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The ADM Formalism developed in 1959 by Richard Arnowitt,
Stanley Deser and Charles W. Misner is a Hamiltonian formulation of
general relativity. This formulation plays an important role both in

quantum gravity and numerical relativity.[2]

A comprehensive review of this formalism was published by the same
authors in "Gravitation: An introduction to current research" Louis
Witten (editor), Wiley NY (1962); chapter 7, pp 227–265. Recently,
this has been reprinted in the journal General Relativity and

Gravitation [3] The original papers can be found in Physical Review

archives.[2][4][5][6][7][8][9][10][11]
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The formalism supposes that spacetime is foliated into a family of spacelike surfaces Σt, labeled by their time

coordinate t, and with coordinates on each slice given by xi . The dynamic variables of this theory are taken to

be the metric tensor of three dimensional spatial slices γij(t,x
k) and their conjugate momenta πij(t,xk). Using

these variables it is possible to define a Hamiltonian, and thereby write the equations of motion for general
relativity in the form of Hamilton's equations.

In addition to the twelve variables γij and πij, there are four Lagrange multipliers: the lapse function, N, and
components of shift vector field, Ni. These describe how each of the "leaves" Σt of the foliation of spacetime
are welded together. The equations of motion for these variables can be freely specified; this freedom
corresponds to the freedom to specify how to lay out the coordinate system in space and time.
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Notation

Most references adopt notation in which four dimensional tensors are written in abstract index notation, and that
Greek indices are spacetime indices taking values (0, 1, 2, 3) and Latin indices are spatial indices taking values
(1, 2, 3). In the derivation here, a superscript (4) is prepended to quantities that typically have both a three-
dimensional and a four-dimensional version, such as the metric tensor for three-dimensional slices gij and the

metric tensor for the full four-dimensional spacetime (4)gμν.

The text here uses Einstein notation in which summation over repeated indices is assumed.

Two types of derivatives are used: Partial derivatives are denoted either by the operator  or by subscripts
preceded by a comma. Covariant derivatives are denoted either by the operator  or by subscripts preceded by
a semicolon.

The determinant of the metric tensor is represented by g (with no indices). Other tensor symbols written without

indices represent the trace of the corresponding tensor such as π = gijπij.

Lagrangian Formulation

The starting point for the ADM formulation is the Lagrangian

which is a product of the determinant of the four-dimensional metric tensor for the full spacetime and its Ricci
scalar. This is the Lagrangian from the Einstein-Hilbert action.

The desired outcome of the derivation is to define an embedding of three-dimensional spatial slices in the
four-dimensional spacetime. The metric of the three-dimensional slices

will be the generalized coordinates for a Hamiltonian formulation. The conjugate momenta can then be
computed

using standard techniques and definitions. The symbols  are Christoffel symbols associated with the metric

of the full four-dimensional spacetime. The lapse

and the shift vector

are the remaining elements of the four-metric tensor.

Having identified the quantities for the formulation, the next step is to rewrite the Lagrangian in terms of these
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variables. The new expression for the Lagrangian

is conveniently written in terms of the two new quantities

and

which are known as the Hamiltonian constraint and the momentum constraint respectively. Note also that the
lapse and the shift appear in the Hamiltonian as Lagrange multipliers.

Equations of Motion

Although the variables in the Lagrangian represent the metric tensor on three-dimensional spaces embedded in
the four-dimensional spacetime, it is possible and desirable to use the usual procedures from Lagrangian
mechanics to derive "equations of motion" that describe the time evolution of both the metric gij and its

conjugate momentum πij. The result

and

is a non-linear set of partial differential equations.

Taking variations with respect to the lapse and shift provide constraint equations

H = 0

and

Pi = 0

and the lapse and shift themselves can be freely specified, reflecting the fact that coordinate systems can be
freely specified in both space and time.

Using the ADM formulation, it is possible to attempt to construct a quantum theory of gravity, in the same way
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that one constructs the Schrödinger equation corresponding to a given Hamiltonian in quantum mechanics. That

is, replace the canonical momenta πij(t,xk) and the spatial metric functions by linear functional differential
operators

More precisely, the replacing of classical variables by operators is restricted by commutation relations. The hats
represents operators in quantum theory. This leads to the Wheeler-deWitt equation.

There are relatively few exact solutions to the Einstein field equations. In order to find other solutions, there is
an active field of study known as numerical relativity in which supercomputers are used to find approximate
solutions to the equations. In order to construct such solutions numerically, most researchers start with a
formulation of the Einstein equations closely related to the ADM formulation. The most common approaches
start with an initial value problem based on the ADM formalism.

In Hamiltonian formulations, the basic point is replacement of set of second order equations by another first
order set of equations. We may get this second set of equations by Hamiltonian formulation in an easy way. Of
course this is very useful for numerical physics, because the reduction of order of differential equations must be
done, if we want to prepare equations for a computer.

ADM energy is a special way to define the energy in general relativity which is only applicable to some special
geometries of spacetime that asymptotically approach a well-defined metric tensor at infinity — for example a
spacetime that asymptotically approaches Minkowski space. The ADM energy in these cases is defined as a
function of the deviation of the metric tensor from its prescribed asymptotic form. In other words, the ADM
energy is computed as the strength of the gravitational field at infinity.

The quantity is also called the ADM Hamiltonian, especially if one finds a different formula than the definition
above that however leads to the same result.

If the required asymptotic form is time-independent (such as the Minkowski space itself), then it respects the
time-translational symmetry. Noether's theorem then implies that the ADM energy is conserved. According to
general relativity, the conservation law for the total energy does not hold in more general, time-dependent
backgrounds - for example, it is completely violated in physical cosmology. Cosmic inflation in particular is able
to produce energy (and mass) from "nothing" because the vacuum energy density is roughly constant, but the
volume of the Universe grows exponentially.

Canonical coordinates
Canonical gravity
Hamiltonian mechanics
Wheeler-deWitt equation
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