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For a stationary, asymptotically flat space—time the “Komar energy”, associated with the time-like Killing vector and
the ADM energy are equal when the latter is evaluated on a Cauchy surface which is asymptotically at rest relative to the
Killing vector. The implications of this result on the positivity-of-energy problem in General Relativity are discussed.

In General Relativity there are (at least) two notions
of total mass (energy), which can be associated with a
stationary spacetime. The first notion (later referred
to as KVM), which is a special case of one due to
Komar [1], is essentially defined as the integral of the
norm of the Killing vector over a 2-sphere lying in
some Cauchy surface X in the limit as the sphere
tends to spatial infinity. The other quantity I consider
is the mass according to Arnowitt, Deser and Misner
[2]. It is defined as a similar surface integral at infi-
nity, but one which contains only the intrinsic metric
of Z. It is this quantity which is commonly regarded
as the true gravitational energy for several reasons,
one of them being that it is always conserved (i.e. also
in the nonstationary case) and, in fact, coincides in
numerical value with the hamiltonian of General
Relativity [3].

In this paper the question is asked whether these
two quantities agree on certain hypersurfaces 2 in
stationary asymptotically flat solutions of Einstein’s
equations. This is interesting for two (related) reasons:

(1) The KVM is the definition of mass which comes
from a consideration of the newtonian limit of General
Relativity. To be more precise, the norm of the Killing
vector (i.e. the ggg-component of the metric in suit-
able coordinates) is the leading force term in the equa-
tions of motion of a slowly moving test particle far
away from the source. Hence the KVM can be deter-
mined from Kepler orbits which this particle follows.

(2) 8¢ satisfies a Poisson-like equation (essentially
R0 = source term [4]) with a quantity, sometimes

called “active gravitational mass density”, on the right-
hand side, derived from the energy —momentum ten-
sor. This gives rise to rather obvious positivity proper-
ties of the KVM, provided the source satisfies certain
inequalities. Hence, an answer as to whether KVM
equals ADM mass has implications on the much dis-
cussed problem of the positivity of the ADM mass [5].

This paper shows that for a stationary, asymptoti-
cally flat Einstein space—time (with a source fulfilling
a reasonable fall-off condition at spatial infinity), which
is spatially diffeomorphic to R3, KVM and ADM
mass are equal, when X is chosen to be asymptotically
orthogonal to the Killing vector.

A proof of this theorem, though remarkably simple,
does not seem to exist in the literature. (Actually,
some authors claim that this theorem is false. See, e.g.
ref. [6]. They do this on the basis of work of Misner
{7) which shows that the ADM and the Komar energy
in general disagree.)

However, there are proofs under the additional
assumptions of either asymptotic spherical symmetry
[8] or validity of linearized theory in the asymptotic
regime [9] which have, in general, not been justified
mathematically.

I first consider the static case. The space—time mani-
fold is of the form {#} X . The metric can be written
as

ds?=— V2dt2+gi,-dxidxf = —et2U/c? p2472
+e 2/ y dxidx)  (i=1,2,3), 1)
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where V2 = —§#£,, the norm of the hypersurface-
orthogonal Killing vector field, and v;; are functions
of space only. There should exist a coordinate system
x! covering T such that space—time is asymptotically
flatin the sence that g;; — 51./. =0(1/r), 0x&ij = 0(1/r?),
U=0(1/r), 3;U=O(1/r?) with r = (x;x{)L/2 > oo,
The Einstein field equations give [10]

AU=41G(p +plfc?) e 2Vl = anGpe=2UI¢ | (2)
~Gy=(2/c*)(3;U8;U ~ 37;;7'™ 8, Ud,,, U)
+ (8776/04)171']' e~ 2U)¢? ) (3)

where A is the laplacian relative to v;;, G;; the Einstein
tensor of Yij» P the mass density, pij/c2 the stress
tensor. If, for example, the source consists of matter
in some bounded region of space and a Maxwell field,
it is reasonable to assume that p, pii= O(r"4). In fact,
I shall do with O(r—3-¢€), e > 0.

The KVM is defined by

snGM= [ dsiap2. (4)

r=oo

This is well-defined because, by eq. (2),

8nGM = 872G |d3x~/ype—2Ul¢* (5)
=

and the right-hand side of eq. (5) converges.
On the other hand, the ADM energy is given by

167E(@)=c* [ dsi@lg; 0,87 ©

r=eo

I claim that £(g) = Mc2. The proof will at the same ,
time show that £'(g) converges. Inserting g;; = e—ZV/ ¢
X 7;j into eq. (6) one obtains

E(g)=Mc2+E(y). (7

Now observe that, by eq. (3), G;(y) goes like r—3—¢
while it is expected to go only like 7—3 in a generic
asymptotically flat situation [6]. But one may nicely

characterize E(y) by the r—3-part of Gij(')’)3

Lemma: Let v;; be asymptotically flat, i.e. Yij 8
=0(1/r), 337;;= O(1/r?). Then .
(167G/cHE(Y) = f ds; G,-"('y)x" , €))

r=eo
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provided £ (y) exists.

Remark: By introducing the unit normal and the
surface area of the nested family of 2-spheres which is
involved here, formula (8) can be given a completely
covariant form.

Proof: Consider the identity
v[GT+tH] =9, hiik . ©)

Here ¢ is the “3-dimensional Landau—Lifshitz
pseudotensor” [11] which is a sum of terms quadratic
in %y, () and is hence O(1/r*). hifk = —niki is the
superpotential,

Hiik =, [y (YUKl — yikyi] > 80, n7k =0.  (10)
Partially integrating the identity

0= [ d3x(2;9,h )", a1
R3

one obtains, using eq. (10),

o= [ dS/ Gyxi— [ a3x o, ik, (12)

r=oo R3

After conversion of the last term in eq. (12) into a
surface integral, a short calculation gives eq. (8). This
proves the lemma. Applying this lemma to 7> as de-
termined by eq. (3), implies that £(y) = 0. Hence
E(g)=Mc2.

Several remarks are in order. When the matter field
obeys the strong energy condition [12], one has u=>0
and hence M = 0. Therefore £ > 0 independently of
any weak field assumptions. On the other hand, if only
the weak energy condition holds which in our case im-
plies g = 0, then, as shown by Brill and Deser [13] and
made rigorous in ref. [6], one knows that £ > 0 for
weak field excitations. This, then, sets constraints on
the extent to which a static solution may violate the
strong energy condition when the weak energy condi-
tion holds. (Actually, the proof in ref. [6] uses the
weak and strong energy condition. But the latter is
only needed to establish the existence of a maximal
slicing which is trivial in a static manifold. I thank
Stefan Beig for discussing this point with me.) For ex-
ample, u <0 is forbidden, provided p = 0.

In the stationary case £* is no longer hypersurface-
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orthogonal. One may, however, look for a Cauchy sur-
face T which, besides from being asymptotically flat
intrinsically, is asymptotically orthogonal to ¢#. My
assumptions hence are that in coordinates where Z ~
R3 is given by 7 = const and £ by 3/0t: U =
(1/¢2)1g V2/c2=0(1/r), 3;U=0(1/r?), g;; — 8=
0(1/7), 3;.8;= O(1/r?), g;= O(1/r), 3;89;= O(1/r?).
Provided T, = O(r—3-¢), 87GM = |, dS? 3,12
is still well defined [4]. The role played by 7;; in the
static case is now taken over by

hy;= (CZ/VZ)(gij — &0i&0;/ V2.

Applying the lemma to the stationary field equa-
tions (see, e.g., ref. [11], p. 301) give £(h) = 0. This,
together with the fact that terms containing g; do not
contribute to the energy, gives the desired result F(g)
= Mc2.

When the strong energy condition holds, one knows
that u = 0 (and hence £ > 0) if matter is a perfect
fluid or if space—time admits a maximal slicing [14].

I am indebted to Dr. P.C. Aichelburg for relevant
comments and to Dr. A. Pflug for useful discussions.
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