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INTRODUCTION 

1 would like to divide this report into three parts. In the first, I would like to explain, 
in  general terms, what the basic questions of quantum gravity are; in the second, I 
would like t o  point out the main difficulties that we face; and, in the third, I would like 
to discuss some recent results. The last part is a summary of the present status of a 
program that was first developed during a six-month workshop on quantum gravity, 
held a t  the Institute of Theoretical Physics a t  Santa Barbara in 1986. Since then, about 
two dozen individuals have made substantial contributions to this program. Unfortu- 
nately, because my space is somewhat limited, I will be able to discuss only a few of 
these contributions and I apologize in advance for the omissions. Also, because this is a 
“general interest” report rather than a technical presentation, discussion will be 
somewhat qualitative. I hope the experts will excuse me for repeating some of the 
well-known points and for glossing over references to the older material. 

The central messages are the following: 

(i) Nonperturbative quantum gravity (say, quantum general relativity) is fea- 
sible and may well be a viable theory. 

(ii) It is very likely that the microstructure of space-time is radically different 
from the one suggested by perturbation theory. In particular, the space-time 
metric may not be a good variable to discuss this microstructure. 

(iii) Because, a priori, there is no space-time in quantum gravity, quantum 
mechanical notions such as the Schrodinger equation and the resulting 
unitary evolution, which are normally regarded as fundamental, are now 
derived concepts that emerge when “time” is appropriately identified from 
among the basic mathematical variables used in the theory. 

BASIC QUESTIONS OF QUANTUM GRAVITY 

In broad terms, the aim of quantum gravity is to unify the principles underlying 
general relativity and quantum mechanics. General relativity has been successful in 
explaining the large-scale structure of the universe, whereas quantum mechanics 
seems indispensible in the microscopic domain. Quantum gravity would be a theory 
applicable in both domains; general relativity and quantum mechanics, as we know it, 
are to emerge as limiting cases of this deeper theory. 

Because general relativity is not only a theory of gravity, but also of space-time 
structure, the task of constructing a quantum theory of gravity leads us to a number of 
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novel, conceptual questions. To see how they arise, let us briefly recall the evolution of 
the notion of space-time. The first mathematical model of space-time was given by 
Newton in the Principia. In that model, there is an absolute time: space-time is sliced 
by a preferred family of 3-surfaces representing “space”, that is, events that are  
simultaneous with each other. This model provided a basis for all of physics and 
astronomy for more than two centuries. It was only when Maxwell predicted that the 
speed of light is a universal constant, independent of the choice of a rest frame, that the 
model received a jolt. The verification of this prediction by Michelson and Morley and 
the formulation of special relativity by Einstein were the dramatic climaxes of the 
tremors that followed. Special relativity provided us with a new model of space-time. In 
this model, space-time is a four-dimensional continuum, equipped with a flat Lo- 
rentzian metric. Thus, the preferred slicing of space-time disappears and the distant 
simultaneity loses its absolute meaning. The new model brought with it new concepts, 
such as light cones and causal propagation of signals, and all physical theories were 
now subject to new viability criteria. The revision of the notion of space-time is indeed 
radical. Yet, the new model shares a feature with the old one: in both models, 
space-time is fixed once and for all, unaffected by matter. This changed with Einstein’s 
general relativity. The notion of space and time now underwent an even more drastic 
alteration. Here, space-time is no longer an inert background. It is sensitive to matter: 
matter curves space-time according to Einstein’s field equations. The geometry of 
space-time is a dynamical entity, with degrees of freedom of its own. Thus, geometry is 
very much on the same footing as matter. Now, although matter, such as this sheet of 
paper, appears to form a continuum at  first sight, it in fact has constituents. The closer 
we look, the richer is the substructure. Because general relativity taught us that 
geometry of space-time is also a physical entity, it is natural to examine its 
microstructure. To do so, we must bring in quantum mechanics; we must have a 
quantum theory of gravity. Hence, some of the basic questions of quantum gravity are: 
What is space-time made of? How do its microscopic “constituents” fit together to give 
us the continuum picture on an everyday scale? When does the continuum approxima- 
tion break down? What are the physical concepts that survive this breakdown? How 
could we do physics in absence of a space-time? 

Let us now turn to the evolution of quantum mechanics. Both the mathematical 
structure and the measurement theory of quantum mechanics make a crucial use of the 
background space-time in which the system under consideration resides. Here, because 
of the page limit, I will restrict myself to the mathematical structure. In nonrelativistic 
quantum mechanics, the presence of an absolute time features prominently in the 
Schrodinger equation, 

(ih)a*/at = H - q; 
it is with respect to this time that the evolution is unitary. In the transition to special 
relativity, this equation generalizes nicely: on the left-hand side of the Schrodinger 
equation, we can use a time variable adapted to any one Lorentz frame and, on the 
right-hand side, we can use the corresponding component of the 4-momentum of the 
system for the Hamiltonian. On the other hand, in general relativity, we do not have a 
preferred set of (Lorentz) rest frames and we begin to see the tension between general 
covariance and quantum time-evolution in quantum field theory in curved space-times. 
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In quantum gravity, the situation becomes much more dramatic. Because there is no 
background space-time at  all, it is hard to see even the meaning of the “t” that appears 
in the Schrodinger equation. Therefore, we are  now led to another set of questions: Is 
there a notion of “time” and “dynamics” in full quantum gravity? Or, are they only 
approximate concepts? If so, when does the approximation break down? Does this 
breakdown lead to a loss of unitarity in some intermediate regime? Can we do 
meaningful physics without the notion of time-evolution? 

As all these questions indicate, quantum gravity would have to do much more than 
provide us just with amplitudes for graviton-graviton scattering or corrections to 
quantities that we have been computing in quantum field theories. Because the 
gravitational field is intertwined with the very structure of space-time, the burden of 
quantum gravity is vastly heavier than that of, say, quantum electrodynamics or 
quantum chromodynamics. I t  must provide a deeper framework for all of fundamental 
physics. 

FAILURE OF PERTURBATION THEORY 

As we saw, difficult conceptual problems arise in quantum gravity because the 
space-time metric g, plays a dual role in the classical theory: on the one hand, it is the 
gravitational dynamical variable, analogous to  the Newtonian potential 6, and, on the 
other, it determines the space-time geometry. Therefore, an obvious strategy to 
simplify the situation would be to “split” the two roles played by the g, by introducing 
a background (say, flat) metric q ,  and defining a “dynamical variable” h, via g, = 

7, + Gh,, where G is Newton’s constant. The geometrical role of the metric can be 
assigned to qw and the role of the gravitational potential can be allotted to h,. We can 
now use the standard perturbative methods that have been so successful in quantum 
field theories. Quantization of the dynamical field h, on the background metric q, is 
rather straightforward and leads to massless, spin-2 quanta-the gravitons. The idea 
now is to study the interactions of these gravitons amongst themselves, as well as with 
other elementary particles, using perturbative techniques. Unfortunately, this simple 
strategy fails by its own criteria. 

Let me summarize the situation. If we use, as our point of departure, the 
Einstein-Hilbert Lagrangian, the theory turns out to be nonrenormalizable a t  two 
loops for pure gravity and at  one loop for gravity interacting with matter fields. This 
means that the quantum theory contains an infinite number of unknown parameters. 
Consequently, it has no predictive power a t  all. It is possible to imagine that the trouble 
arises because of the use of general relativity as a starting point for quantum theory. 
After all, we only know that this theory is in excellent agreement with experiments only 
macroscopically. At high energies (or short distances), the true dynamics may be quite 
different. Therefore, we may add higher-derivative terms to the Einstein-Hilbert 
action, terms whose effects may be negligible on macroscopic scales, but that dominate 
the microscopic behavior. The addition of such terms does indeed improve the 
short-distance behavior. The theory becomes renormalizable (in fact, even asymptoti- 
cally free). However, the quantum theory is no longer unitary. In fact, the Hamiltonian 
is unbounded below, signaling a dramatic instability. 

It then was felt that one should consider a supersymmetric extension of general 
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relativity. One hoped that the new boson-fermion symmetry would come to the rescue 
and that the infinities from the bosonic sector would be precisely canceled by the 
infinities in the fermionic sector. The new theory, supergravity, is indeed better 
behaved. Unlike higher-derivative theories, it is unitary and has a positive-definite 
Hamiltonian. Furthermore, even in the presence of (supersymmetric) matter, the 
theory is renormalizable to two loops. Unfortunately, though, renormalizability fails a t  
the third loop. 

A more radical revision is suggested by the superstring theory. Here, one abandons 
local field theories altogether and considers extended objects-strings-as fundamen- 
tal. It is an especially attractive idea because, unlike in any previous attempt, all of the 
matter couplings are now determined automatically; very little is fed in by hand. There 
also is a tremendous technical improvement. The theory is unitary and, in the standard 
terminology, perturbatively finite. This means that none of the individual terms in the 
perturbation theory diverges. However, when summed, the series diverges and does so 
rather badly.“ Thus, even in the superstring theory, perturbative calculations of the 
(total) physical amplitudes produce infinities. Now, in familiar theories (e.g., quantum 
electrodynamics), such infinities are generally regarded as “acceptable” because, by 
themselves, these theories are incomplete. It is possible to believe that if we understood 
the true nature of the microstructure of space-time and took into account all 
interactions that occur a t  high momenta, these infinities would go away. A theory of 
“everything”, on the other hand, cannot use such excuses. 

By now, it is generally accepted that the root of the problem is the use of 
perturbative treatments. More precisely, it is felt that all the imaginative attempts 
listed above fail because they assume that, even a t  small distance scales, where, by 
simple dimensional arguments, quantum gravity effects should dominate, space-time 
geometry is smooth. To obtain a viable theory, we must drop this assumption and let 
the theory itself tell us what the microstructure of space-time is like. For this, we must 
face the problem of quantum gravity nonperturbatively. 

Are there indications that nonperturbative gravity would indeed be qualitatively 
different? Let me first consider Einstein’s theory in 2+ 1 dimensions. This theory has 
no “local” degrees of freedom (i.e., no gravitons) because, in three dimensions, the 
vanishing of the Ricci tensor implies the vanishing of the total curvature. Conse- 
quently, the system has only global, topological degrees of freedom. Nonetheless, this is 
a very useful “toy model” because, structurally, it is very similar to 3 + l-dimensional 
Einstein gravity. Now, it was believed for a long time that this theory was perturba- 
tively nonrenormalizable. However, recently, Witten’ has shown that a nonperturba- 
tive quantization is possible and leads to an interesting and viable quantum theory. The 
exact solution also reveals that the “ground state” of the theory is very different from 
the naive guess used in the perturbation theory. In particular, in this state, the 
expectation value of the metric operator vanishes rather than giving the flat, 
2 + I -dimensional Minkowski metric. 

What is the situation in 3 + 1 dimensions? Let me give a simple example that brings 

‘For the case of the bosonic string, the divergence is discussed in reference 1. The situation is 
expected to be essentially the same for the heterotic string (D. Gross, private communication, 
1988). 
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out the limitation of perturbation expansions in powers of Newton’s constant already in 
the classical theory and that also illustrates a key feature characteristic of theories in 
which the space-time metric is a dynamical variable rather than a part of the 
background structure. Consider the problem of self-energy of a point charge. It is 
convenient to think of a point charge as a limit, as t goes to zero, of thin shells of radius t 
with uniform charge and mass densities. Now, if we ignore gravity altogether, the total 
energy is given by 

with mo being the rest mass. The electromagnetic self-energy, of course, diverges as t 
goes to zero. Let us bring in Newtonian gravity. Here, the mass, including the 
gravitational self-energy, is 

e2 Gmi 
m(t) = m, + - - __, 

t t 

which again diverges in the limit (unless e and m, are fine-tuned by hand). Let us now 
bring in general relativity. The key idea here is that everything couples to gravity 
including gravity itself. Therefore, in the expression of the gravitational self-energy, we 
have to replace m, by m. The resulting equation, 

e2 Gm2 
m(t) = mo + - - __, 

t t  

is quadratic in m(t) and thus has two roots. Let me just appeal to physical 
requirements and choose the positive root: 

which, in the limit as t tends to zero, yields a finite result, 

e 
m(t = 0 )  = - 

45 
Note that we did not have to fine-tune any of the parameters. If we had done a 
perturbation expansion in powers of Newton’s constant, as is clear from the formula for 
m ( t )  above, each term in the series would have diverged even though the result is 
perfectly finite. Can this argument be made rigorous? This was achieved by Arnowitt, 
Deser, and Misner already in the 1960s using the exact framework of general 
relativity. Of course, the model itself is too simple (in particular, it ignores all quantum 
effects) to provide realistic values of mass of observed particles. However, it does 
suggest that general relativity has certain “built-in” regulating mechanisms that, 
unfortunately, are lost if we insist on using perturbation expansions in powers of 
Newton’s constant. A detailed examination shows that this is a feature shared by all 
theories in which there is no background space-time metric. More precisely, the 
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Hamiltonian structure of theories changes dramatically once the metric itself becomes 
dynamical, and it is this change that is a t  the root of the “regulating mechanism”. 

RECENT DEVELOPMENTS 

Once we accept the premise that the problem of quantum gravity should be faced 
nonperturbatively, the rationale for abandoning general relativity as the point of 
departure loses its force. This does not mean that quantum general relativity would 
necessarily be the correct physical theory. Rather, the viewpoint is that it is as good a 
starting point as any if we want to gain insight into the type of questions that were 
raised in the second section of this report. 

Let us then focus on the problem of nonperturbative quantization of general 
relativity. The approach that seems most promising for an exact treatment is the 
canonical quantization method because, in this program, we do not need to fix a 
background geometry or build strong fields by superposing weak fluctuations; we can 
deal directly with highly curved geometries. The major obstacle that had blocked 
progress in this program had been the fact that Einstein’s equations take on a rather 
complicated form in terms of the traditionally used canonical variables, making it very 
difficult to solve their quantum analogues. This obstacle was removed recently:’ it was 
shown, by performing a canonical transformation on the gravitational phase-space, 
that we can introduce new canonical variables in terms of which all equations of the 
theory become polynomial. Furthermore, their use brings out a hidden relation 
between Einstein’s theory and Yang-Mills theory, a relation that had hitherto gone 
unnoticed. This enables us to import ideas and techniques into general relativity and 
quantum gravity that have been successful in Yang-Mills theory and QCD. These two 
features-polynomialization of the equations and the close relation to Yang-Mills 
theory-seem to be quite robust; they are not tied to the specific form of the Einstein 
action. In  particular, they continue to exist if we allow for a nonzero cosmological 
constant: couple the gravitational field to matter (i.e., Klein-Gordon, Dirac, and 
Yang-Mills or consider a supersymmetric extension of the theory.6 As a 
result, there has been significant activity in nonperturbative quantum gravity in the 
last two years. As mentioned in the INTRODUCTION, though, 1 will not be able to present 
a comprehensive survey of these developments here; I will only provide a brief 
summary of the basic ideas and a guide to the literature? Nonetheless, as is perhaps 
inevitable in a discussion of recent work, the material that follows is a little more 
technical than the broad introduction to the field contained in the first three sections. 

For simplicity, let me restrict myself to the source-free Einstein theory. It is 
convenient to begin with complex general relativity-that is, with a complex metric 
satisfying Einstein’s equation on a real 4-manifold-and then take the appropriate 
“real” sections of the resulting complex phase-space to recover real Lorentzian or 
Euclidean general relativity, depending on the application we have in mind. The 
canonically conjugate pair then consists of complex fields if and A: on a real 

bFor a detailed review of the work prior to January 1988, see reference 7. 
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3-manifold 3, where “u” is the (co)vector index and “i” is the (triad or) SO(3) internal 
index. (A tilde over a letter denotes a density of weight one and a tilde below a letter 
denotes a density of weight minus one.) In any solution to field equations, EP represents 
a (density-weighted, complex) triad, whereas the connection 1-form A: is a potential 
for the self-dual part of the Weyl curvature. However, because of the mathematical 
structure of these fields, we also can think of them as the canonical variables of 
Yang-Mills theory: there is a natural isomorphism between the two phase-spaces. The 
diffeomorphism and frame-rotation invariance of Einstein’s theory leads to first-class 
constraints. They now have the form, 

a,,,?-? a = 0, t r  E‘ x B’ = 0, and t r  E’ E‘ x B’ = 0.  

Here, E’ is a short notation for the vector density E; and B’ is the vector density 
representing the magnetic field of the connection 1-form A:. (Note that, in general, the 
Yang-Mills electric and magnetic fields first arise as vector densities of weight one. If 
we have a background space-time metric, we can “de-densitize” them using the 
determinant of the metric.) The first of these constraints is precisely the Gauss law, 
which now ensures that the internal triad rotations are gauge motions. Thus, every 
initial datum of Einstein’s theory is also an initial datum for Yang-Mills theory, which 
happens to satisfy four additional constraints (one vectorial and one scalar) that are 
algebraic in the field strengths. Hence, we have an embedding of the Einstein 
constraint surface into Yang-Mills’. Note that the degrees of freedom match: SO(3) 
Yang-Mills theory has 3 x 2 = 6 degrees of freedom, which, due to the four new 
constraints, reduce to the two degrees of freedom of the Einstein theory. The 
embedding allows us to go back and forth between the two theories. For example, 
Renteln and Smolin* have used this embedding to borrow techniques from Hamilto- 
nian lattice QCD to quantum gravity, whereas Samuel’ has shown that the instanton 
solution to the Euclidean Yang-Mills equation can now be interpreted, via this 
embedding, as a gravitational instanton with cosmological constant (namely, the 
4-sphere). 

Let us now consider dynamics. For this, we need to introduce a lapse and a shift 
field that will determine what we mean by “time-evolution”. For simplicity, let me set 
the shift to zero. Then, the Hamiltonian generating time-evolution defined by a lapse 8 
(which, in the present framework, is a density of weight minus one) is given by 

H ( A , E ) = J  d ’ x @ t r E . E x ~ t $  fltr{(E“A,- A,E”)E}.dg 
ax 

Note that the integrand of the volume piece is a density of weight one, so the integral is 
well defined. Contrary to appearances, the surface integral is gauge-invariant because 
the gravitational boundary conditions are different from those used in the Yang-Mills 
theory: now, Eq tends to the constant triad at  infinity as l l r ,  whereas A :  goes to zero 
as 1 / r 2 .  (Thus, in particular, the triads in the surface integral can be replaced by their 
asymptotic constant value.) As in the standard canonical formulation of general 
relativity, the integrand of the volume piece is just a constraint. It is clear by inspection 
that the constraints and the Hamiltonian are polynomial in the basic variables. Finally, 
we have to impose the “reality conditions” to ensure that we are dealing with real 
(Euclidean or Lorentzian) general relativity. It turns out that these require that the 
(densitized) metric, tr E”Eb, constructed from the triads, and its Poisson brackets with 
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the constraints should be real.‘ Because the metric as well as the constraints are 
polynomial in the basic canonical variables, so are the reality conditions. Thus, all 
equations of the theory are polynomial in Ef and A : .  Note, in particular, that the 
inverse of the triad (or the 3-metric) never enters any of the field equations, so all our 
equations continue to be meaningful even if the triads Ef become degenerate. 
Therefore, we have obtained a slight generalization of Einstein’s equations. This fact 
may be significant to analysis of singularities in classical theory and topology change in 
quantum theory. We shall return to this feature of equations at  the end of this report. 
To conclude the present discussion, we note that the entire framework can be obtained 
starting from a manifestly covariant, four-dimensional Lagrangian formulation. (See 
references 10 and 11 and the appendix in reference 12.) 

Let us now turn to the problem of quantization. Work is in progress on three fronts. 
The first deals with the problem of finding exact solutions to quantum constraints. 
Recall, in the standard canonical formulation, that the scalar constraint depends 
nonpolynomially on the metric through the scalar curvature term. Due largely to this 
complication, not a single solution to this quantum constraint was known. Indeed, even 
in quantum cosmology, where all but a finite number of degrees of freedom are 
ignored, the problem of finding exact solutions has proved to be difficult as soon as we 
go beyond the simplest of models and allow, for example, anisotropies. A comprehen- 
sive solution was available only in the extreme strong coupling limit of the theory where 
the nonpolynomial scalar curvature term disappears. On the other hand, in terms of the 
new variables, all constraints are polynomial. Therefore, we may now hope to obtain 
exact solutions to quantum constraints. This hope has borne out. In the context of 
“mini-superspaces”, Kodama13 has obtained exact solutions to all constraints for 
Bianchi type IX models that allow anisotropies.“ More significantly, in the full theory, 
the simplicity of the constraints was exploited by Jacobson and Smolin14 to obtain a 
large class of quantum states that are annihilated by the difficult scalar constraint. 
These states may be thought of as Wilson loops of Yang-Mills theory. Using this result, 
Rovelli and Smolin” recently have obtained an infinite-dimensional space of solutions 
to all quantum constraints. The solutions are  given in the “loop-space representation”, 
that is, as functions on the loop space of the 3-manifold 2. These results have generated 
excitement because they bring out an unexpected relation between knot theory and 
quantum gravity. 

These exact solutions represent the physical states of full quantum gravity. 
Therefore, it is clear that they contain a wealth of information about the microstruc- 
ture of space-time a t  the Planck length. How can we extract this information? For this, 
we have to introduce a suitable inner-product on the space of physical states and 
construct physically meaningful observables. It is a t  this stage that the reality 
conditions will play a key role: the inner-product has to be such that the self- 
adjointness relations implied in quantum theory by the classical reality conditions are 
satisfied on the Hilbert space of physical states. (These steps have been completed in 
the weak field limit where we now obtainI6 a loop-space formulation of spin-2 gravity 

‘His analysis of the physical interpretation of these solutions is, however, incomplete. I believe 
that a correct treatment of the issue of appropriate inner-product is feasible in this case and is 
likely to show that at least some of his solutions are physically interesting. 
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that can be shown to be equivalent to the standard Fock-space description.) Once this 
mathematical framework is completed, we must try to develop physical intuition for 
various “natural” operators on the physical Hilbert space, that is, for their action, their 
eigenstates, their eigenvalues, etc. Are there analogues of “creation” and “annihila- 
tion” operators? What is the character of the knot and link excitations they create or 
annihilate? In the asymptotically flat context, how is the Hamiltonian operator 
represented on this Hilbert space? Is there a natural candidate for the ground state? 
Most of the notions we use in quantum field theory and general relativity make sense 
only on a background space-time geometry. Now, we are in an entirely new regime in 
which there is no such geometry. Therefore, we have to learn to ask new, interesting 
questions. We have to learn to do physics in absence of space and time. The exact 
framework constructed by Jacobson, Rovelli, and Smolin seems well suited to probe 
this entirely uncharted Planck regime. 

In itself, however, the framework seems to be too “pristine” and “abstract” to make 
contact with the conceptual structure of physics as we know and use it. There is, for 
example, no notion of “time” and, hence, of “time evolution”. How does the physics 
that we are familiar with then arise? This is the second broad category of questions 
that is being pursued. It turns out that the scalar (and, similarly, the vector) constraint 
can be recast using A: and its complex conjugate as follows: 

where D is the derivative operator compatible with E“,  At = t r  EbA,, and A = A:. 
(Contrary to appearances, this equation is also polynomial in the basic canonical pair.) 
In quantum theory, physical states are  annihilated by the quantum analogue of this 
constraint (the complex conjugate of A :  being replaced by its Hermitian adjoint). The 
idea now is to think of A: as containing some “heavy” degrees of freedom that are to be 
regarded as “clocks” with respect to which the other, “light” degrees of freedom of A:  
evolve. The term with inverse powers of Newton’s constants as coefficients refers to the 
heavy degrees and is to be interpreted as the “time displacement” operator, whereas 
the remaining terms are to be thought of as the Hamiltonian density generating these 
displacements. With this interpretation, the quantum scalar constraint would take on 
the form, 

It is interesting that the Hamiltonian density, H G ) ,  has a rather simple form; it is a 
linear combination of terms of the form (A* - A ) .  The broad idea of extracting time 
from the argument of the wave function is rather old in the canonical quantization 
program. However, if we use the traditional “metric representation”, this appears 
impossible to achieve in practice even in the weak field limit.17 In contrast, in terms of 
the new variables, constraints split up nicely even in the full theory. In the weak field 
limit, we can carry out the idea in detail. If we keep terms up to second order in the 
expressions of quantum constraints, the role of time is, in essence, played by the trace 
of A: (with respect to the background triad) and the scalar constraint reduces to the 
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correct Schrodinger equationsd Thus, by appropriately isolating “time” in the 
argument A :  of the wave function, we can derive the Schrodinger equation. Because 
the constraints have the form needed for the “split” into the heavy and light degrees 
even in the full theory, it is tempting to hope that we can repeat this procedure in more 
general contexts, perhaps even in the exact theory. Whether we can do so will 
determine if the validity of the Schrodinger equation is an exact or only an 
approximate consequence of nonperturbative quantum gravity. 

The issues discussed above are conceptual and therefore somewhat formal in 
character. Can we make any “phenomenological” predictions that the experimentalists 
can, a t  least in principle, test directly? This is the third category of issues being 
investigated. The basic idea here is to exploit the close connection between the present 
formulation of general relativity and Yang-Mills theory to incorporate “particle 
physics type ideas” into quantum gravity. One example of these is the analysis of 
&vacua and the associated CP violation in quantum gravity.’* It turns out, due to the 
nontriviality in the topology of the effective configuration space, as in Yang-Mills 
theory, that there is a one-parameter (0-) ambiguity in the quantization of the classical 
theory and there is C P  violation if 8 fails to be a multiple of T .  The effect itself is small 
and will be probably dwarfed by other CP-violating processes. However, it is 
interesting that we can venture outside the “formalistic realm” to which investigations 
in canonical quantization have been generally confined. It is of great interest to see if 
we can carry over to gravity other qualitative predictions of Yang-Mills theory, such as 
the constraints imposed on permissible models of “fundamental” particle multiplets by 
the anomaly cancellation requirement. 
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