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Abstract

It is shown — in Ashtekar’s canonical framework of GeneralRelativity — that spherically
symmetric(Schwarzschild)gravity in four-dimensionalspace-timeconstitutesafinite-dimensional
completelyintegrable system. Canonically conjugateobservablesfor asymptotically flat space-
times are massesas actionvariablesand — surprisingly — time variablesasanglevariables,each
of which is associatedwith an asymptotic“end” of the Cauchysurfaces.Theemergenceof the
time observableis a consequenceof the Hamiltonian formulation andits subtletiesconcerning
the slicing of spaceand time andis not in contradictionto Birkhoff’s theorem.The resultsareof
interestasto the conceptof time in GeneralRelativity.They canbe formulatedwithin the ADM
formalism, too. Quantizationof the systemandthe associatedSchrodingerequationdependon
the allowed spectrumof the masses.

1. Introduction

Recentlywe haveshown [1] (quotedas Ref. I in the following) thatAshtekar’scon-
straints in his Haniiltonian formulation of generalrelativity can be solvedcompletely—

classically andquantummechanicallyas well — for sphericallysymmetricfield config-
urations.As the two basic canonicallyconjugateobservables— in thesenseof Dirac —
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we identified the masssquaredP = 4m2 anda quantitycalled Q which in geometrical
metric termstakesthe form (moduloconstraints,seebelow)

Q=~fdx(1_2m/R)1~(dR/dx)2_qxx(1_2m/R), (1.1)

whereR = and qxx are definedby the line element

ds2=—(N(x,t)dt)2 +q
55(x,t)(dx+ Nx(x,t) dt)

2 +q
09(t,x)(d0

2+sin2Odq52)

(1.2)

The (local) variablex is assumedto coincideasymptotically (x —* oo) with theusual
Euclideanradial variable r (our notationin the presentpaperis generally the sameas
in Ref. I).

For the Schwarzschildsolution

q
00=x

2, qxx= (1 —2m/x)~ (1.3)

we haveQ = 0. RememberingBirkhoff’s theoremon the uniquenessof Schwarzschild’s
solution in the context of spherical symmetry [2], one wonderswhether there are
“observable” configurationswhich haveQ * 0.

We havearguedin Ref. I that suchconfigurationsare possiblein the Hamiltonian
picturewhere the diffeomorphismsare to be generatedby finite constraintfunctionals
and cannot be implemented“by hand” as is done in the mainly geometricalproof
of Birkhoff’s theoremin the conventionalspace-timepicture. A related observation
was already discussedby Ashtekar and Samuel [3] for asymptotically flat Bianchi
models.Later Coussaertand Henneauxpointed out [4] that the different notions of
diffeomorphismsmay be reconciled for thesemodelsby imposingstrongerconditions
on the geometricaldiffeomorphismsat spatial infinity. Such conditionsare not imposed
in the usual derivationsof Birkhoff’s theorem.

The possibility of a nonvanishingobservableQ within theHamiltonian frameworkis
associatedwith the subtletiesof slicing the four-dimensionalpseudo-riemannianmani-
fold into spaceand time: A nonvanishingQ requiresa nonvanishingshift NX!

This lastobservationwasexplicitly discussedin Ref. I, but we did not try to give a
concretephysicalinterpretationof the quantityQ. It is the aim of the presentpaperto
give suchan interpretationanddiscusssome of its implications.

The main result is that thequantity

T=8mQ (1.4)

can be interpretedas a time variable canonically conjugateto the mass m! This inter-
pretationdoesnot only follow from the formal canonicalconjugacyof T with respect
to the massm but especiallyfrom therelations

dT/dt = {T, H~
0~}1~.= {T, Hred} = 2N~°°~(t),H~d= Htotl ~ = 2mN~’°~(t),(1.5)

whereH~0~meansthetotalHamiltonianconsistingof the (nonvanishing)constraintsand
thesurfaceterms(seeEq. (2.4) below), {., . } denotesthePoissonbracket,Hred means
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thevalue of H~0~on the constraintsurface1’ wheretheconstraintsvanishandN~°°’(t)
is the lapsefunction N(t) in the spatiallyasymptoticregionunderconsideration(there
may be severalof suchregionseachhaving its own lapsefunction).

This meansthat both Hamiltoniansgeneratetime translationsas symmetry trans-
formations — in contrastto gaugetransformation— in asymptoticallyflat regions.The
dependenceof the “observable”T( t) on the “unobservable”asymptotictime parameter
t is determinedby the gaugedependentquantity N~°°~(t),(N~°°~= I for space-times
which are asymptoticallyMinkowski flat). The factor 2 in Eqs. (1.5) is due to the
normalizationof the Hamiltoniansadoptedhere.

Noticethat the observableT is a volume, not a surfacequantity!
Our resultsmeanthatsphericallysymmetricgravity constitutesa completelyintegrable

systemwith respectto its observablesthe massm being an action,the time T an angle
variable! This resemblesthe situationin (2+1) gravity [5] and in othercaseswhere
Einsteingravity in four dimensionsis reducedto two dimensionsas discussedand
reviewedby Nicolai [6]. WhereasNicolai andothers(seeRef. [6]) analyzemodelsof
gravity (andtheir supergravityextensions)which havetwo commutingKilling vectors—

onetimelike andonespacelikeor both spacelike— we are dealingwith a systemwhich
hasthreenoncommutingspacelikeKilling vectorsbut not a timelike one.

The results can be translatedinto the ADM frameworkwhere one seesthat T is
simply related to an exactHamilton—Jacobisolutionof the (classical)Wheeler—DeWitt
equationfor spherical gravity.

Quantizationof the (1+1)-dimensionalcanonical systemformedby the observables
m andT is straightforward,butdependson thespectrumof m, namelywhetherit covers
the whole realaxis or whetherit is boundedfrom below.

2. The model

We here collect the main elementsof spherically symmetric gravity in terms of
Ashtekar’svariablesandrefer to Ref. I for further details.

In thesphericallysymmetriccasethebasiccanonicalvariablesin Ashtekar’sapproach
to quantumgravity, namelythe connectioncoefficientsA~(x)as configurationvariables
and the densitizedtriads E~(x),a= 1,2,3, i = 1,2,3 as momentumvariables,canbe
expressedby six functions A,( t, x), and E’ (t, x), I = 1,2,3, where the E’ are real
and the A1 arecomplex.Here t is a “time” variableand x is a (local) spatial variable
which becomesthe usualEuclideanradial variable r at spatial infinity.

The metric (q0~)on the three-dimensional(Cauchy) surfaces£~takes the form

(gab) =diag(~j~,El,E1sin
2 0),

det(q~b)= ~E’Esin2 0,

E= (E2)2+ (E3)2, (2.1)

which shows that the variablesE’ and E determinethe sign and the degeneraciesof the
spatialmetric.
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IntegratingtheEinstein—Ashtekaractionover theunit spherein .�.2= S2 x I, where.~

is an appropriateone-dimensionalmanifold (seebelow), we get the following effective
(1+1)-dimensionalaction for sphericallysymmetricgravity:

S=fdt [I dx(~iE1Aj)—Hut] , (2.2)

with the total Hamiltonian

HtotJdx(iAG_iN~(Vx_A1G)+NC)+Qr+PADM+EADM~ (2.3)

wherean overall factor41T/ ( ic = 8irG) hasbeendroppedandwhere

G=(E’)’+A
2E

3—A
3E

2 (2.4)

is the Gaussconstraintfunction;

V~=B2E3—B3E2 (2.5)

the vectorconstraintfunction;

C=(B2E2+B3E3)E’ +~EB’ (2.6)

the scalarconstraintfunction;

(Bl,B2,B3)=(~((A
2)2+(A3)2_2),A~+A,A2,_A~+A1A3) (2.7)

the “magnetic” fields; A the Lagrangemultiplier for the Gaussconstraint;NX the “shift”
(seeEq. (1.2)) andLagrangemultiplier for thevectorconstraint;

(2.8)

the Lagrangemultiplier for the scalarconstraint;N the lapsefunction (seeEq. (1.2));

Qr’r~ifAE’ (2.9)

the chargeof the remaining0(2) symmetry;

PADM =f iN~(A2E
2+ (A

3 — V’~)E

3) (2.10)

theADM momentumin the x-directionand

EADM=JN(A2E3 — (A
3 — ~,/~)E

2)E’ (2.11)

theADM energy.
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As usual [7,81, the surfacetermsarisefrom the requirementthat the threeconstraint
functionals

~[A,E;A] =fdxAG~

17JA,E;Nxj fdxN5vx~

C[A~E;N]=fdxNC (2.12)

are functionally differentiablewith respectto A, andE’. A dot meansd/dt anda prime
d/dx.

The (equal-”time”) Poissonbracketsare

{Aj(x),E1(y)}=i8~ö(x,y) , {A,(x),Aj(y)}={E’(x),E~(y)}=0.

(2.13)

The normalizationof the energyEADM is suchthat EADM= 2mN~°°~,N~°°~= N(t, x E
81) for the Schwarzschildmassm (with Newton’sconstantG = I,c = I). The Hamil-
tonian H~

0~generatesgaugetransformationsandmotions:

= {A,, H~0~}e, ÔE’ = {E’, H10~}�, (2.14)

whereE is a correspondinginfinitesimal parameter.Explicitly we have

8A1 =[A’-f--(N~Ai)’+iN(B
2E2+B3E3)]�, (2.15)

SA
2=[AA3+NXAF2+iN(B

2E1 +B’E2)]�, (2.16)

ôA
3=[—AA2 + NXA~+iN(B

3E’ +B1E3)1�, (2.17)

8E’=[N~(E’)’—iN(A
2E

2+A
3E

3)E’]�, (2.18)

SE2=[AE3+(N~E2)’—iN(AiE’E2+~A
2E)—i(NE

1E3)’]�, (2.19)

SE3=[_AE2+(NxE3)/_iN(AIElE3+~A
3E)+i(NElE

2)/]�. (2.20)

Whereasthe functionsE’ are real, theconnectionfunctionsA
1 are complex,because

A,=[’j+iK,, 1=1,2,3, (2.21)

whereFj are the (reduced)coefficientsof thespinconnectionand K, thecorresponding
coefficientsof the extrinsic curvature.Thesecoefficientscan be expressedin terms of
the functionsE’,

(r1,r2,r3) = (—~‘,—(E’)’~,(E’)’~), ~ = E
2(E3)’—E3(E2)’ (2.22)
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where/3 = arctan(E3/E2),and

~

(2.23)

3. Topology of the Cauchy surfacesI and asymptotic properties at spatial infinity

3.1. Possibletopologies

For sphericallysymmetric systemsthe topologyof the Cauchythree-manifoldi~is
necessarilyof the form i~= S2 x I where I is a one-dimensionalmanifold. In this
paperwe are only interestedin topologicalsituationswhereI is openor compactwith
boundary,especiallywhen it is asymptoticallyflat: As motivated already in Ref. I we
choosehere

I=I~, Ifl~KUUIA, (3.1)

i.e. the hypersurfaceis the union of a compactset K (diffeomorphic to a compact
interval) and a collection of ends (eachof which is diffeomorphicto the positivereal
line without theorigin), i.e. asymptoticregionswith outwardorientationand all of them
are joined to K. Thismeansthatwe haven positivereal lines, includingthe origin, but
oneendof eachline is common to all of them, i.e. thesepartsare identified. Since the
identity map is smooth,this is still a COC (Hausdorif) manifold.

As an exampleconsiderthe Kruskal-extendedSchwarzschildmanifold (see e.g. Ref.
[9]), where we have two ends I~and 12 eachof which belongsto the asymptotic
regionx —~ oc with N~00)= _N~00)= —N~°°~.This is, of course,the most interesting
situation, however the case n > 2 is a theoretical possibility, too, especiallyfor our
effectivetwo-dimensionalmodel.

We want to point out here that the boundaryof the compactumK has nothing to do
with the location of a horizon; it is just a tool to glue the various ends togetherand
thus is a kinematicallyfixed ingredientof thecanonicalformalism, whereasthe location
of a horizon will dependon the massof the systemwhich is a dynamicalobject. In
particular,oneand thesametopologicalcompactumwill be usedfor all possiblevalues
of the mass.Thus,althoughit is appropriateto draw the space-timepictureswhich one
can find in textbooksfor, say, the Schwarzschildconfigurationwith parameterm, the
lines x = 2m which separatethe four Kruskal regionsdo not correspondto a specific
coordinatevalue for the boundaryof the compactumK and its time evolution. This
propertyshouldnot give rise to confusionbecausefrom themainly geometricalpoint of
view one is usedto the fact that the topology of I may changeunder evolutionwhile
in the Hamiltonianpicturetopology changeis excludedby definition.

Notice that — accordingto Eqs. (2.15)—(2.20)— we canhaveindependentevolutions
in different endsof I by choosingthe supportof the Lagrangemultipliers A, NX andN
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appropriately.

3.2. Asymptoticpropertiesofthefields

The following discussionof the asymptoticpropertiesof the fields differs slightly
from the one in Ref. I. It is, however,more appropriatefor the physical interpretation
of the observablesof the systemdiscussedbelow.

Most important for our purposeare the asymptoticallyflat manifolds I~,for which
we have

lIrnq
0b_—q~~+fab( r,t) +O(I/r

2), (3.2)

where~ denotesa fixed flat Euclideanmetric with coordinatesx°and r2 = qo
0~xaxb.

In our casewe have

qrr~1+q~l/r+q~2/r
2..., q

0g~r
2+q~r+qg.... (3.3)

We want to translatethis asymptoticbehaviourof the metriccoefficientsinto that of the
quantitiesE’. This leadsto theansatz(compareEq. (2.1))

E1—+x2+e~x+e~+..., (3.4)

E2e~x+e~+e~
1/x+..., (3.5)

~ (e~)
2+(e~)2—l. (3.6)

Theseasymptoticrelationshave to be madecompatiblewith those of the canonically
conjugatequantitiesA,, for which we startwith theansatz

Ai~a~
1/x+a~2/x

2+..., (3.7)

A2~a~l/x+a~
2/x

2+..., (3.8)

A
3~v~+a~1/x+a~2/x

2+.... (3.9)

Becauseof Eqs. (2.21) and (2.22) the asymptoticpropertiesof E’ and A, are not
independent.Theyimply the relations(recall that the E’ are real!)

Re(a~
1)=0, Re(a’2) = ~ Re(&3) =‘,./~e~1—e~e~,(3.10)

0 = e~(=~e~= 1), Re(a~1)= —e~,Re(a~2)= —e
3

1 + e~(v’~e~— ~ (3.11)

R/ ~ ~_ 1 2

e~a11— —e1 — e0.

Eqs. (2.21) and (2.23) lead to identitiesif weexpressthetime derivativesq~etc. by
meansof the evolutionequations(2.15)—(2.20).
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In order to fix the appropriateasymptoticbehaviourof the quantitiesE’ andA, we
require
(i) that — essentiallyfollowing Ref. [8] — the integrandsof theLiouville form

@L~ifE’dAl (3.13)

and the symplecticform

I2=_ifdE’AdA, (3.14)

behaveasymptoticallyas O(1/x
2) in order for the integralsto converge,and that

(ii) theGaussconstraintfunction (2.4) vanishesat leastas O( 1/x2) atspatial infinity.
This is the only usewe makeof all theconstraintsas far as theasymptoticproperties
areconcerned.

The conditionE’dA, —f O(1/x2) implies

da~
1= 0,

d(a~2+V~a
2

1)=0,

e~da~2+ da~3+ V’~da~2+ e~d~1+ e~da~1= 0, (3.15)

andfrom dE’ AdA, —* O(1/x
2) we get

d(~a~
2+a~1)=0, d(e~—V’~a’2)=0. (3.16)

All the conditionsobtainedto far canbe satisfiedby requiring

a~1=0, a
1..

2=0, a~1=0, e~=0, a~3+\/~a~2=0. (3.17)

It will turn out that theseconditionsalone do not suffice to ensure the convergence
propertiesof the quantitieswe are interestedin. This will, however,be achievedby
requiringtheGaussconstraintfunction (2.4) to decreaseat leastas O( 1/x

2) at spatial
infinity. This implies the relations

= 1, e~— ‘./~e~= ~ (=~Im(a~)=0, cf. Eq. (3.12)), (3.18)

+ e~a~
1+ V~a~2= 0. (3.19)

The resultingexpansionsfor E’ and A, are compatiblewith the evolution equations
(2.15)—(2.20) and the following asymptotic behaviour of the Lagrange multipiers:

A —* O(1/x
2), Nx —+ O(1/x2), N~°°~= 0(1), =t. N —~ 0(1/x2). (3.20)

This asymptoticbehaviourof the Larigrangemultipliers means that we allow for a
spatiallyasymptotic0(2) symmetry andfor spatially asymptotictime translations— as
opposedto thecorrespondinggaugetransformationswhich requirea strongerdecrease
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for A andN (seeRefs. [1,8]). In thefollowing weshall notexploittheasymptotic0(2)
symmetryandshall treat it as a gaugesymmetry.Howeve, thepossibilityofgenerating
time translationsat spatial infinity is ofutmostimportancefor the interpretationof the
theory.

The asymptoticpropertiesof E’ andA, yield

~ (3.21)

(3.22)

B’ -4’%ha~,/x+0(1/x2), (3.23)

B2 —+ —a~,/x2 + 0(1/x3), (3.24)

B3 —+ (3a~
3+ i/~a’4+ a’3a

3
1)/x

4+ 0(l/x5). (3.25)

The expansionsfor E’ andE imply

(3.26)

Comparingthis expressionwith theasymptoticexpansionof the Schwarzschildsolution
(1.3) we find

— e~= 2m = —V~a3
1. (3.27)

The lastequality follows from Eq. (3.18). It implies for the ADM energy (2.11) that

EADM=—V’~N~°°~a~I=2mN~°°~. (3.28)

For a compactI it is sufficient to require the fields and Lagrangemultipliers to be
smoothand finite everywhere.Obviously, the caseof compacttopologiesis mucheasier
to handlefrom a technicalpoint of view.

4. Symplecticreductionof the model and its observables

We first recall some basicfacts from the theoryof symplecticreduction(for further
detailsseeRefs. [10,111). It wasshownin Ref.I that the presentmodel is a field theory
with first-classconstraints.Let F, .1” and 1’ denotethe full phasespace,its constraint
surface(wheretheconstraintsare satisfiedidentically) andits reducedphasespace(i.e.
the constraintsurface, but points in it are identified providedthey are gaugerelated).
The (local) existenceof the latter follows from general theoremsthat are valid for
first-classsystems.Let

r:F—+Fandir:i”--~t (4.1)

denotethe (local) imbeddinginto the large phasespaceand the projection onto the
reducedphasespacerespectively.Call the symplecticstructureson thetwo phasespaces
11 and 12 respectively.Thenthepresymplecticstructureon f is definedby thepull-backs

(4.2)
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In practice one computesthe constraintsurfaceand thus obtainsthe imbedding. One
then definesthe presymplecticstructureby the pull-back under the imbedding.After
thatone computesthe gaugeorbits andobtainsthe projection.The reducedsymplectic
structureis then definedby the pull-backunderthe projection.

On the otherhand,if 0 and~ are the symplecticpotentials(Liouville forms) for the
symplecticstructures,we obtain

d A (r’~9— ~.*ê)= L*12 — ~.*12= 0, (4.3)

whencet~9— ~ is (locally) exact:

dS:=t*@_1r*&1. (4.4)

Here S is the Hamilton—Jacobifunctional which generatesa singularcanonicaltrans-
formation from the largeto the reducedphasespace.Replacingthe canonicalmomenta
on F by the functionalderivativesof S with respectto the canonicalcoordinateson F
solves the constraintsbecauseby doing so one pulls back the momentato I’. Hence,
oneway of obtainingthereducedphasespaceis to solve the Hamilton—Jacobiequation
for constrainedsystems.This hasbeendonein Ref. [11] andalso in Ref. I.

Therelation (4.4) suggestsan additionalmethod: it saysthat,up to a totaldifferential,
one obtainsthe reducedsymplecticpotential simply by inserting the solution of the
constraintequationsinto the full symplecticpotential.

Forfield theoriestheremightalso beboundaryterms involved in this reductionprocess
the contributionof which to thereducedsymplecticstructuredoesnot vanish.Theymay
be neglectedat a first stagebecausethey will be recoveredwhenone checkswhether
the observablesof the reducedphasespaceare finite andfunctionally differentiable. It
turns out that the lastmethodis quite appropriatefor our model.

In the following we only discussthe nondegeneratecaseE’E ~ 0. It then follows
that the vanishingof the scalarand vectorconstraintfunctionsV~and C (Eqs. (2.5)
and (2.6)) is equivalentto the vanishingof the functions

C2 = B
2E’ + ~B’E2, C

3 = B~E’+ ~B’E
3, (4.5)

because

E’V~=E3C
2 — E

2C
3, C =E

2C
2+E

3C
3. (4.6)

The vanishingof C2 and C3 implies

E
2=gB2, E3=gB3, g=—2~. (4.7)

Here we excludethe trivial caseB’ = 0 (see Ref. I). For our purposethe following
combinationswill be of interest,too:

A
3C2—A2C3=E’(B’)’+ ~B’((E

1)’—G) , (4.8)

A
2C2+A3C3=AyE’ + ~B’(A2E

2+A
3E

3), (4.9)
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whereG is the Gaussconstraintfunction (2.4) and

A (A2)
2+ (A

3)
2, y A, + a’ = A

2B
2±A

3B
3 (4.10)

We here assumeA ~ 0, becauseotherwiseB’ —I, (B’)’ = 0 (Eq. (2.7) and a
vanishingexpression(4.8) implies (E’)’ = 0 contradictingEq. (3.4).

From Eq. (4.8) we get the constraint

K, ~B’(E’)’+(B’)’E’ =0, or (E’)’=g(B’)’. (4.11)

Integrationyields

=const.. (4.12)

From the Eqs. (3.4), (3.23) and(3.27) we obtain

(4.13)

This is our first observable.That this is so follows from

~ (4.14)

wherethe Eqs. (2.16)—(2.18),(4.7) and (4.11) havebeenused.
For the further discussionit is convenientto make use of the 0(2) symmetry in

the (2,3) “plane” of the variables (A
2,A3) and (E

2,E3) by introducingcylindrical
coordinates

(A
2,A3) = V’A(cosa,sina), (E

2,E3) = ~/E(cos/3,sin/3) . (4.15)

Theyimply the relations

G = (E’)’ — ~/A~sin(a — j3) (4.16)

and

E’dA
1 = ir~dy+ ir1dB’ + irada — -~-(E’da), (4.17)

dx

where

~~=E’, ~,=~cos(a—/3), gaG. (4.18)

We seethat the changeof variables is tantamountto a canonical transformationwhere
oneof thenew momentais theGaussconstraintfunction G!

In addition, the r.h.s. of Eq. (4.9) now takesthe form

A(rr-~y+~ir,B
1), (4.19)

implying theconstraint

K
2 2ir~y+ir1B’ = 0, or ir~=gy. (4.20)

SettingG = 0 we get for theconstraintfunctionsC andV~in termsof the new variables
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C__(I+B’)~lK2+2(l~B,)~Kl~ (4.21)

V5=—(E’)’y+ (B’)’ir,.

Droppingthe last term in Eq. (4.17) that leadsto a surfaceintegral to be ignored (see
the remarks following Eq. (4.4) above),the integrandof the Liouville form reduced
with respectto the Gaussconstraintis given by

ir~dy+ IT1dB
1 = —yd1T~— B1dir

1 + d(...). (4.22)

Usingthe relation (4.20) we have

ydir7 +B’d7ri = ~/~B’d(-~~), (4.23)

so that theLiouville form (3.13) finally reducesto

0,. = iJ E’dAJ=ifv~B’d(7~) +d.~=mdT+d& (4.24)

whereEq. (4.13) has beenusedandwhere

T=T[ir,,ir~]= A, Am—2i-~—. (4.25)

The quantityT is our secondobservable:From Eqs. (4.13) and (4.20) we have

A= —2ig~=4i~~y=8mp, pm _~()2 (4.26)

and since the asymptoticrelations for A2,A3,A,B
2,B3and B’ (Eqs. (3.16), (3.18)

and (3.22)—(3.25)) imply p —~ 0(1/x2) the integral T exists. From Ref. I we know
that B’ is weakly real andy weakly imaginary. So T is weakly real.

Most importantfor our interpretationof T is therelation

d 4m2N(B’)’
Nxp+ A(B’)4 ~ (4.27)

which follows from applyingEqs. (2.l5)—(2.17) to

= o(A, + a’), 5a = (A
2oA3— A39A2)/A, ~B’ = M/2

andusingthe relations(4.7) and(4.13). The expressionin the squarebracketsof Eq.
(4.27) approachesthe valueN(°°~/(4m)for largex. Combining this with Eqs. (4.14)
and(4.25) we get theimportantresult

ÔT = {T,H~0~}e= 2~N~00)�, (4.28)
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wherewe haveallowed for different lapses~ at different ends IA (seeEq. (3.1))
andwherewe haveassumedthat thereareno contributionsfrompossibleinnerboundary
pointsand that eachend “sees” the samemassm. The occurrenceof the lapseson the
r.h.s. of ST is due to our allowancefor time translationsas a symmetrytransformation
at spatial infinity [8], as opposedto a gaugetransformationfor which N~°°~=0.

If space-timeis Minkowski-like at spatial infinity we haveN~°°~= 1 and — interpret-
ing the parametere as the (infinitesimal) proper time of an asymptoticobserverand
consideringoneendonly — we get

T= 2, T = 2t + const.. (4.29)

Thus, the observableT is to be interpretedas a time variable! (The factor 2 is a
consequenceof our normalizationof theenergy,seeEq. (3.28)).

Notice that Eq. (4.26) andEqs. (2.15)—(2.20)allow for different — even indepen-
dent— evolutionsof T in different ends1A by choosingthe supportsof the Lagrangian
multipliers A, NX andN (or N) appropriately!

The massm is canonicallyconjugateto thetime T: Let us definethe massM = m by

M—~fv’~B’x~ fx=l , (4.30)

wherex is a suitablesmoothtestfunctionthesupportof which canagainbeconcentrated
on a given end 1A~FromEqs. (3.13) and (4.17) we infer thePoissonbrackets

{B’(x),IT,(y)} =iS(x,y),

{y(x),lry(y)} =iS(x,y),

{ir,(x),ir~(y)}=0, etc. (4.31)

for thenew canonicalvariables.We thereforehave

~

=fdxfdyi~{~i(x)~B1(y)}x(y)

=fdyx(y) = 1. (4.32)

We seethat we can interpret sphericalsymmetricgravity as a (1 + 1)-dimensionalcom-
pletely integrablecanonical systemwhere themassM is the action and the timeT the
angle variable.

This is in completeagreementwith the structureof the reducedHamiltonian Hred =

Ht
0ttp which, according to Eqs. (2.3) and (3.28), takesthe form (againconsidering

oneendonly)

Hred2MN~°°~, (4.33)
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becausethe constraintsG,V~andC now vanishandwe havePADM = 0 from our choice
of theasymptoticpropertiesof the fields andof N”. In addition,wehaveQr = 0 by an
appropriatechoice of the decay (0(1 /x2~))of A. Eq. (4.31) then yields

1’ = {T, Hred} = 2N~°°~, (4.34)

in completeagreementwith Eq. (4.27) above.
In derivingthe resultsabovethe introductionof the variablesy, iT,, andir~ has been

quite useful. The advantageof thesecanonical variables will be especiallyapparent
whensolving the Reissner—NordstrØmmodel [12].

5. Relations to the space-timemetric

We first expressT as functional of the metric coefficientsqrr and qgg : From Eqs.
(4.16) and (4.18) we get — without usingany constraint—

~ E ((E’)’—G)2

A2 (5.1)

AssumingG = 0, dividing by E’ and taking thesquareroot yields

A=2~ [((E1)~)2_AE]~2

(5.2)

wherethe relations

q~=~-~-,R=~/~=’/i~J, A=2(1+B’)=2(1_~)

havebeenused.The difference((E’ )~)2— EA behavesas 0(1/x) for large x if the
properties(3.21), (3.22), (3.18) and (3.19) hold. In that casethe integral

T[q
55,q00] =f2(1 — 2m/R)’w(q55,qeo), (5.3)

w(q5~,q~~)= ((R’)
2 — q

55(1 — 2m/R))~
2

exists becausew —f 0(x3/2). Notice that the decay of the integrandof T[q
55, qgg] is

determinedherewithout referringto theconstraint(4.20) which weusedin thecontext
of Eq. (4.25) whencalculatingthe asymptoticbehaviourof A there!

Forthe quantityT to be real the inequality

(R’)
2 ~ qxx (i — (5.4)

has to be satisfied. As already mentionedthis is guaranteeddue to the propertyof T
being weakly real.
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For theSchwarzschildsolution (1.3) thequantityT vanishes.How is sucha vanishing
T to be reconciledwith Eq. (4.27)?The answerlies in the fact that the Schwarzschild—
Kruskal manifold has two endsfor x -~ oc with N~OC)= —N~°°~so that the sumon the
r.h.s.of Eq. (4.27) vanishes!It is amusingthat here a secondend is requiredin order to
obtainconsistencyof theformalism! Nonvanishingvaluesof T will be discussedbelow.

The importantEq. (4.27) canbederivedin theADM framework,too: It follows from
Eqs. (2.18)—(2.20)that

SR=(NXR~+ NR2w)e, (5.5)

5qxx= [2q~~(NX)~ + q~

5Nx+ ~~~~(2qxxR2RFF — q~5R
2R’— 2mq~

5)N]�. (5.6)

In obtainingthe last equationsthe relations

SR= ~5E’, 5q5~= ~~SE — ?~5R, SE= 2(E

25E2 + E35E3) (5.7)

havebeenused.For thederivationof Eq. (5.6) the relationsE2(E3)’ — E3(E2)’ = /3’E

and

arccos , (5.8)

~/~(1 _2m/R))

arccosz=—jcosh’ z = —iln(z + \/z2 — 1), z ~ I

are essential.The last one follows from Eq. (4.16) with G = 0 and observingthat
(arcsinz)’ = (arccosz)’for z ~r 1.

The r.h.s. of Eq. (4.28) arisesherefrom theterm

d(8A 2R’
dX~8Rw(l_2m/R) R

which appearsin the integrandwhen T is varied with respectto R. Collectingall the
terms we get

oT[qxx~R]2f(1 ~)‘(wN5+R2RIN)e. (5.9)

The first surface term vanishes and the secondone gives Eq. (4.28). Eq. (5.9) is
equivalentto Eq. (4.27) aboveor Eq. (5.35) below.

The observableT is relatedin a very simpleway to the functional

S[q~
5,R; m) =f u(q51,R,m), (5.10)

R
u(q~~,R,m)=2R(R cosh ____________ — w)

— 2m/R)J
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cosh~(~R~ 2m/R)) =ln(R’+w) — ~ln(q~~(1 —2m/R)),

derivedin Ref. I, which providesan exact Hamilton—Jacobisolution of the (classical)
Wheeler—DeWitt equation

~ [q~xpx~x— q~
5Rp~~p~+ R

2(2RR” + (R’)2 — q’
55RR’ — ~xx)] = 0 (5.11)
qxx

for spherical symmetric gravity [13], wherePxx and PR are the canonical momenta
conjugateto qxx andR, respectively (theradial function R hereshouldnot be confused
with thecurvaturescalarR which doesnotappearin this paperat all!).

The integral S exists becausethe integrandu behaves as u —÷ 0(x
2) if w

0(x3/2) for largex as supposedabove.Furthermore,since

=2R [ln(R’+w) — ~ln(q
55(1 —2m/R))] (5.12)

thefunctionalS[ R,q5~m) is functionallydifferentiablewith respectto R if SR —~ 0(1)
for x —~ oc becausethen the surfaceterm

~SR

vanishesfor x —~ oc if w —~ 0(x
3/2). Inserting

SS du wR
Pxx = = , (5.13)

Sq~~8q~~ q
15

(5.14)
SR ÔR dx \~8R’)

= —2w — -~- (2RR” — q’5~RR’— ~~xx) (5.15)

into the Wheeler—DeWittequation(5.11) solves thatequationidentically. In the same
way the ADM diffeomorphismconstraint[13]

1(qxxpxx — (2q
55p55)’+ R’pR) = 0 (5.16)

qxx

is fulfilled. The solution S(q~5,R) was — slightly differently normalized— also discussed
in Ref. [14]. The quantitiesS andT arerelatedas follows: Eq. (4.24) gives

= —Tdm+d(S—mT). (5.17)

On the other handwe have

dS[q55, R; m) = f (~_d~xx + ~dR) + ~dm = 0,. + ~dm. (5.18)
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Comparingthe last two equationswe can identify ~ — mT= Sandso we have

T=~. (5.19)

This importantrelation canbe verified by an explicit calculation!
We now cometo thediscussionof configurationsfor which the observableT doesnot

vanish. Our approachis to start with given valuesof the observablesT andm andask
for thosevaluesof N’ and N which are compatiblewith them andwith the remaining

gaugedegreesof freedom:
We begin with the specialgaugeE’ = x2 so that SE’ = 0! Eq. (2.18) implies the

condition

N5+~x2(l_~’~AN=0 (5.20)
2 ~ xj

for N’. It showsthat N’ hasto be nonvanishingfor a nonvanishingA!
The usualchoicefor the Schwarzschildparametrizationis N’ = 0 so that A = 0 and

T = 0 in that case.We seethat a nonvanishingT is associatedwith a slicing (foliation)
of space-timewhich necessarilyhas a nonvanishinglapseNX!

Next we ask what gaugefreedom is left in generalfor the gaugedependentfunctions
N’ andN oncethe observablesm andT are given. In order to answerthis questionit

is convenientto introducenew canonicalvariablesagainby defining

s=ln(—B’) , B’ = —&. (5.21)

Wethen have

ir,,dy+ir,dB’ +Gda=ilrpdp+lryds+iTada, (5.22)

where

ir~=ir,,(B’)2, iT~=21r,,y+7rlB’, iTa=G, (5.23)

so that theconstraints(seeEqs. (4.11) and (4.20)) now takethe special form

7T’~=0, lTsO, lTaO. (5.24)

If we define theconstraintfunctional

F[iT~, iTs, iTa] = — f (ApiT’p + iA
5iT5 + ~AaiTa), (5.25)

we get from

{p(x),ir~(y)}=S(x,y),

{s(x),ir5(y)}=iS(x,y),

{a(x),G(y)}=iS(x,y) , etc. (5.26)
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that

{p(x),F}=A’~(x), {s(x),F}=A
5(x), {a(x),F}=Aa(x). (5.27)

Thus F generatespuregaugetransformations:F acts additively on the 0(2) angle a
andthe variables (i.e. it actsas a scaletransformationon ~ Furthermore,if weput
p = j” then F acts additively on J. All the gaugefreedom left over is now contained
in the choice of the variables a,s and f. The choice of .j’ is, however,not arbitrary
because8mf~p = T. We thereforeintroduce

p = Lf’, f f = 1, i.e. lim f = 1. (5.28)
8m

This is compatiblewith the propertyp —~ 0(1/x
2).

Expressedin termsof the observablesm andT and thegaugequantitiess and f’ the
metriccoefficientstake the form

~XX=(

12/~) —~A
2(1—2m/R) (5.29)

=
4m2(5e) — ~(TfI)2(1 —e

5),
1_es 4

q
09=4m

2e2~. (5.30)

For the specialgaugeqgg = x2 we haveexp(—s)= x/(2m) and

1 — ~m/x — ~(Tf/)2(1 — 2m/x), (5.31)

qeo=x2. (5.32)

Wefinally have to expresstheshiftN’ and the “lapse” N in termsof s and f: Observing

that B’ = (A/2 — 1) we get from Eqs. (2.16) and (2.17)

B’ =(B’)’+m(l+B’)AN, (5.33)

so that

s’N’+m(l —e~)Tf’N=s. (5.34)

A secondequationfor N’ andN we obtain as follows: Eqs. (4.14) and (4.27) yield

d 32m3(B’)’

A = ~— (AN’ + A(B’)4 N). (5.35)

Observingthat A = Tf’, 1’ = 2Nt°°~and integratingwith respectto x weobtain

Tf’N’ — 16m~N=2N~f+Tf, (5.36)
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wherethe “constant” of integrationc(t) = 0, due to the asymptoticpropertiesof the
different quantitiesfor large x : f —~ l,f —~ 0,B’ —~ —2m/x,N —~ l/x

2,N’ -~

0(l/x2).
For the specialgaugeqee= x2 we get

x2N= 2N(~)f+ Tf (5.37)
2q,,

or

(538)
- 2~’

N’ = (1 — 2m/x)Tf’(2N~°°~f+ TJ) , (5.39)
2q,,

whereEqs. (2.8) and (5.29) have been used.

6. Quantization

As we haveonly two physicaldegreesof freedom,M and T, quantizationis easy.
It depends,however, on the spectrum of the Mass operator A~,namely whether it is
boundedfrom below or not:
(1) -oo<m<+oc.

In this casewe havethecommutationrelations

[A21,Tt]=—i. (6.1)

Choosingtherepresentation

Ttq5(T) = Tçb(T), A~Içb(T)= —i~çb(T) (6.2)

with the scalarproduct

(~,,&)=fdT~(T)~
2(T)~ (6.3)

we get from Eq. (4.32) the Schrodingerequationfor thewave function ~~‘(T,t):

i8,~/i(T,t) = H~fr(T,t) = 2N~00)c1./j(T, t) = —i2N~°°~-~ifr(T, t), (6.4)

which hasthe solutions

em(T,t) = 7~=etm(2~t)_T), wheret = N~’~(t). (6.5)

However, in view of the positive energy theoremfor isolated gravitational systems
[15] the assumptionthat the spectrumof i%~is unboundedfrom below appearsto be
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unphysicaland shouldbe changed.We thereforeassume:
(2) 0<m<oc.

Here, if the commutationrelation (6.1) still holds, D cannotbe selfadjoint — and
thereforenot diagonalizable— becauseotherwiseexp( i

1aD), ~areal, would be a unitary
operatorwhich generatestranslationsby 1a in rn-spaceviolating the spectralcondition
rn > 0. The problem hasbeendiscussedin detail by Klauder et al. [16] andby Isham
et al. [17]: If onedefinesthe operator

(6.6)

then we get the Lie algebracommutator

[~~,A~’]=iA~I (6.7)

of the affine group in one dimension,i.e. ~ generatesscale transformationsof the
spectrumof id:

~ idet~= e~id, /3 real . (6.8)

In thespaceof functionsx( m) we may choosethe operatorrepresentations

(6.9)

2~ dm dmj ~ dm 2j

which are selfadjointwith respectto the scalarproduct

+~

(XI,X2) = / dm4(m)x2(m) (6.10)

andwhere

(e~
5~)(m)=e~2~(e’3m) (6.11)

leavesthe scalarproductinvariant.
The Schrodingerequationherehas the form

i8,~(m,t)—2N~°°~m~(rn,t), (6.12)

with the solutions

x(m,t) =e21m~t)g(m), (g,g) < oc. (6.13)

The operator~ has the eigenfunctions

f
5(m) = ~ (fsi, fs2) = S(s, S2), (6.14)

wheres is a real eigenvalueof ~.
A moregeneralchoicefor thescalarproduct (xis x2) and theoperatorS is



HA. Kastrup, T ThiemannlNuclearPhysicsB 425 (1994)665—686 685

+00

(x,~X2)= / dmm~X~(m)X2(m),

~=i(md/dm+(l—cr)/2), crreal. (6.15)

As to the unitary representationsof the affine group in onedimensionseeRef. [18].
It it easy to verify that the functional T [iT,, ir,,] provides the solution of Dirac’s

algebraicquantizationapproach,too.
First we observethat the constraintfunctionsK, (x) and K2(x) in Eqs. (4.11) and

(4.20) are first class: Let Xi(x), i = 1,2 be two suitabletestfunctions.Then it follows
from the Poissonbrackets(4.31) that

~

= _if dxX,(x)X2(x)K,(x)

=—iK,(X,X2). (6.16)

Notice that the constraintfunctionalsK, (xi) and K2(X2) generatetheLie algebraof
the affine groupin onedimension,too: K2 generatesa scaletransformationof K,.

From the Poissonbrackets(4.31) we infer the (equal time) operatorcommutation
relations

[~-,(x),b’(y)] =S(x,y),

[fr,,(x),~(y)] =S(x,y),

[O(x),â(y)] =S(x,y), etc., (6.17)

which can be implementedby thechoice

S S -,

= —~, y = ———-, a = a,
Sir, Sir,,

~,iT,, 7T~, O=—. (6.18)

Thus the operatorversionsof the constraintfunctions(4.11) and (4.20) takethe form

I S /5\’ S S
K,=——ir~,,————ir,,(-———), K2=—2ir,,-————rr,———, (6.19)

2 Sir, \Sir,J Sir,, Sir,

where a suitablechoicefor theoperator-orderingin R2 hasbeenmade.It is easyto see
that GT= 0,fc,T = 0, k2T = 0 so that any complex function çli(T) is annihilated,too.
The first-classproperty (6.16) holdsalso for the operatorsk, and K2.
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Noteadded in proof

After this paper was submittedfor publicationa preprint by K. Kucha~appeared
(gr-qc 9403003)with resultsvery similar to ours.
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