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Quantum Theory of Gravitation: General Formulation and Linearized Theory*
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The problem of quantizing general relativity using the Schwinger action principle is considered. The
advantages of this technique are discussed and the general formulation of the action principle using the
Palatini Lagrangian is given. The difFiculty in quantizing general relativity is due to the constraint equations,
Two types of constraints are distinguished: algebraic constraint equations and differential constraint equa-
tions. The former may be dealt with trivially in this formalism. The latter arise due to the presence of
function-type ("gauge") group invariances. In order to eliminate these variables one must make use of the
group transformations themselves. Thus in general relativity the transformation from the full set of variables
to the independent canonical ones is a coordinate transformation. The linearized theory is treated in detail
from this viewpoint and the full theory is briefly discussed.

I. INTRODUCTION

~ ~ ~ ~

~

LTHOUGH the general theory of relativity has
been the subject of considerable investigation and

application since its conception, it has been treated to a
large extent in a manner apart from the other field
theories of physics. The reasons for this lie in two
fundamental characteristics of the Einstein theory,
namely, the identification of the field variables of the
theory with the metric structure of physical space-time
on the one hand, and the thoroughly nonlinear nature
of the field equations on the other. Further, the historical
applications of the theory have tended to stress the
static solutions rather than the field as a dynamical
entity.

Modern techniques for the treatment of classical or
quantum fields have dealt with them as systems of
in6nitely many degrees of freedom to be investigated by
Lagrangian or Hamiltonian formalisms. For the simpler
Lorentz-covariant field theories where either no con-
straint variables exist or alternatively the constraint
variables may be eliminated by algebraic manipulation,
the canonical treatment follows simply that of ordinary
particle mechanics. In the case of fields such as the
electromagnetic one where the existence of a gauge
group implies that constraints exist, which cannot be so
eliminated, the analysis becomes more complicated. For
these cases, the problem resides in obtaining an explicit
determination of the true dynamical field variables from
among the total number required for relativistic in-
variance. The identification of these canonical variables
is most immediate when the field equations are cast in
first-order Hamiltonian form. It is well known that any
Lorentz-covariant field of integral as well as half-
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integral spin can be put in such a Kemmer form. ' YVhile

it may seem purely a matter of preference as to whether
one formulates a set of field equations in first-order or
second-order form, it is essential, as already mentioned,
even in the classical theory, to utilize first-order equa-
tions in order to determine what variables are truly
canonical. Further, in the quantum theory, it becomes
even more necessary to make this choice. This fact has
been stressed by Schwinger' in his formulation of
quantization which we shall employ here. The advantage
of doing so resides in the rigid connection this procedure
establishes between field equations and commutation
relations among the canonical variables.

The usual Lagrangian formulation of general rela-
tivity views the metric tensor, g„„, as the only field
variable. The conventional Lagrangian is then quadratic
in the first derivatives of g„„,yielding, upon variation,
the second-order Einstein field equations. Such a
Lagrangian leads to difficulties in the determination of
the canonical variables for the reasons mentioned above.
The large amount of nonlinearity of the theory leads to
a further difficulty at the quantum level in that there
exists many admissible Hermitian quantum Lagrangians
which may be formed from the classical one by re-

arranging the order of the operators. Both these prob-
lems can be circumvented by making use of the Palatini'
formulation of the Einstein theory. This technique, by
making the metric tensor and the affinity, I' „„inde-

pendent field variables reduces the Lagrangian to a
structure linear in their derivatives. The relation be-
tween the metric and the affinity now results as an
extra set of field equations. Thus the Palatini method

plays the role of the Kemmer formalism for general

'O. Klein, Arkiv Mat. Astron. Fysik 25A, No. 15 (1937); N.
Kemmer, Proc. Roy. Soc. (London) A173, 91 (1939).' J. Schwinger, Phys. Rev. 82, 914 (1951);Phys. Rev. 91, 713
(1953); and lecture notes, Stanford University, 1957 (un-
published).' See, for example, E. Schrodinger, Space Time Structure (-Cam-
bridge University Press, Cambridge, 1950).
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2. ACTION PRINCIPLE FOR THE PALATINI
FORM OF GENERAL RELATIVITY

The Schwinger action principle' for relativistic fields
may be written in the following form4
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where the action, 8 ~2, is a four-dimensional integral
between space-like surfaces 0-~ and 0.2,

d4x L(x). (2.2)

4 We employ natural units Pi =c= 1.Further we set ~ =87i-p/c4 = 1
h is the Newtonian gravitational constant). This sets the scale of
length. Throughout this paper Greek indices run from 0 to 3,
Latin indices from j. to 3, and x'= t. A comma in a subscript or the
symbol B„will denote @n ordinary partial derivative,

relativity and hence is admirably suited for use in the
Schwinger action principle.

Returning to the question of 6nding the correct
canonical variables, the difhculty of reduction from the
full number of field quantities (now fifty in number)
resides in the invariance of the theory under a function
group. In electrodynamics, this group is the gauge group
while in general relativity it is, of course, the group of
general coordinate transformations involving four inde-
pendent functions. The decrease in the number of
independent variables is implicitly contained in the
differential constraints not involving time derivatives
(thus the equation V.K=0 in electrodynamics elimi-
nates the longitudinal photons). The viewpoint to be
taken in the present work is that the "gauge" groups
themselves may be utilized to extract the true canonical
variables from among the original variables. Thus
starting from an arbitrary "gauge" frame the procedure
involves making a "gauge" transformation to that
particular frame in which all variables are canonical. In
electrodynamics this corresponds to making a trans-
formation to the radiation gauge, which owes its
signi6cance to the fact that the Maxwell equations take
on pure Hamiltonian form. While the dynamical vari-
ables will have been arrived at by going to a special
gauge, it should be emphasized that these variables are
gauge scalars. In the gravitational case, the corre-
sponding operation is a coordinate transformation to a
particular frame. These points will be elucidated ex-
plicitly in the following work.

In Sec. 2 the action principle formulation for general
relativity in the Palatini scheme will be discussed.
Section 3 will be concerned with the linearized gravi-
tational theory; the analogies to electromagnetism will
be examined. Section 4 will give a preliminary dis-
cussion of the full gravitational theory as well as of
speci6c differences that may be expected between the
classical and quantum theory of this 6eld. The detailed
treatment of the Einstein theory will be given in a
subsequent paper in collaboration with C. W. Misner.

L(x)d4x=G(at) G(a s). — (2.6)

The vanishing of the variation of the action in the
interior region between a.s and a.i Lwhich is contained in
Eq. (2.6)] gives rise to the Lagrange equations of
motion. As may be seen. from the structure of the
Lagrange density in Eq. (2.3), these equations are of the
Kemmer form. Thus the action principle yields three
results: the Lagrange equations of motion and the two
generators; these must be internally consistent with one
another. From the generator, G, (o.), one may define the
energy-momentum vector of the system, E&, which
allows one to derive the Heisenberg (commutator)
equations of motion. One employs the generator G„(a.)
to obtain the canonical commutation relations in such a
fashion that the Heisenberg and Lagrange equations are
identical. Thus for any Lagrangian, the Schwinger
action principle yields a unique set of commutation
relations whose consistency with the equations of mo-
tion is a test of the quantizability of the theory. Further,
it should be stressed that the principle involves only
quantum operators and does not make use, therefore, of
the correspondence principle.

The Palatini Lagrange density in general relativity is
given by

J-(x)= —S"" &"=A"" LI' ",-—s( .-. +
—6".[(r&.„r-„,)—(rs„, r-„„)j, (2.7)

a' and b' represent eigenvalues of two complete sets of
operators on the respective surfaces 0.

~ and 0-~. The
Lagrange density, L(x), is to be written in a form linear
in the derivatives of the 6eld variables. The general
form assumed is

J-(x)= 2LX(x)&"~.X(x)—~.X(x)&"X(x)j—&(X.) (2.3)

In Eq. (2.3), X is a column symbol whose components,
X„are the field variables (in the erst-order representa-
tion), J3& are a set of four numerical matrices (unique
for every field) and H(X,) is a scalar density function of
the field variables X, (but not of their derivatives).
Variation of the transformation function on the left
hand side of Eq. (2.1) consistent with the dynamics
gives rise in general to two types of terms: first a change
of the complete set f u) on the surface and second vari-
ations of the surface corresponding to the space-time
displacement of the system. Thus

~&~'at
I
&"~s)= s&~'ar

I G(at) —G(~s)
I
&"as) (2 4)

where G(a) is the generator of the two types of variation.
These are represented in the Hilbert space by in6ni-
tesimal unitary transformations. In general, then,

G(a.)=G„(a)+G.(a), (2 5)

where G~(a-) generates the changes in the complete set
on the surface a and G (a.) generates the space-time
displacements. From Eqs. (2.1) and'(2. 4) one sees that
the dynamics of the system is speci6ed by
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where A&" is the metric tensor density, F „,is the afFinity,
and

A 8=—-,'(AB+BA). (2.8)

In Eq. (2.7) the fundamental field quantities are g&" and
I' „„.These quantities are to be varied independently.
Note that it is the metric tensor density that is the basic
6eld variable in contradistinction to the usual treatment
in which the metric tensor, g„„,is taken as primary. The
symmetrization introduced into I. insures its Her-
miticity. Further,

&Vv= & pv, a+2 (& Va, v+& va, V)

+I'P „r „p
—I'P

p
I' „„, (2.9)

is still a second-order tensor (the symmetrization does
not disturb the transformation properties but merely
guarantees Hermiticity). There exist other possible
Hermitian quantum generalizations of the classical
Lagrangian. These, however, cannot be written in the
form AI"" E„„.In any event, as will be indicated later, all
these Lagrangians yield the same Lagrange equations of
motion and the same G, (o) but perhaps diferent G, (o).
Since the Heisenberg equations of motion are obtained
from G, (o), the question of order of factors is to be
settled by invoking the consistency between the Heisen-
berg and the Lagrange equations.

Addition of a divergence to L(x) allows it to be put
into the standard form (2.7) where 7t is a fifty-component
column symbol, 2t= (g&",I' v ), and H(X,) is the cubic
structure in Eq. (2.7) (with positive sign). Thus the
Lagrangian has the form of a usual Lorentz-covariant
theory with cubic interaction. The numerical matrices
BI' are clearly real and antisymmetric. As has been
shown by Schwinger, ' 6elds whose 8& have the above
properties, which are Lorentz-covariant, and which
possess a lowest energy state, obey Bose-Einstein
statistics. Thus in the present case, the intrinsic field
variations 8A&" and bI" „,commute with all field quanti-
ties. It is for this reason that the various possible
symmetrizations of the Lagrangian yield identical
Lagrange equations and G, (o.) since variations of the
cubic term can produce but one Hermitian quadratic
structure.

The equations of motion resulting from L(x) are

where rl&" is the Lorentz metric (and is thus not a
variable) and y"" is the first-order deviation of g&" from
p"". Equation (3.1) follows directly from Eq. (2.7) by
expanding A&" to first order and noting that I' „„has no
zeroth-order terms. As may be seen, the linearized
theory differs from the full theory only in the reduction
of the cubic H(x) term to a quadratic form corre-
sponding to the lack of self-interaction of the linearized
Geld. In this section raising and lowering of indices will
be done with the Lorentz metric since this is clearly
sufFicient. The theory admits a group of in6nitesimal
coordinate transformations which we also shall call
gauge transformations,

+pv ~ +Vv+ gp$v+gvP ~pvg (a

r ~v~r I
—ctv p

(3.2a)

(3.2b)

where cj„=8/cjxv, Bv= ri""B„an—d cj„,—=ci'/Bxvcjx". Equa-
tions (3.2a) and (3.2b) represent the first-order part of
the general coordinate transformations when the gauge
functions, P, are viewed as first-order quantities. Thus
if x'=x'+P is an infinitesimal coordinate transforma-
tion, then

cjx"/cIx"= 5"„+B„P. (3.3)

Finally, p&" and I' „,are second- and third-order tensors,
respectively, under Lorentz transformations.

In line with the general theory, the action principle
yields the equations of motion and the two generating
functions. These are, respectively,

3. LINEARIZED GRAVITATIONAL THEORY~

As a preliminary to treating the full gravitational
theory, we consider in this paper the simpler example of
the linearized theory in which arise many of the con-
cepts there required. In this section we shall often stress
the analogy between gravitation theory and the known
electromagnetic results. The Lagrangian for the line-
arized theory reduces to

(2.10)

gVv. =gav +gVV rv +gVv. i'V . —gVv. «p —0 (2 11)

yv, a+ 2 (I' pa, v+& va, v) =0

—riPvt'vp —riv, PI'vp +rllvv«p —~av

(3.4a)

(3.4b)

The second of these equations yields the usual relation
between affinity and metric in classical theory. Upon
substitution of the Christo6el symbol for I', „into the
first equation one then obtains the usual classical
Einstein field equations. The two sets of equations
actually obtained correspond to the two sets of Hamilton
equations in ordinary mechanics and are likewise of 6rst
order in the time derivatives.

~ J. Schwinger, Proc. Natl. Acad. Sri. U. S. 44, 223, 617 (1958).

G = d're&v51' —y'vli'" g] (3.5)

G = d'r T'"5x (3.6a)

'The linearized theory has been treated independently along
similar lines by J. Schwinger (private communication to S. D.).
We should like to thank Professor Schwinser for showing us the
resu&ts of hjs work,
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where'

7'ov ~ovl rf~akp[o ~v)rr 7[pl~v)~pa

~nk p[S r[v)rr+~k[S t[v)npu ]
—(Ql&&lp+F[~p[")

and
(3.6b)

+[&Pl & =2 ir&[&yl41 Pr" +y" [&»IP) rI'1

'(q—"-q"[ I"l +q"[ q~) I'[',s). (3.6c)

where F&"=—F"&and A„are to be varied independently.
One obtains from Eq. (3.7) the following results:

gjF —0

B„A„—B„A„=F„„,

(3.8a)

(3.8b)

In Eq. (3.6b), the notation "L ]" in the superscript
means the antisymmetric part of the tensor and "( )"
implies the symmetric part. The integrals in Eqs. (3.5)
and (3.6) on the right-hand side are over space-like
surfaces which have been chosen to be t= constant for
convenience. 6x, is an arbitrary constant space-time
translation and rotation.

These results are analogous to the known ones ob--
tained in electrodynamics' when viewed as a first-order
theory. Here the Lagrangian is given by

L(x) = ,'$A „a„F-~" B.„A„F~—"]+,'F~"F„„, -(3.7)

decompose into purely Hamiltonian form

c)pAr= —E,

c)oE= —VX(VX& ).
(3.14a)

(3.14b)

Similarly, it is easy to see that the generating functions
depend only on Ar and E. Thus all physical quantities of
the theory depend on the two pairs of canonical
variables Ar and H. The commutation relations between
the canonical variables now can be obtained easily and
shown to be consistent with the generators, I'„, of space-
time translations.

In general the vector potential may be written as

A„=A„n+B„A(x), (3.15)

where A„n= (O,Ar). Equation (3.15) represents the
gauge transformation from an arbitrary gauge to the
radiation gauge. Thus the radiation gauge plays a
central role in defining the dynamical coordinates (for
example, the A„ in the Lorentz gauge would not be
canonical variables). On the other hand, it should be
stressed that Ar is a gauge scalar' and thus the dynami-
cal Eqs. (3.14) are gauge invariant.

In the linearized gravitational theory, we again
decompose the Lagrange Eqs. (3.4) into constraint
equations and those involving time derivatives. The
equations relating the amenity and the metric may be
recast as follows:

Gx —— "d'» ,'P'ok' k A—k~F'ok], —

G,=, d'»(T'").„,ox„,

(3.9)

(3.10)

c)ph, ,= —2I';,+ (hp;, ,+hp;„),
aph"= —S "(h„,;—r'„)y2S oro„,

r', ,= ——', (a.. .+h ..—I,„,,),

(3.16a)

(3.16b)

(3.16c)

where (7&")„„ is the electromagnetic stress-energy
tensor. The equations of motion can be split into two
parts, i.e., those involving time derivatives and the
constraint equations:

&oA k=Fok+&kAo,

~pFpI = ~~F~I,

F&z= t9&A Ig
—8&A&,

B,F,p=p.

(3.11a)

(3.11b)

(3.12a)

(3.12b)

r In deriving the stress-energy tensor oi Eqs. (3.6), the sym-
metrical form oi the Lagrangian, Eq (2.3), was use.d.

Equation (3.12a) represents the simple, algebraic type
of constraint which allows one to eliminate the magnetic
field in terms of the vector potential. Equation (3.12b) is
the differential constraint that arises because of gauge
invariance. For this case the full content of this differ-
ential equation is, of course, that the electric field is
transverse. Thus, writing

Ak ——A p+r)kA(x), rikAk" ——0, (3.13)

where A(x) is arbitrary, one sees that Eqs. (3.11)

I';I, a—I'~I. ..=0

h, ;, ;,—h;;, ;,=0.
(3.17b)

(3.17c)

Equations (3.6c, d) represent the algebraic constraints
analogous to Eq. (3.12a). They have, in fact, been used
in the foregoing to eliminate F ';~ and FI',p from the other
equations. Similarly, Eqs. (3.17b, c) are the differential
constraint equations arising from the gauge invariance
of the theory. Equations (3.16a) and (3.17a) corre-
spond to Eqs. (3.11a, b) and will yield the canonical
equations of motion when the "gauge variables" have
been separated away. That Eq. (3.16b) is not a true
equation of motion is already to be expected from the

It is clear that the radiation gauge is not a Lorentz-covariant
concept and consequently A~ is diferent in diferent Lorentz
frames. The A~ of two Lorentz frames, however, differ by a
canonical transformation which is all that is required.

I'",p=h" (—hpk, ;+I";k)+8"~shop. .. (3.16d)

where h&"=g&"—q&" is the first-order deviation of the
contravariant metric tensor from its Qat-space value.
Similarly, the field Eqs. (3.4a) become

c)01 ij 2Lhij, kk+hkk, ij
—hk

& k
—

& kg k hpp .
&] (3.17a)
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fact that no equation canonically conjugate to it is to be
found in the set (3.17); it will be seen below that this
equation is merely the defining equation for I'-~pp.

The full content of the constraint equation (3.17b) is
to restrict I';; to the form

where $; is an arbitrary vector. Here one component of
h;; has been eliminated. One may now divide Eqs.
(3.16a) and (3.17a) into their transverse and longi-
tudinal parts. The transverse parts are the canonical
equations of motion,

r" =(r")"—s' e(~),

a (ro ) =o (ro )&'=0
(3.18a)

(3.18b)

ao(h; ) = —2(F'")

8 (F')'r= —-'(h )rr ~s"

(3.20a)

(3.20b)

where P(x) is an arbitrary function. Thus, the three
differential constraints eliminate three components of
F';;. Similarly (3.17c) restricts h;; to the form

(3.19a)

(3.19b) where

ra —(ra )D S ta

h„,= (h„,)D+a„t„+a„P„,

(3.21a)

(3.21b)

The longitudinal parts plus Eq. (3.16b) allow one to
write

(r )D= [(ro . .)TT. (r '.
&)

TT= L((h. ,)TT + (h, &)TT . (h, )TT .}. (Fk.o)TT= (ro, &)TT]

(h„,)o=—(h;,)rr.
(3.22a)

(3.22b)

Substituting Eqs. (3.21) into the generator G„yields
(upon appropriate integration by parts and neglect of a
total variation)

G = ~d'r(h )Sr(rr', )".rr" (3.23)

A lengthier calculation shows that G also depends only
on the dynamical variables. The energy-momentum
vector I'" can be formed from Eq. (3.6) by restricting
Bx„ to be a translation e„,

G~= eIJ,P". (3.24)

and y~ is any one of the dynamical variables. Making
use of the canonical equations of motion, one finds

[G„ro]=i d r a, (h ) s(ro, )

= —2i ~d3r(FO,;)rrS (Fo;,)rr (3.27).

On the other hand, the left-hand side may be viewed as
generating a change in P' due to Gx,

[Gx,P ]=iSrE'=i[8'(r"—Sr' )—P'(r ')]. (3.28)

The second equality in Eq. (3.28) follows from compari-

From the fact that GpP = —6 P' is the generator of time
translations in the direction eP, one can derive the
Heisenberg equations of motion

[x,&']=isox' (3.25)
where

Po — I dar[(ro . .)TT(ro. )TT+L(h. ,)TT „(h, ,)TT „] (3 26)

son with the right-hand side of Eq. (3.27). From this we
see that G, is the generator of unitary transformations
which send (F') iilto (r';;) —S(r')rr. This iilter-
pretation arises from the requirement of consistency
between the Heisenberg (commutator) equations of
motion and the Hamiltonian ones. From this interpre-
tation of G, follow the commutation relations. Thus

or
[(F';,)rr, G„]=iS(ro,;)rr, (3.29)

[F' (r) r hei(r') r]=2i[(sl„si,+sigsI, ;
', S„S—;;)—S(r r') ]~—(3.3.0)

Similarly one may show that all other equal-time
commutators between the canonical variables vanish.

Returning to Eq. (3.21), we note that it is just of the
form of the coordinate transformations (3.2). Thus, as in
electrodynamics, the separation of the dynamical vari-
ables from the redundant total number is achieved by
making a gauge transformation to the correct "radia-
tion" gauge. Again, the dynamical variables (r', ;)rr
and (h,;)rr are gauge invariant, i.e., scalars under
infinitesimal coordinate transformations.

4. GENERAL THEORY

In this section a preliminary discussion will be given
of the problem of 6nding the canonical variables in the
general theory of relativity and of their quantization.
As was seen in the previous section, the difhculty in-
volved in quantizing a theory invariant under a gauge
type of group stems from the existence of diGerential
constraints. The elimination of the variables associated
with these constraints, however, was performed pre-
cisely through use of the gauge invariance inherent in
the theory. For the linear theory, this procedure was
relatively transparent due to the additive nature of the
infinitesimal coordinate transformations. For general
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relativity, the gauge group is the group of arbitrary
coordinate transformations and is, of course, multi-
plicative in nature. However, just as in electrodynamics
where, in the full vector potential, the transverse part (a
gauge scalar) is isolated, there exists a part of the metric
tensor which is coordinate invariant. Thus in the tensor
transformation formula

(4.1a)

Bx 8'(~

part of 'the metric tensor changes but certain combina-
tions of the components of g„„are scalars. That this is
possible can be seen naively from the fact that the four
gauge functions, $, cannot really affect all ten compo-
nents of the metric tensor when the proper combinations
are chosen. Hence, the problem of finding the canonical
variables in general relativity resides in finding the
coordinate transformation which leads one to the "radi-
ation" gauge where all the variables are dynamical. The
actual treatment of this program will be given in a
subsequent paper in collaboration with C. W. Misner.

The preceding approach tends to treat general rela-
tivity as a Lorentz-covariant field theory with a gauge
invariance. The gauge invariance then summarizes the
geometrical interpretation of relativity. However, since
this method concentrates on the gauge-independent
aspects of the theory, the geometry is kept in the back-
ground in comparison with the Lorentz-covariant fea-
tures. In a certain respect the Lorentz covariance is not
merely a formal property but is intrinsically tied to the
physical interpretation of the theory. For any field, in
general, an essential requirement for the carrying out of
quantum measurements is that there exist an apparatus
that is not unknowably distorted by the field to be
measured. In the gravitational case, because of the
universal coupling of the gravitational field to all
matter and because of the fact that coordinate frames,
being mathematical constructs, cannot be distinguished

physically from each other, one must assume that the
measuring devices are anchored in a known metric (the
simplest example being a Lorentz metric). Thus we
assume that at spatial infinity, where the measuring
devices are fixed, space is Rat. As a further point such
physically important quantities as the action integral
and the energy-momentum vector, . E&, would not exist
unless the space became asymptotically Qat.

The action principle furnishes us with a stress-energy
tensor and therefore with an energy-momentum vector. .

These will depend only upon the dynamical variables.
In this sense the classical radiation problem becomes
well-defined as in electromagnetic theory.

The nonlinear nature of general relativity produces
e6ects in the quantum theory that are different from
those found in other fields. Equation (2.11) gives the
quantum relation between the affinity and the metric.
The anticommutator appearing in this equation will

change the usual relation between affinity and ChristoGel
symbol due to quantum effects. Thus the quantum
theory will produce Quctuations outside of the classical
Riemannian space. Similar ordering questions will arise
in defining the canonical commutation relations. Thus
one does not expect that correspondence methods of
quantization would in general produce valid results.

The applications of the quantum relativity theory
would be expected to lie in the domain of elementary
particle theory. In particular, it is to be expected from
previous considerations' that the divergence difficulty of
Lorentz-covariant theories will be ameliorated. Once the
dynamical variables have been isolated, it should be
possible to set up a functional integral expression' of the
theory involving only these variables to investigate such
questions further.
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