented a rule that preserves
the properties of the Rescorla-Wagner /Wid-
row-Hoff rule but also incorporates the pre-
dictive nature of classical conditioning. The
problems of making useful and accurate pre-
dictions seem to be solved by the ability to
generate expectations. The actual events are
then compared with those predicted, and
appropriate incremental changes are made
if the two differ. The Rescorla-Wagner
equation does this while lumping together,
as far as time of occurrence, all stimuli pres-
ent on a trial. One contribution of the adap-
tive element developed here is to provide a
mechanistic implementation of the descrip-
tive Rescorla-Wagner theory of classical
conditioning. In taking this lumped-trial the-
ory to a mechanistic form in which system
behavior is specified at all times within the
trial, it becomes possible to make distinc-
tions between inputs based on their relative
time of occurrence. Rather than extracting
reliable and nonredundant information that
correlates with reinforcement, this rule ex-
tracts reliable, nonredundant, and early pre-
dictors of reinforcement. Moreover, an adap-
tive element employing this rule is able to
use its sensitivity to predictive information
to make predictions that occur earlier than
the events predicted. A prediction made at
the same time as, or later than, the event
predicted is no more useful in guiding be-
havior than no prediction at all.

In addition, the adaptive element pre-
sented here preserves the simple account of
stimulus substitution provided by the Heb-
bian rule. This is true because the UCR and
CR share the same pathway—probably the
simplest hypothesis accounting for the sim-
ilarity of the UCR and the CR. Also as in
the case of the Hebb model (and Uttley’s
informon), activity on any input pathway
can cause changes in other pathways. This
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produces some higher order conditioning ef-
fects and permits the element to extract reg-
ularities whose constituents have not been
predetermined by a priori network structure.
Unlike the Hebb and informon models, how-
ever, it extracts spatio-temporal rather than
just spatial regularities.

Although we feel that our model includes
some of the aspects of classical conditioning
that have adaptive significance, the model
is not a completely valid model of classical
conditioning and obviously does not go be-
yond this restricted learning paradigm. It
does not, for example, include the effects of
experience on stimulus salience. In addition,
like the original Rescorla-Wagner model,
our model makes only ordinal predictions
about behavioral data. Recent extensions of
the Rescorla-Wagner model to deal with
these shortcomings (Frey & Sears, 1978)
can perhaps also be applied to our adaptive
element model. Our theory also does not
address stimulus representation problems.
We have assumed that input signals arrive
at an adaptive element on discrete pathways
of fixed meanings. In a more sophisticated
model, these meanings would be changed by
circuits “upstream,” as, for example, might
occur in configural learning in which a com-
pound stimulus is treated as a nonlinear
combination of its parts. OQur theory does not
indicate how the adaptive mechanisms we
have suggested can be extended to extract
arbitrary nonlinear regularities.

The model presented here also does not
address the issues arising from response-con-
tingent reinforcement paradigms. Although
the exact nature of the relationship between
classical and instrumental conditioning re-
mains elusive (e.g., Rescorla & Solomon,
1967), the attention given to temporal pro-
cessing in our model makes possible exten-
sions that incorporate response contingen-
cies. Klopf’s (in press, Note 1) theory, which
forms the basis of several aspects of our
model, incorporates response contingencies,
and Sutton (1978, Note 4) has extended this
theory to a single process view of expectation
in classical and instrumental conditioning
using an adaptive element closely related to
that presented here. However, a thorough
formal treatment of these issues is beyond
the scope of the present article.
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Also beyond this article’s scope is a dis-
cussion of the kinds of behavior that can be
expected from networks of adaptive elements
like those proposed here. Can such a network
perform sophisticated learning tasks? This
question is central from a theoretical per-
spective and notoriously difficult to answer
for any type of primitive component. We
merely suggest that the predictive capabili-
ties of the adaptive element presented here
may permit adaptive networks to exhibit
forms of behavior not yet obtained from net-
work models. Our reason for believing this

~is that predictive capabilities permit re-

sponse alternatives to be evaluated before
overt action is taken.

The model we have developed need not be
thought of as a neural model. It is supported
at a behavioral level and has potentially sig-
nificant theoretical implications. However,
the search for neural analogs of behavioral
conditioning continues to guide learning and
memory research in the neurosciences. From
our discussion of cellular mechanisms it is
clear that although there is no shortage of
machinery for implementing almost any
learning model one might construct, there
is evidence indicating that some of the es-
sential aspects of our model could be imple-
mented in a natural manner. The stimulus
trace required by the notion of eligibility
could involve either presynaptic or postsyn-
aptic biochemistry. Our definition of rein-
forcement as the difference between actual
and expected output levels could be realized
via fast excitatory and slow inhibitory ef-
fects.

At the very least, our discussion of cellular
mechanisms makes it clear that the concept
of a neuron as a biological logic gate that
still pervades much neural network theory
is much too simple. Neurons and their syn-
apses possess processing capabilities that can
utilize relatively long-term histories of pre-
and postsynaptic activity. In the terms of
system theory, they possess a rich internal
state space that can support behavior re-
quiring nontrivial forms of memory. Neural
network theorists have focused largely on
synaptic weights as a form of memory and
have postulated only relatively simple rules
for controlling these memory variables. Other
forms of memory have generally been as-
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sumed to be metabolic and genetic, and, to
a first approximation, not significantly im-
plicated in computational behavior. Notably
absent from the theoretical literature is a
consideration of potentially powerful forms
of synaptically local short-term memory and
their possible role in synaptic modulation.
The growing understanding of the role of
biochemical mechanisms in synaptic action
indicates that there is considerable internal
memory linking events that occur at inter-
vals of seconds, minutes, hours, and days.
Moreover, this processing interacts with
physiological events that occur in millisec-
onds. It seems certain that these mechanisms
are crucially involved in neural plasticity.
The model we have proposed takes a step
toward recognizing the theoretical impor-
tance of the first few links in this chain.
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Appendix A

A Formal Description of the Simulated Model

In the following, R denotes the real numbers,
R™ the non-negative reals, and [0, 1] denotes the
closed real interval.

Components

n modifiable pathways labeled 1, ..., n
1 fixed input pathway labeled 0

Descriptive Variables

Input variables:

Foreachi,0 < i < n, x,(t) € R denotes input

level on input pathway i.
Output variables:

y(t) € [0, 1] denotes the output level of the

adaptive element,
State variables:

y(t) € [0, 1] is called the element’s expec-
tation, or expected output level.

For each i, 0 < i < n, w(1) € R denotes the
transmission efficacy or connection weight
of input pathway /.

Foreachi,1 <i = n, x,(t) € R* denotes the
eligibility of input pathway i.

Equations of Interaction

wi(t + 1) = wi(t) + c[y(1) — p(O]x(1) (A1)
X+ 1) = ax(n) + xi(1) (A2)

Y0 = E w0
(bounded to remain in [0, 1]) (A3)
Ja+ D=6y + (1 -y (A4)
wo(t) = wo. (A5)

Parameters

In all simulation experiments n = 4, 8 = 0. The
other parameters change from experiment to ex-
periment (see below).

In all simulation experiments, rectangular pulse
CS;s and UCSs were represented as amplitude 1
rectangular pulses in x; and x,, respectively. A
low level of normally distributed pseudo-randomly
generated noise (M = .005, SD = .03) was then
added into the rectangular pulses. Pulse lengths
varied from experiment to experiment (see below).
The intertrial interval was usually 50 time steps.
CS durations were 5 time steps and UCS dura-
tions 10 time steps, except where otherwise noted.

Simulation Experiment Particulars, by Figure
Number in Which Results Appeared
Figure 12:
c=2a=9 w=.6

CS duration was 3 time steps. UCS duration
was 30 time steps.
Figure 14:

c= 5 a=.6,w=.6

CS, duration was 10 time steps in Trials 21~

35,
Figure 16:
¢ =.l; & = .6; wo = .6 alternating with .4
Figure 17:
c=.2;a=.6; wy=.6; wy(0) = .6
Figure 18:
c=.l;a=.6; wo=.6; w(0) = .6
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Appendix B

Analysis of Steady State Behavior of the
Rescorla-Wagner /Widrow-Hoff Predictor for a Simple Case

For simplicity we treat the continuous time case
in which a trial consists of a single impulsive CS
of amplitude « at time ¢ = 0 and a single impulsive
UCS of amplitude A at time ¢ = T. Letting the
time functions x and z respectively denote the CS
and UCS signals, then for ¢ > 0:

x(t) = abo(1) = [

afort=0

0 otherwise,
and
Aort=T
0 otherwise.

z(t) = Mo, (1) = {

Let the element’s output be the linear result of
one CS input pathway:

) = {aw(O) for1=10

0 otherwise.

For continuous time the Rescorla-Wagner/
Widrow-Hoff Predictor rule (Equation 12) be-
comes:

D e elz - 515

dt rTylx
where X and j are the eligibility generated by x
and the expectation generated by y, respectively.
We assume that X and ¥ are exponential traces
of their respective variables. That is, let

(BI)

x(t) = ae™™,
and
J(1) = aw(0)e™®,

where v and £ are positive decay rates. Then
Equation B1 becomes

dw(t)
dt

Here we investigate the conditions under which
a trial leaves the associative strength of the CS
unchanged, that is, we ask what initial weight
w(0) is such that w(z) = w(0) for some time ¢
occurring after the trial. But when is a trial over?
Weight changes can occur as long as ¥ and y are
not both equal to zero and thus can occur during

= c[r{t) — aw(0)e #]ae™.  (B2)

the ISI and after the UCS offset (r = T). Since
exponential traces never return to zero, we con-
sider the case of an infinite intertrial interval and
ask what w(0) should be so that

lim w(t) = w(0).
Integrating Equation B2 we obtain:
(lim w(z)) — w(0) = f awlr) dt
I—o 0 dt

= cfw Aor(t) — aw(0)e ¥]ae ™ dt

= chae T — cozzw(0)<f°0 e“"*"‘dt)
0

ca*w(0)
= chae T - ———.
Y+é
Then w(0) must be such that
2
e = 20

y+&’
or,

WO =2 e, B

A trial of the form we have assumed is such
that if the weight is the value given by Equation
B3 at its commencement, then the weight will
return (asymptotically) to this value after the
trial. The weight can change during the trial, how-
ever, When viewed at the trial level, Equation B3
gives the asymptotic associative strength of the
CS. It depends on the CS strength «, the UCS
strength A, the ISI length T, and the character-
istics v and £ of the traces. For more general types
of trials, the asymptotic associative strength will
also depend on the durations and shapes of the
CS and UCS.
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