Authors | Physics Informed Deep Learning https://maziarraissi.github.io/PINNs/

1of12

Physics Informed Deep Learning

Data-driven solutions and discovery of Nonlinear Partial
Differential Equations

View on GitHub

Authors

Maziar Raissi, Paris Perdikaris, and George Em Karniadakis

Abstract

We introduce physics informed neural networks - neural networks that are trained to solve
supervised learning tasks while respecting any given law of physics described by general
nonlinear partial differential equations. We present our developments in the context of solving
two main classes of problems: data-driven solution and data-driven discovery of partial
differential equations. Depending on the nature and arrangement of the available data, we
devise two distinct classes of algorithms, namely continuous time and discrete time models. The
resulting neural networks form a new class of data-efficient universal function approximators
that naturally encode any underlying physical laws as prior information. In the first part, we
demonstrate how these networks can be used to infer solutions to partial differential equations,
and obtain physics-informed surrogate models that are fully differentiable with respect to all
input coordinates and free parameters. In the second part, we focus on the problem of data-
driven discovery of partial differential equations.

Data-driven Solutions of Nonlinear Partial Differential Equations

In this first part of our two-part treatise, we focus on computing data-driven solutions to partial
differential equations of the general form

u +Nul =0, z€Q, te|0,T],

where u(t, z) denotes the latent (hidden) solution, N'[+] is a nonlinear differential operator, and
Q is a subset of R?. In what follows, we put forth two distinct classes of algorithms, namely
continuous and discrete time models, and highlight their properties and performance through
the lens of different benchmark problems. All code and data-sets are available here.

11/1/2024, 6:02 AM

Authors | Physics Informed Deep Learning https://maziarraissi.github.io/PINNs/

Continuous Time Models
We define f(t, x) to be given by
f=w + Nlul,

and proceed by approximating u(t,) by a deep neural network. This assumption results in a
physics informed neural network f(¢,). This network can be derived by the calculus on
computational graphs: Backpropagation.

Example (Burgers’ Equation)

As an example, let us consider the Burgers’ equation. In one space dimension, the Burger’s
equation along with Dirichlet boundary conditions reads as

ut + uuy — (0.01/m)ug, =0, x€[-1,1], te€]0,1],
u(0,z) = — sin(7x),
u(t,—1) = u(t,1) = 0.

Let us define f(¢, z) to be given by
fi=u + uu, — (0.01/m)uyy,

and proceed by approximating u(t,) by a deep neural network. To highlight the simplicity in
implementing this idea let us include a Python code snippet using Tensorflow. To this end,
u(t,) can be simply defined as

def u(t, x):
u = neural_net(tf.concat([t,x],1), weights, biases)
return u

Correspondingly, the physics informed neural network f(¢, z) takes the form

def f(t, x):

u = u(t, x)

u t = tf.gradients(u, t)[9]
tf.gradients(u, x)[0]
u_xx = tf.gradients(u_x, x)[9]
f = ut+ u*u x - (0.01/tf.pi)*u_xx
return f

u_x

The shared parameters between the neural networks u(t,) and f(¢, x) can be learned by

20f12 11/1/2024, 6:02 AM

Authors | Physics Informed Deep Learning

3of12

minimizing the mean squared error loss

MSE = MSE, + MSE;,

where
Ny
MSE, = —— Y |u(t}, zi) — u'[%,
U oi=1
and
1 QL
MSE; = ; |f(t, @) .

Here, {t}, z,, ul}f\i‘l denote the initial and boundary training data on u(t,) and {¢' ,m;}f\rzfl
specify the collocations points for f(t, x). The loss M.SE,, corresponds to the initial and
boundary data while M SE; enforces the structure imposed by the Burgers’ equation at a finite
set of collocation points.

The following figure summarizes our results for the data-driven solution of the Burgers'
equation.

Burgers’ equation: Top: Predicted solution along with the initial and boundary training
data. In addition we are using 10,000 collocation points generated using a Latin
Hypercube Sampling strategy. Bottom: Comparison of the predicted and exact
solutions corresponding to the three temporal snapshots depicted by the white
vertical lines in the top panel. Model training took approximately 60 seconds on a
single NVIDIA Titan X GPU card.

Example (Shrédinger Equation)

This example aims to highlight the ability of our method to handle periodic boundary conditions,
complex-valued solutions, as well as different types of nonlinearities in the governing partial
differential equations. The nonlinear Schrodinger equation along with periodic boundary
conditions is given by

11/1/2024, 6:02 AM

https://maziarraissi.github.io/PINNs/

Authors | Physics Informed Deep Learning https://maziarraissi.github.io/PINNs/

4 of 12

ihy + 0.5hge + |R|°h =0, € [-5,5], te[0,7/2],
h(0,z) = 2 sech(z),

h(t,—5) = h(t,5),

ha(t, —5) = he(¢,5),

where h(t, x) is the complex-valued solution. Let us define f(t,) to be given by
f :=ihy + 0.5h, + |h|*A,

and proceed by placing a complex-valued neural network prior on h(t,). In fact, if u denotes
the real part of h and v is the imaginary part, we are placing a multi-out neural network prior on
h(t,z) = [u(t,z) wv(¢,x)]. This will result in the complex-valued (multi-output) physic
informed neural network f(¢,). The shared parameters of the neural networks h(t, z) and
f(t,) can be learned by minimizing the mean squared error loss

MSE = MSEy + MSE, + MSEy,

where
1 . .
MSE, = N ; h(0,z}) — A%,
1 o o o o
MSE, = Zl <|hl(t§), —5) — hi(ti,5)[* + |RL(t], —5) — Ri(t, 5)|2) ,
and

N

1 N

MSE; = N,) f(E k)
=1

N,

., denotes the initial data, {té f\r:bl corresponds to the collocation points on the

Here, {z{, b}
boundary, and {t’ ,m?}iv:fl represents the collocation points on f(t,). Consequently, M SEj

corresponds to the loss on the initial data, M S E} enforces the periodic boundary conditions,
and M SE/ penalizes the Schrodinger equation not being satisfied on the collocation points.

The following figure summarizes the results of our experiment.

Shrédinger equation: Top: Predicted solution along with the initial and boundary
training data. In addition we are using 20,000 collocation points generated using a

11/1/2024, 6:02 AM

Authors | Physics Informed Deep Learning https://maziarraissi.github.io/PINNs/

50f12

Latin Hypercube Sampling strategy. Bottom: Comparison of the predicted and exact
solutions corresponding to the three temporal snapshots depicted by the dashed
vertical lines in the top panel.

One potential limitation of the continuous time neural network models considered so far, stems
from the need to use a large number of collocation points Ny in order to enforce physics
informed constraints in the entire spatio-temporal domain. Although this poses no significant
issues for problems in one or two spatial dimensions, it may introduce a severe bottleneck in
higher dimensional problems, as the total number of collocation points needed to globally
enforce a physics informed constrain (i.e., in our case a partial differential equation) will increase
exponentially. In the next section, we put forth a different approach that circumvents the need
for collocation points by introducing a more structured neural network representation
leveraging the classical Runge-Kutta time-stepping schemes.

Discrete Time Models

Let us employ the general form of Runge-Kutta methods with g stages and obtain
utte =t — At S appNut), i =1,
u = — At biN[ut].
Here, u"*% (z) = u(t" 4 ¢;jAt, z) for j = 1,. .., q. This general form encapsulates both

implicit and explicit time-stepping schemes, depending on the choice of the parameters
{aij, bj, cj}. The above equations can be equivalently expressed as

n __ n y —
=u', 1=1,...,4q,

b =g
where

ul = u""% + At Z?Zl a;iNu"t4], i=1,...,4q,
po= Ut ALY BN U]

Ugy1

We proceed by placing a multi-output neural network prior on
[u™ei(z),. .., u" % (z),u" " ()]

This prior assumption along with the above equations result in a physics informed neural
network that takes @ as an input and outputs

[u?(a:), e ,ug(a:),ugﬂ(a:)} .

11/1/2024, 6:02 AM

Authors | Physics Informed Deep Learning https://maziarraissi.github.io/PINNs/

Example (Allen-Cahn Equation)

This example aims to highlight the ability of the proposed discrete time models to handle
different types of nonlinearity in the governing partial differential equation. To this end, let us
consider the Allen-Cahn equation along with periodic boundary conditions

ug — 0.0001uy, + 5u® —bu =0, ze[-1,1], te0,1],
u(0,z) = x? cos(mz),
u(t, —1) = u(t, 1),
uz (t, —1) = u,(¢,1).
The Allen-Cahn equation is a well-known equation from the area of reaction-diffusion systems. It

describes the process of phase separation in multi-component alloy systems, including order-
disorder transitions. For the Allen-Cahn equation, the nonlinear operator is given by

N U] = —0.0001ups @ + 5(u™)* — 5umter,

and the shared parameters of the neural networks can be learned by minimizing the sum of
squared errors

SSE = SSE,, + SSE,

where
g+l N, ,
S5, =33 g a™) — P,
j=1 i=
and
SSE, — ('1—1 |un+ci(_1) _ un—FCi(l)‘z 4+ |un+1(_1) - un+1(1)|2

00 T (1) =) g (1) — e (D)
Here, {z™", u”’i}fvz’ll corresponds to the data at time ¢".

The following figure summarizes our predictions after the network has been trained using the
above loss function.

Allen-Cahn equation: Top: Solution along with the location of the initial training
snapshot at t=0.1 and the final prediction snapshot at t=0.9. Bottom: Initial training
data and final prediction at the snapshots depicted by the white vertical lines in the

6of 12 11/1/2024, 6:02 AM

Authors | Physics Informed Deep Learning https://maziarraissi.github.io/PINNs/

top panel.

Data-driven Discovery of Nonlinear Partial Differential Equations

In this second part of our study, we shift our attention to the problem of data-driven discovery of
partial differential equations. To this end, let us consider parametrized and nonlinear partial
differential equations of the general form

u + Nu; A =0, z€Q, te[0,T],

where u(t,) denotes the latent (hidden) solution, A[+; A] is a nonlinear operator
parametrized by A, and € is a subset of RP . Now, the problem of data-driven discovery of
partial differential equations poses the following question: given a small set of scattered and
potentially noisy observations of the hidden state u(t,) of a system, what are the parameters
A that best describe the observed data?

In what follows, we will provide an overview of our two main approaches to tackle this problem,
namely continuous time and discrete time models, as well as a series of results and systematic
studies for a diverse collection of benchmarks. In the first approach, we will assume availability
of scattered and potential noisy measurements across the entire spatio-temporal domain. In the
latter, we will try to infer the unknown parameters A from only two data snapshots taken at
distinct time instants. All data and codes used in this manuscript are publicly available on
GitHub.

Continuous Time Models
We define f(t, x) to be given by
f = Uy +N[u7)‘]7

and proceed by approximating u(t, z) by a deep neural network. This assumption results in a
physics informed neural network f(¢, «). This network can be derived by the calculus on
computational graphs: Backpropagation. It is worth highlighting that the parameters of the
differential operator A turn into parameters of the physics informed neural network f(t,).

Example (Navier-Stokes Equation)

Our next example involves a realistic scenario of incompressible fluid flow as described by the
ubiquitous Navier-Stokes equations. Navier-Stokes equations describe the physics of many
phenomena of scientific and engineering interest. They may be used to model the weather,
ocean currents, water flow in a pipe and air flow around a wing. The Navier-Stokes equations in

7 of 12 11/1/2024, 6:02 AM

Authors | Physics Informed Deep Learning https://maziarraissi.github.io/PINNs/

their full and simplified forms help with the design of aircraft and cars, the study of blood flow,
the design of power stations, the analysis of the dispersion of pollutants, and many other
applications. Let us consider the Navier-Stokes equations in two dimensions (2D) given explicitly
by

up + A1 (uty + vuy) = =Py + Ao (Usz + Uyy),

v + A (wvy + vvy) = —py + A2 (Vaz + vyy),
where u(t, x,y) denotes the z-component of the velocity field, v(¢, x, y) the y-component, and

p(t, z,y) the pressure. Here, A = (A1, A2) are the unknown parameters. Solutions to the
Navier-Stokes equations are searched in the set of divergence-free functions; i.e.,

Uz + vy = 0.

This extra equation is the continuity equation for incompressible fluids that describes the
conservation of mass of the fluid. We make the assumption that

uz?/’:w V= —Yy,

for some latent function (¢, z, y). Under this assumption, the continuity equation will be
automatically satisfied. Given noisy measurements
{ti7mi,yi’ui7vi fi1

of the velocity field, we are interested in learning the parameters A as well as the pressure
p(t, z,y). We define f(¢,z,y) and g(t, x, y) to be given by

fi=w+ N (uum + vuy) + Dz — >\2(umx =+ uyy):

g = v + A1 (uvg + vvy) + Py — A2 (Vaz + Vyy),
and proceed by jointly approximating [¢(t, z,y) p(t,z,y)] using a single neural network
with two outputs. This prior assumption results into a physics informed neural network
[f(t,z,y) g(t, z,y)]. The parameters X of the Navier-Stokes operator as well as the

parameters of the neural networks [(¢, z,y) p(t,z,y)]and [f(t,z,y) g(t, z,y)] canbe
trained by minimizing the mean squared error loss

MSE = % Zf\il (\u(ti,xi,yi) — u"|2 + |v(t, zt, yt) — vi|2>
v ol o
+ LN (156 2y + Lo, 2y)1P)

A summary of our results for this example is presented in the following figures.

8of 12 11/1/2024, 6:02 AM

Authors | Physics Informed Deep Learning https://maziarraissi.github.io/PINNs/

Navier-Stokes equation: Top: Incompressible flow and dynamic vortex shedding past a
circular cylinder at Re=100. The spatio-temporal training data correspond to the
depicted rectangular region in the cylinder wake. Bottom: Locations of training data-
points for the the stream-wise and transverse velocity components.

Navier-Stokes equation: Top: Predicted versus exact instantaneous pressure field at a
representative time instant. By definition, the pressure can be recovered up to a
constant, hence justifying the different magnitude between the two plots. This
remarkable qualitative agreement highlights the ability of physics-informed neural
networks to identify the entire pressure field, despite the fact that no data on the
pressure are used during model training. Bottom: Correct partial differential equation
along with the identified one.

Our approach so far assumes availability of scattered data throughout the entire spatio-
temporal domain. However, in many cases of practical interest, one may only be able to observe
the system at distinct time instants. In the next section, we introduce a different approach that
tackles the data-driven discovery problem using only two data snapshots. We will see how, by
leveraging the classical Runge-Kutta time-stepping schemes, one can construct discrete time
physics informed neural networks that can retain high predictive accuracy even when the
temporal gap between the data snapshots is very large.

Discrete Time Models

We begin by employing the general form of Runge-Kutta methods with g stages and obtain
u't =y — At Z?Zl ap N], i=1,...,4q,
w =t — ALY BN

Here, u"*% (z) = u(t" 4 ¢jAt, z) for j = 1,. .., q. This general form encapsulates both

implicit and explicit time-stepping schemes, depending on the choice of the parameters
{aij, b, cj}. The above equations can be equivalently expressed as

n __ n A
u" =u, 1=1,...,q,

n+1 n+1 . 1
y oo

"ttt =, 1= .y q.

where
ul = u"te 4 At 2(31'21 a N7, i=1,...,4q,
u = w4 At doii(aiy = b)Nu s Al i=1,...,4q.

(3

9o0f12 11/1/2024, 6:02 AM

Authors | Physics Informed Deep Learning https://maziarraissi.github.io/PINNs/

We proceed by placing a multi-output neural network prior on
[u"r e (z), ..., u" T (2)]

This prior assumption result in two physics informed neural networks

[ut(2),. .. ug(z),up,, ()],
and
[uf ™ (2),. .., ug™ (2), u;‘ill(x)} :

Given noisy measurements at two distinct temporal snapshots {x", u"} and {x""!, u"} of
the system at times ¢t and gt respectively, the shared parameters of the neural networks
along with the parameters A of the differential operator can be trained by minimizing the sum of
squared errors

SSE = SSE, + SSE, 1,

where
q N, ' .
SSEn = Z ‘u?(mn,z) _ un,z 2’
j=1 i=1
and
q Nn+1 ' '
SSEnir = > [uf (@) —um
j=1 i=1

Here, x™ — {wm}jinl u" — {un,i}jv:nl,xn+1 _ {mn+1,i}£\inl+1, and u™+! — {un+1,i}z{\f:n1+1'

Example (Korteweg-de Vries Equation)

Our final example aims to highlight the ability of the proposed framework to handle governing
partial differential equations involving higher order derivatives. Here, we consider a
mathematical model of waves on shallow water surfaces; the Korteweg-de Vries (KdV) equation.
The KdV equation reads as

U +)‘luux + /\ZUmmm - 07

with (A1, A2) being the unknown parameters. For the KdV equation, the nonlinear operator is
given by

10 of 12 11/1/2024, 6:02 AM

Authors | Physics Informed Deep Learning https://maziarraissi.github.io/PINNs/

) . n—+c; n-+c;
Nu"t 9] = Mu %uy 7 — AoUges’

and the shared parameters of the neural networks along with the parameters A = (A1, A2) of
the KdV equation can be learned by minimizing the sum of squared errors given above.

The results of this experiment are summarized in the following figure.

KdV equation: Top: Solution along with the temporal locations of the two training
snapshots. Middle: Training data and exact solution corresponding to the two
temporal snapshots depicted by the dashed vertical lines in the top panel. Bottom:
Correct partial differential equation along with the identified one.

Conclusion

Although a series of promising results was presented, the reader may perhaps agree that this
two-part treatise creates more questions than it answers. In a broader context, and along the
way of seeking further understanding of such tools, we believe that this work advocates a fruitful
synergy between machine learning and classical computational physics that has the potential to
enrich both fields and lead to high-impact developments.

Acknowledgements

This work received support by the DARPA EQUIPS grant N66001-15-2-4055 and the AFOSR grant
FA9550-17-1-0013. All data and codes are publicly available on GitHub.

Citation

@article{raissi2@19physics,
title={Physics-informed neural networks: A deep learning framework for solving forward
author={Raissi, Maziar and Perdikaris, Paris and Karniadakis, George E},
journal={Journal of Computational Physics},
volume={378},
pages={686--707},
year={2019},
publisher={Elsevier}

@article{raissi2@17physicsI,

11 of 12 11/1/2024, 6:02 AM

Authors | Physics Informed Deep Learning https://maziarraissi.github.io/PINNs/

title={Physics Informed Deep Learning (Part I): Data-driven Solutions of Nonlinear Part
author={Raissi, Maziar and Perdikaris, Paris and Karniadakis, George Em},
journal={arXiv preprint arXiv:1711.10561},

year={2017}

@article{raissi2@17physicsII,
title={Physics Informed Deep Learning (Part II): Data-driven Discovery of Nonlinear Par
author={Raissi, Maziar and Perdikaris, Paris and Karniadakis, George Em},
journal={arXiv preprint arXiv:1711.10566},
year={2017}

PINNs is maintained by maziarraissi.
This page was generated by GitHub Pages.

12 of 12 11/1/2024, 6:02 AM

