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Physics-Informed Neural Networks and Extensions

Maziar Raissi1, Paris Perdikaris2, Nazanin Ahmadi3, and George Em Karniadakis4

Abstract

In this paper, we review the new method Physics-Informed Neural Networks (PINNs) that has become
the main pillar in scientific machine learning, we present recent practical extensions, and provide a specific
example in data-driven discovery of governing differential equations.
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1 Overview

1.1 Physics-Informed Neural Networks - PINNs

In the last 50 years there has been a tremendous success in solving numerically PDEs using finite
elements, spectral, and even meshless methods. Yet, in many real cases, we still cannot incorporate
seamlessly (multi-fidelity) data into existing algorithms, and for industrial-complexity applications
the mesh generation is time consuming and still an art. Moreover, solving inverse problems, e.g.,
for material properties, is often prohibitively expensive and requires different formulations and new
computer codes. In recent years, uncertainty quantification (UQ) of simulations has led to highly
parametrized formulations that may include 100s of uncertain parameters for complex problems ren-
dering such computations infeasible in practice. Finally, existing computer programs for engineering
applications have more than 100,000 lines of code, making it almost impossible to maintain and up-
date them from one generation to the next. To this end, physics-informed learning, i.e., integrating
seamlessly data and mathematical models, and implementing them using physics-informed neural
networks (PINNs) [Raissi et al. (2017a)], [Raissi et al. (2017b)], [Raissi et al. (2019)] is a paradigm
shift in defining the main thrust in scientific machine learning (SciML).

The specific data-driven approach to modeling physical systems depends crucially on the
amount of data available as well as on the complexity of the system itself, as illustrated in Fig. 1.
The classical paradigm is shown on the top of Fig. 1, where we assume that the only data available
are the boundary conditions (BC) and initial conditions (IC) while the specific governing partial
differential equations (PDEs) and related parameters are precisely known. On the other extreme
(lower plot), we may have a lot of data, e.g. in the form of time series, but we may not know the
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2 Raissi, Perdikaris, Ahmadi and Karniadakis

governing physical law, e.g. the underlying PDE, at the continuum level. For most real applica-
tions, the most interesting category is sketched in the middle plot, where we assume that we know
the physics partially, e.g., we know the conservation law but not the constitutive relationship, but
we have several scattered measurements (of a primary or auxiliary state) that we can use to infer
parameters and even missing functional terms in the PDE while simultaneously recover the solution.

DATA

PHYSICS

Small Data

Lots of Physics
Some Data

Some Physics Big Data

No Physics

DATA

DATA

PHYSICS

PHYSICS

Figure 1: Schematic to illustrate three
possible categories of physical problems
and associated available data: Physics-
informed neural networks can integrate
seamlessly data and parameterized PDEs,
including models with missing physics, in a
unified way expressed compactly using au-
tomatic differentiation and PDE-induced
neural networks.

This is the mixed case, which may lead to significantly
more complex scenarios, where the solution is a stochas-
tic process due to stochastic excitation or an uncer-
tain material property. Hence, we can employ stochas-
tic PDEs (SPDEs) to represent these stochastic solutions
and uncertainties. The concept of PINNs was introduced
in [Raissi et al. (2017a)]
[Raissi et al. (2019)], see Fig. 2, and is being adopted
across many scientific domains.

In particular, prior physics-based information (even
imperfect) – in the form of conservation laws, dynamic
and kinematic constraints – regularizes a deep neural net-
work (DNN) so it can learn from “small” and noisy data.
In the early works, we applied PINNs to a number of
nonlinear problems in physics and mechanics, and have
demonstrated that PINNs converge to accurate solutions of
PDEs by leveraging or discovering the “hidden physics” of
the data without using any regular grids or discretization
in space-time either for forward or for inverse problems.
(The use of automatic differentiation employed in the DNN
backpropagation is also used to implement the differential
operators in the PDEs.) Moreover, PINNs seem to tackle
ill-posed (in the classical sense) forward and inverse prob-
lems, where no IC/BC are specified or some of the parameters in the PDEs are unknown – scenarios
where classical numerical methods may fail.

1.2 Extensions of PINNs

Adaptive Weights: The original PINNs used fixed weights in front of the various terms in the loss
functions, requiring manual tuning. In [Wang et al. (2022)], the authors used the Neural Tangent
Kernel (NTK) for PINNs, which is a kernel that captures the behavior of neural networks in the
infinite width limit during training via gradient descent. They proposed a novel gradient descent
algorithm that utilizes the eigenvalues of the NTK to adaptively calibrate the loss weights and
accelerate reduction of the total training error. An even more effective method was proposed in
[McClenny and Braga-Neto. (2020)] for multiscale systems and “stiff” PDEs. The loss weights are
fully trainable and applied to each training point individually, so the neural network learns which
regions of the solution are stiff and focuses on them. The basic idea is to make the weights increase as
the corresponding losses increase, which is accomplished by training the network to simultaneously
minimize the losses and maximize the weights (a min-max problem). A variation of this idea that
avoids computing the gradients but instead uses the residuals was proposed in [Anag. et al. (2023)].

Domain Decomposition: Another approach to tackle multiscale problems with PINNs
is to combine them with domain decomposition methods as was done in [Jagtap et al. (2020),
Jagtap et al. (2021)].In the first paper, domain decomposition was introduced for conservation laws,
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where a PINN is used for each
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Figure 2: Basic structure of PINN for conservation
laws. The left (physics uninformed) network rep-
resents the PDE solution “U(x,t)” while the right
(physics informed) network describes the PDE residual
“F(x,t)”. Currently, optimization is done by a human-
in-the-loop empirically based on trial and error. Note
that the “U” architecture is a fully-connected DNN
here (or CNN, RNN, hybrid), while the “F” architec-
ture is dictated by the PDE and is, in general, not pos-
sible to visualize explicitly. Its depth is proportional
to the highest derivative order in the PDE times the
depth of the uninformed “U” DNN.

subdomain and flux continuity at the inter-
faces together with state continuity (CPINN)
are imposed in the loss function. In the sec-
ond paper, the same idea was extended to ar-
bitrary PDEs but the continuity of the residu-
als was enforced along the interfaces (XPINN).
Both methods lead to effective scaling up of
PINNs to large computational domains as well
as parallel speed-up as each subdomain can be
mapped to a separate GPU. However, XPINN
in particular can be used for decomposing
the temporal domain as well, hence leading
to parallel-in-time computations of arbitrary
PDEs. Another development inspired by do-
main decomposition and spectral elements in
particular is the work on variational PINNs in
[Kharazmi et al. (2021)]. A general framework
for hp-VPINNs was formulated based on the
nonlinear approximation of shallow and deep
neural networks and hp-refinement via domain
decomposition and projection onto the space of
high-order polynomials. Specifically, the trial
space is the space of neural network, which is
defined globally over the entire computational domain, while the test space contains piecewise Leg-
endre polynomials.

Long-Time Integration: Another problematic issue in PINNs is the long-time integration of
dynamical systems whose solution exhibits chaotic behavior. In [Wang et al. (2022)], this shortcom-
ing was attributed to the inability of existing PINNs formulations to respect the spatio-temporal
causal structure that is inherent to the evolution of physical systems. They addressed it by re-
formulating the loss functions so that it can explicitly account for physical causality during model
training. This approach still requires a very small temporal domain to be accurate, and various
other attempts have resorted to sequential learning. A more general and unified approach was
presented in [Penwarden et al. (2023)], where the authors proposed a new stacked-decomposition
method that bridges the gap between time-marching PINNs and XPINNs. They also introduced
significant speed-ups by using transfer learning to initialize subnetworks in the domain and loss
tolerance-based propagation for the subdomains. Moreover, they formulated a new time-sweeping
collocation point algorithm inspired by the aforementioned PINNs causality. These methods form a
unified framework, which overcomes training challenges in PINNs and XPINNs for time-dependent
PDEs by respecting the causality in multiple forms and improving scalability by limiting the com-
putation required per optimization iteration.

Other Types of PDEs: PINNs have also been applied to other types of PDES, e.g., in
stochastic PDEs for uncertainty quantification, and in fractional PDEs for modeling anomalous
transport. Specifically, in [Yang et al. (2020)], a new class of physics-informed generative adversarial
networks (PI-GANs) was proposed to solve forward, inverse, and mixed stochastic problems in a
unified manner based on a limited number of scattered measurements. Unlike standard GANs relying
solely on data for training, they encoded into the architecture of Wassertein GANs the governing
physical laws in the form of stochastic differential equations (SDEs) using automatic differentiation.
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The authors demonstrated the effectiveness of PI-GANs in solving SDEs for up to 120 dimensions,
and suggested that PI-GANs could tackle very high dimensional problems given more sensor data
with low-polynomial growth in computational cost. To model anomalous transport in heterogeneous
media, the authors of [Pang et al. (2019)] extended PINNs to fractional PINNs (fPINNs) to solve
space-time fractional advection-diffusion equations, and studied their convergence. A novel element
of the fPINNs is the hybrid approach introduced for constructing the residual in the loss function
using both automatic differentiation for the integer-order operators and numerical discretization for
the fractional operators. This approach bypasses the difficulties arising from the fact that automatic
differentiation is not applicable to fractional operators because the standard chain rule in integer
calculus is not valid in fractional calculus. Several examples were presented to identify the fractional
orders, diffusion coefficients, and transport velocities, demonstrating accurate results even in the
presence of significant noise.

Theory: Finally, we report on some early works on the theoretical foundations of PINNs. In
[Shin et al. (2019)], the authors demonstrated that, as the number of collocation points increases,
the sequence of minimizers for PINNs – each corresponding to a sequence of neural networks –
converges to the solution of the PDE for two classes of PDEs, linear second-order elliptic and
parabolic. By adapting the Schauder approach and the maximum principle, they showed that the
sequence of minimizers strongly converges to the PDE solution in C0. Furthermore, they showed
that if each minimizer satisfies the initial/boundary conditions, the convergence mode becomes H1.
In [Mishra and Molinaro (2019)], the authors provided upper bounds on the generalization error of
PINNs approximating solutions of the forward problem for PDEs. They introduced an abstract
formalism, and leveraged the stability properties of the underlying PDE to derive an estimate for
the generalization error in terms of the training error and the number of training samples.

2 Data-Driven Discovery of Dynamical Systems

Next, we demonstrate a PINN-inspired approach for identifying nonlinear dynamical systems from
data. Specifically, we blend classical tools from numerical analysis, namely the multi-step time-
stepping schemes, with deep neural networks, to distill the mechanisms that govern the evolu-
tion of a given dataset. We test the effectiveness of our approach for a biomedical application
example but more cases can be found in [Raissi et al. (2018)]. In particular, we study the gly-
colytic oscillator model as an example of complicated nonlinear dynamics typical of biological sys-
tems, and subsequently use symbolic regression to obtain the equations explicitly in analytical
form. Let us consider nonlinear dynamical systems of the form: d

dtx(t) = f (x(t)), where the
vector x(t) ∈ RD denotes the state of the system at time t and the function f describes the
evolution of the system. Given noisy measurements of the state x(t) of the system at several
time instances t1, t2, . . . , tN , our goal is to determine the function f and consequently discover
the underlying dynamical system from data. We proceed by applying the general form of a lin-
ear multistep method with M steps to equation and obtain

∑M
m=0 [αmxn−m +∆tβmf(xn−m)] =

0, n = M, . . . , N. Here, xn−m denotes the state of the system x(tn−m) at time tn−m. Dif-
ferent choices for the parameters αm and βm result in specific schemes. We proceed by plac-
ing a neural network prior on the function f . The parameters of this neural network can be
learned by minimizing the mean squared error loss function MSE := 1

N−M+1

∑N
n=M |yn|2, where

yn :=
∑M

m=0 [αmxn−m +∆tβmf(xn−m)] , n = M, . . . , N, is obtained from the multistep scheme.
As an example of complicated nonlinear dynamics typical of biological systems, we simulate the
glycolytic oscillator model presented in [Daniels and Ilya. (2015)]. The model consists of ordinary
differential equations for the concentrations of 7 biochemical species, see [Raissi et al. (2018)]. The
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parameters of the model are chosen according to table 1 of [Daniels and Ilya. (2015)].

dS1

dt
= J0 −

k1S1S6

1 + (S6/K1)q
,

dS2

dt
= 2

k1S1S6

1 + (S6/K1)q
− k2S2(N − S5)− k6S2S5,

dS3

dt
= k2S2(N − S5)− k3S3(N − S6),

dS4

dt
= k3S3(A− S6)− k4S4S5 − κ(S4 − S7), (2.1)

dS5

dt
= k2S2(N − S5)− k4S4S5 − k6S2S5,

dS6

dt
= −2

k1S1S6

1 + (S6/K1)q
+ 2k3S3(A− S6)− k5S6,

dS7

dt
= ψκ(S4 − S7)− kS7.

Data from the simulation are collected from t = 0 to t = 10 with a time-step size of ∆t = 0.01.
We employ a DNN with one hidden layer and 256 neurons to represent the nonlinear dynamics. As
for the multi-step scheme, we use Adams-Moulton with M = 1 steps. Upon training the DNN, we
solve the identified system using the same initial condition as the ones used for the exact system. As
shown in [Raissi et al. (2018)], the learned system correctly captures the form of the dynamics. Here,
we use symbolic regression, a method that merges genetic programming with machine learning, to
identify mathematical expressions that closely align with our dataset. Initially, this method involves
creating a varied pool of potential equations, each expressed mathematically using basic operations
(e.g., addition, subtraction, multiplication, and division) and various functions (like addition, sub-
traction, multiplication, and division). The adequacy of each equation is assessed against the data
using a specific fitness function, generally based on the mean squared error (MSE). Through the use
of genetic algorithms, the most effective equations are carried forward, undergoing genetic processes
such as crossover (mixing elements of two equations) and mutation (altering parts of an equation)
to generate new candidates. This cycle of generation and refinement proceeds until certain criteria
are met, like reaching a pre-defined number of generations or achieving a particular level of fitness.
The results, including comparisons of these equations with the exact right-hand side equations of the
ODEs as seen in Eq. 2.1, are displayed in Table 1. The notably low relative errors indicate that the
system learned through Symbolic Regression successfully mirrors the system’s inherent dynamics.
We opted for PySR package proposed by [Cranmer (2023)] over gplearn as PySR has proven to be
a more robust and efficient framework, as discussed in [Ahmadi Daryakenari et al. (2023)].

3 Outlook

PINNs have been used so far all across the scientific and engineering fields, from geophysics and
astrophysics to engineering design, digital twins, computational mechanics, biomedical engineering
and even in quantitative pharmacology as shown in the example above. Compared to finite elements
that it took several decades to be adopted as a mainstream computational tool, PINNs have already
been adopted by the industry as they remove the “tyranny” of mesh generation, they blend seamlessly
data and physics, and can even discover new governing equations from data as in the aforementioned
example. However, there are still many open issues to be resolved, including the low-accuracy
compared to high-order numerical methods, the computational cost, which is excessive especially
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Eq. PySR True Expression RE

1st ODE 2.6− 100S1S6

38.3S3
6−33.7S2

6+10.5S6
2.5− 100S1S6

1+( S6
0.52 )

4 8.04e− 02

7th ODE 1.3S4 − 3.1S7 1.3S4 − 3.1S7 0.00
Part of 5th ODE 5.99S2 − 18.0S2S5 6.0S2 − 18.0S2S5 3.38e− 03

Table 1: Glycolytic oscillator model: Results of symbolic regression for symbolic expression discovery using
the PySR package. ‘RE’ represents the Relative Error computed between the exact function and the function
inferred by PySR.

for forward problems, and scalability to high dimensions. All these problems are currently being
investigated by many research groups around the world and there has been great progress on all
fronts already, e.g., using tensor type DNNs accelerates PINNs by two orders of magnitude.
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