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and R. M. Thaler, Phys. Rev. 109, 2133 (1958).
These authors treat the potential nonrelativistically;
to convert the potential to the conventional relativistic
form, as the fourth component of a four-vector, we
have multiplied their result by Mlf/Eff. .
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To (sg)u2 m 53(r) (2)

where rno is the bare mass of the particle and
5'(r) is invariantly defined in three-space as a

The infinite mass self-energy difficulties of
quantum field theory already occur, as is well-
known, in the corresponding classical theories.
Although cutoffs may be introduced to effect re-
normalization in both the classical and quantum
cases, such procedures are physically unsatis-
factory. We wish to point out in this note that at
least for the static (Coulomb-type) contribution,
one obtains finite results for the classical self-
energies if the gravitational contribution to the
total energy is included. Furthermore, it will
be shown rigorously (in the static case) that the
natural cutoff furnished by general relativity
implies that all the mass of a point charge arises
from its total self-field and that a neutral par-
ticle has no mass.

It has previously been shown' that the energy
of the gravitational field is given by'

E= . . . -g. . . dS.,v, ~ g~~,
~ ~ ~ ~

where dSz is a two-dimensional surface element
at spatial infinity. When point particles or other
fields (such as the electromagnetic field) are
coupled to the gravitational field, Eq. (1) repre-
sents the total energy of the combined system. '
We begin by considering the metric field arising
from the coupling of a neutral static point par-
ticle. In isotropic coordinates [gt&

= y4(r)5t&] the
relevant field equation is

scalar density, ' i.e. , f5'(r)d'x = 1. The solution
of Eq. (2) which is asymptotically flat is seen to
be

y(r) = 1+mo/[32zry(0)]. (3)

The parameter m =-mo/y(0) is given in terms of
mo by

m = lim 2mo[1+ (1+mo/8we)~2] '.
&-0

(4)

In Eq. (4), e is essentially the "radius" of the
5' function. This relation between m and mo is
a consequence of explicitly considering the
source term in Eq. (2). From Eq. (1) one sees
that E =m. That this energy is to be correctly
interpreted as the total mass of the particle fol-
lows from the fact that an isotropic time-sym-
metric metric possesses no dynamical gravita-
tional modes. ' Thus E represents the mass of a
gravitationally clothed one-particle system (and
no dynamical gravitational excitations). From
Eq. (4) then, this total mass approaches zero as
(32mmoe)~. The gravitational self-mass for a
neutral particle therefore cancels the bare mass
m, . The physical origin of this result (m = 0) is
connected to the well-known fact that there is an
upper limit, in general relativity, to the amount
of energy that can reside in a given region. As
the size of the particle (here e) goes to zero its
mechanical energy content must vanish. We may
note that the (incorrect) weak-field result for
the self-mass could be obtained from Eq. (4) by
taking the limit m, small before letting c tend to
zero. Here one would find m =mo - —,

' mo'/e+ 0(1/e'),
the standard linearly infinite Coulomb-type self-
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-8XV'X=m 5'(r)+ 2X
' ' 8, (6a)

8 . =e5'(r).
2

(6b)

~ ~

The term 2X 'h~g~ in Eq. (6a) is the electromag-
netic energy density. The solution for X(r) is

X'(r) = (1+m/32m )' - (e/16mr)',

where m is related to the particle's bare mass
mo and its charge e by

m = lim 16m(-e+ [e + (e/8z)'+m, e/8g]»). (8)
q~Q

From Eq. (1), we again have E =m. As in the
neutral case there are no dynamical gravitational
modes excited, nor are there any transverse
canonical electromagnetic modes present since

energy. Higher terms in this perturbation ex-
pansion are more and more divergent. The cor-
rect result, m =0, thus indicates the lack of va-
lidity of the perturbation approach.

If a particle is coupled to another field of non-
zero range, it may be expected to have nonvanish-
ing total mass due to the interaction with the
other field. In flat space, one has, for electro-
magnetic interactions, the infinite Coulomb self-
energy —,'e'/(4m'). We shall now show that this
infinite result is made finite when gravitational
coupling is taken into account. The coupling of
the electromagnetic field to the gravitational
field is included in the generally covariant elec-
tromagnetic Lagrangian,

=A 5 + —,'(-g)»p p g g, (5)em p, p, pn uP'

where A is the vector potential and W&~ is the
field strength tensor density. We are here em-
ploying that formulation of the electromagnetic
field in which A and S&~ are to be varied in-
dependently. This gives rise to the usual Max-
well equations as well as to the relations between
potentials and field strengths. The analysis for
finding the independent dynamical variables of
the Mmovell field proceeds just as in Lorentz
covariant electrodynamics. ' Qne finds that the
canonical variables are Az and 8 =-F, the
transverse parts of A~, g~ (AP q

= 0 = & ~).
The longitudinal part of 82 is determined by the
differential constraint equation ~ 2= p where pt
is the charge density.

In order to investigate the. self-energy of a
point charge, one must consider the coupled
Einstein-Mmovell equations. For the static case
these are

the solution of Eq. (6b) we have taken, Z=(e/4m)Vr ',
is purely longitudinal. Thus m is simply the total
mass of the charged particle. The mass is finite
and equals 2 le I, or in conventional units,

yn =z-» [e ~/(4&)»

It should be stressed that this finite result has
been obtained entirely within the framework of
standard Einstein-Maxwell theory. The possibil-
ity of a finite combined gravitational-electro-
static self-energy can be seen already in New-
tonian physics where ——aym'/e would compen-
sate e'/4m' if Eq. (9) held. Of course, the rela-
tion (9) between m and e was not chosen just to
achieve this compensation, but was forced in
order that solutions of the general relativistic
Eqs. (6) exist. That the total mass here is not
zero, unlike the neutral case, arises from the
fact that the electric energy term in Eq. (6a) is
spread out in a nonzero region. Similarly, an
electrically uncharged particle coupled to a
Yukawa field, for example, will possess a non-
vanishing finite self-mass independent of mo.
As in the neutral case, the weak-field limit can
be obtained by expanding in e and m, before let-
ting e-0. One would get then m =ma -2ymo /e
+~2e2/4me+0(1/e ), and no compensation occurs
since e and m, are independent parameters,
which shows again the lack of validity of the per-
turbation expansion.

The solutions derived here for the neutral and
charged one-particle states differ from the con-
ventional Schwarzschild and Reissner-Nordstrom
metrics in two ways. First, these usual metrics
can be seen not to satisfy Eqs. (2) and (6), re-
spectively, for any finite mass mo and in fact
only solve the field equations for x&0. Hence
the correct relation between the parameter m
and the bare mass m, and charge e cannot be
made for these solutions, i.e. , one would fail to
discover that, for a point particle, m is deter-
mined by e. Second, the way in which the metric
enters into the matter stress tensor is uniquely
determined by the canonical formalism; this is
not the case for the usual discussion of coupling
in which there is still ambiguity. '

The extension of the above results for the mass
of a single point source to two-body solutions is
(aside from its intrinsic interest) necessary to
see whether these masses enter properly into
the interaction energy. %'e have been able to
carry out the analysis for the case of two charges
of the same sign. For simplicity, we consider
here the situation of equal bare masses and equal
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charges. In Eqs. (6), the term m, 6'(r) is re-
placed by ma[6'(r-r, )+ 6a(r-ra)] and e5'(r) by
e[6'(r-r, )+6'(r-r, )], where r, and r, are the po-
sitions of the point charges. The solution cor-
responding to Eq. (7) generalizes to the form'
)('(r) = p(r) - y'(r) where y=1+ (a/82m)(lr-r, l

+ Ir-r, I
') and y=(e/16m)(lr-r, I '+ Ir-r, I

').
Here the total energy E = 2a and the field equa-
tions give

E = 82m(- e+ [e'+ (e/8m)'(1+ x)'

+ (m, e/8m)(1+x)]~'][1+x] ', (10)

where x=e/Ir, -r, l. In the limit e =0, one ob-
tains E =4(e ) =2m. Since the dynamical modes
of both the Einstein and Maxwell fields again
vanish, E here represents the total energy of the
two particles. For two neutral particles (e =0),
one has E = 0 in accord with the one-particle re-
sult. When e g0, one would have expected for
large r» =

I r, -r, I that E —2m = [(e'/4m) - ym'] /r».
However, this interaction energy vanishes on
account of Eg. (9). The rigorous result above
(E =2m) shows that the cancellation between the
electrostatic and gravitational interaction ener-
gies holds' even for small x». While these re-
sults are consistent with those for one body, it
would be of interest to examine the case of op-
posite charges where the cancellation would not
be expected. This case cannot be obtained merely
by changing the sign of the I r-r, I

' term in qr(r),
since the electric field 8 corresponding to such a
metric has a transverse part, h T, so that the
total energy now includes a contribution from
these pure electric dynamical modes. We have
not been able to solve Eq. (6a) with S=eV(lr-r, l-'
- Ir-r, I

') for an asymptotically flat gf&.
The compensation of the usual infinite static

self-energies obtained here arises due to the
distinctive nature of the gravitational coupling
which modifies the free Lagrangians of all fields
rather than introducing an additive interaction
Lagrangian. Ultimately, the interest of these
classical results rests on their extension to
quantum theory. Of course, the criteria for the
usefulness of a gravitational cutoff in that do-
main would depend not merely on finiteness but
on the numerical values it would yield.

Supported in part by a National Science Foundation
Research Grant.

~Alfred P. Sloan Research Fellow.
~R. Arnowitt, S. Deser, and C. W. Misner, Nuovo

cimento (to be published); Phys. Rev. 116, 1322 (1959);
Phys. Rev. (to be published); Phys. Rev. (to be pub-
lished); which will be referred to as I, II, III, and IV,
respectively.

We use units such that ~ = 16wy c = c = 1, where y
is the Newtonian gravitational constant. Latin indices
run from 1 to 3, Greek from 0 to 3. The summation
convention holds even if repeated indices are both co-
variant. A comma represents ordinary differentiation.
It should be mentioned that the energy of Eq. (1) de-
pends only on the spatial part of the metric which con-
stitutes the initial Cauchy data. Thus, to calculate the
energy of the system one does not have to know goo or
any time development of the system. The same ex-
pression for the energy may also be obtained from the
usual surface integral forms of the energy Isee for
example L. Landau and E. Lifshitz, Classical Theory
of Fields (Addison-Wesley Publishing Company, Inc. ,

Reading, Massachusetts, 1951), Eq. (11-88), where

g() cancels out in the linearized asymptotic form
va id at spatial infinity.

3That this is reasonable follows from the fact that
the energy of a system is the coefficient of 1/r in the
asymptotic expansion of g&&., see also IV.

4The ( g)~ factor on the left-hand side of Eq. (2) is
uniquely determined when one puts the Lagrangian
including matter variables into canonical form (see
IV). That it must be present follows obviously from
the scalar density nature of the 63(~) function„

If one chooses the coordinate conditions x = 2g~
-(1/2& )g &, f = -(1/2%2)(m + V27t ) (in the notation of
reference 1), the analysis of the Nuovo cimento Letter
would show that the canonical variables are g &jTT and
x~~T T. These dynamical modes vanish everywhere
when the spatial metric is isotropic and m~~ =0 (initially
static situation).

SR. Arnowitt and S. Deser, Phys. Rev. 113, 745
(1959).

7Thus, in the usual treatment of the interior Schwarz-
schild solution, the bare rest-mass density is never

CC

even introduced. The standard proper rest-mass
density parameter includes clothing effects in its de-
finition in an unanalyzed manner.

See C. W. Misner and J. A. Wheeler, Ann. Phys.
2, 594 (1957).

~A corroboration of the absence of interaction en-
ergy and therefore of forces between the particles is
furnished by the fact that in the case m =2I el, the ini-
tial value metric described by g and (It) determines a
static solution of the Einstein equations [A. Papapetrou,
Proc. Roy. Irish Acad. A51, 191 (1947)].
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