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Abstract. It has previously been shown that there is a connection between the vacuum electromagnetic field, or zero-
point electromagnetic field, and the phenomenon of inertia. A general expression was then derived for the vacuum 
electromagnetic contribution to the inertial mass of an object. Similar contributions are to be expected from the other 
vacuum field components. Here we show that the case for inertial mass can indeed be extended to passive gravitational 
mass. As a byproduct of this we also get Newton’s law of universal gravitation. It is furthermore shown why these results 
are consistent with gravitational theories of the metric kind and in particular with General Relativity. The extension to 
active gravitational mass, namely, solving the problem of why mass creates a gravitational field, i.e., why it “bends” or 
changes the curvature of spacetime, remains unsolved. 
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1. INTRODUCTION  

There are three different manifestations of what we ordinarily call mass. This has led to what in principle could 
be three different parameters, but that our adherence to the unity of Physics forces into a single one. These different 
mass parameters are inertial mass, passive gravitational mass, and active gravitational mass, which by the way are 
thoroughly discussed in a recent book of Jammer [1]. In previous work [2] we have been dealing with inertial mass. 
Here we consider passive gravitational mass.  

Assuming the Einstein local Lorentz-invariance principle, we will show that a previously derived expression for 
the inertial mass contribution, mi, from the electromagnetic vacuum field is equal to the corresponding contribution, 
mg, to the passive gravitational mass. Thus, within the electromagnetic vacuum viewpoint proposed in Ref. [2], the 
Newton’s weak equivalence principle, mi = mg, ensues in a straightforward manner. It can also be shown, by means 
of simple arguments from symmetry and from potential theory plus time-revered natural physical assumptions, that 
because of geometrical reasons the Newtonian gravitational force law necessarily follows in the weak field limit. So, 
the vacuum electromagnetic field approach to inertia of Ref. [2], when extended to gravity, yields Newton’s 
gravitation. This analysis however does not pin down the exact form of the gravitational theory that is required, but 
only that it should be a theory of the metric type, i.e., a theory like Einstein’s General Relativity that curves 
spacetime. Very importantly, however, this present development shows that our previous vacuum inertial mass 
analysis of Ref. [2] is consistent with General Relativity. Pending remains extension of these analyses to other 
components of the vacuum (strong, weak vacua). 

That there is a contribution to inertial mass from the electromagnetic quantum vacuum has been shown by means 
of a closely detailed argument [2,3], (see also Ref. 4) that uses some of the techniques developed in a semiclassical 
theoretical technique called Stochastic Electrodynamics (SED) [5]. However, according to the weak equivalence 
principle (WEP) of Newton and Galileo, inertial mass, mi, is equal, modulo a constant that with a proper selection of 
units is conventionally set to unity, to passive gravitational mass, mg. So it is not far-fetched to expect that exactly 
the same vacuum contribution that appears for inertial mass should also appear for passive gravitational mass. This 
novel feature, mg = mi, never shown before, is what we first show in Section 2, by means of a straightforward 
argument that requires only natural and ordinary physical assumptions of wide acceptance in theoretical physics. In 
Section 3 the consistency of this argument with so-called metric theories of gravity, i.e., those theories characterized 
by space-time bending, is exhibited. Our argument will not allow us, however, to be able to tell which one of those 
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theories is the one consistent with our work. As Einstein’s General Relativity (GR) is par excellence a metric theory 
of gravity, our argument definitely shows that our previous work [2,3] and the present simple derivation are all 
exactly consistent with the standard version of GR. Next, in Section 4, taking advantage of certain symmetries, 
standard potential theory allows us to show that, because of geometrical reasons, in the weak field limit, that is the 
only case really considered here, the Newtonian gravitational inverse-square-force-with-distance also follows. In 
Section 5 we discuss a thermodynamics aspect of the present derivation: An apparent paradox is resolved by means 
of a simple argument. A brief discussion on the nature of the gravitational field is also included (Section 6) but as it 
also happens in GR and in most related standard theoretical analyses, the ultimate and fundamental reason why 
matter has the ability to bend space-time can be neither properly addressed, nor satisfactorily elucidated from our 
present development. Section 7 presents the conclusions. 

2. VACUUM ELECTROMAGNETIC CONTRIBUTION TO PASSIVE 
GRAVITATIONAL MASS 

2.1 Einstein Local Inertial Frames and Rindler’s Noninertial Frame 

Consider a fixed in space, relatively large and massive object W, that, for concreteness, we assume as fairly 
condensed and with a spherically symmetrical mass distribution of radius a. At a large distance, r, from the center of 
W, (r >> a), there is a much smaller material object w, that we can consider, for most purposes, to be an almost 
punctual test body and that again, for the purposes of our discussion, we can assimilate to a classical point particle. 
A constant force f is exerted by an external agent that prevents the small body w from falling into the gravitational 
potential of W and maintains it at a fixed point in space a distance r from the center of W. Experience has told us 
that if w were to let fall freely towards W, at the point in time when the force f was removed and w initiated its drop 
towards W, it would instantaneously start to move with an acceleration of magnitude g. Next we consider a freely 
falling local inertial frame I*, (in the usual sense given to such local kind of frame [6]) that instantaneously is at rest 
with respect to the particle. At a particle proper time τ, that we select to be τ = 0, the particle is instantaneously at 
rest at the point (c2/g,0,0) of the I* frame. The x-axis of that frame goes in the direction from W to w and as the 
frame I* is freely falling towards W, at τ = 0, the particle appears accelerated in I* in the x-direction and with an 
acceleration. 

gp =
∧
x g.  
 

Thus the particle is clearly performing a uniformly accelerated motion with a constant proper acceleration gp as 
contemplated from any neighboring instantaneously commoving (local) inertial frame. In this respect we introduce 
an infinite collection of (local) inertial frames Iτ, with axes parallel to those of I* and with a common x-axis which is 
that of I*. Let the particle be instantaneously at rest and commoving with the frame Iτ at particle proper time τ. So the 
τ parameter, which represents the particle proper time, also serves to parametrize this infinite collection of (local) 
inertial frames. Clearly then, I* is the member of the collection with τ = 0, so that I* = Iτ = 0. For uniformity and at the 
time point of coincidence with a given Iτ, we locate the particle at the (c2/g,0,0) space point of the Iτ frame. We select 
also the time tτ in each one of the (local) inertial frames Iτ to be such that tτ = 0 at the moment of coincidence when 
the particle is instantaneously at rest in Iτ and at the above mentioned  (c2/g,0,0)  space point of Iτ. Clearly as Iτ=0 = I* 
then t* = 0 when τ = 0. All the frames in the collection are freely falling towards W and when any one of them is 
instantaneously at rest with the particle, it is instantaneously falling with acceleration  

g = − gp = −
∧
x g 

with respect to the particle and in the direction of W. It is not difficult to realize that the particle appears in those 
frames as performing a hyperbolic motion with proper particle acceleration gp. 
 For convenience we introduce a frame of reference whose x-axis coincides with those of the Iτ frames, including 
of course I*, and whose y and z-axes are parallel to those of Iτ and I*. This frame S stays put with the particle w 
which is positioned at the (c2/g,0,0) point of this S frame. For I* (and for the Iτ) the frame S appears as accelerated 
with the proper acceleration gp of its point (c2/g,0,0) . We will assume that the frame S is rigid. If so, the 
accelerations of points of S sufficiently separated from the particle point (c2/g,0,0) are not going to remain the same. 
This will not be of much concern because as explained below, we will only need to consider in S, and in the freely 
falling inertial frames I* and Iτ, points within a sufficiently small neighborhood of the (c2/g, 0,0)  point of each 
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frame. It can be seen that the present collection of frames, I*, Iτ, and S, exactly correspond to the set of frames 
introduced in Ref. [2]. The only differences are, first, that now the frames are all local, in the sense that they are only 
well defined for regions in the neighborhood of their respective (c2/g,0,0) space points, and second, that now I* and 
the Iτ frames are all considered to be freely falling towards W and the S frame is fixed with respect to W. Similarly to 
Ref. [2], the S frame may again be considered to be, from the viewpoint of the I*, a Rindler noninertial frame. The 
laboratory frame I* we now call the Einstein lift frame, as now the “laboratory” is local and freely falling. 

2.2 The Assumptions 

 In this report we are going to extend our previous argument of Ref. [2], which worked nicely for inertia, to the 
case of passive gravity. So, naturally, we are going to take for granted and assume all our highly reproducible and 
closely argued results presented in Ref. [2]. This is our First Assumption. In addition there are two more general 
assumptions that though of widespread acceptance, deserve an explicit comment. But before doing that we recall 
from Special Relativity the relativity principle (RP). Einstein stated it as, “all inertial frames are totally equivalent 
for the performance of all physical experiments” [7]. So, in Special Relativity we assume that the laws of physics are 
identically the same in all Lorentz invariant frames, i.e., in inertial frames mutually moving with respect to each 
other with uniform velocities. We will come back to this below. Here, however, we cannot assume the RP, because 
we will also be dealing with gravity. This is a modification that will have to be done to our assumptions of Ref. [2]. 
We will have to restrict the RP in the form of an extension of it first proposed by Einstein [8]. 
 We proceed then with our Second Assumption: The space and time uniformity assumption (UA). It is fairly 
general but also widely accepted: The laws of physics are always the same timewise and spacewise. Namely, the 
results of experiments performed under identical conditions are the same in different places in the Universe and at 
different times. Will [9] states the UA more precisely: “the outcome of any local nongravitational test experiment is 
independent of where and when in the universe it is performed.” The restriction to “local” is explained in the next 
assumption where we discuss the locality issue. A nongravitational test experiment is one for which self-gravitating 
effects can be neglected. The experiment should be done in an isolated system sufficiently shielded from any outside 
perturbing influence. 
 Next we give our Third Assumption. It is a widely accepted restriction that Einstein imposed, on the infinitely 
extended Lorentz invariant frames of the RP, in order to be able to pass a restricted version of Special Relativity to 
General Relativity [8]. Will [9] states it as “the outcome of any local nongravitational test experiment is independent 
of the velocity of the freely falling apparatus.” Here then the RP is restricted to local Lorentz invariant freely falling 
frames, i.e., frames that fall freely in a gravitational field but that are of small enough size and stay in operation for 
short enough time such that no gravitational inhomogeneities (tidal forces) can be of relevance to the experiments. 
This assumption is usually called the local Lorentz invariance (LLI) principle [7,9]. 
 For some general purposes the above two general principles may not be satisfactory. For example, in theories 
where the universal constants change with cosmological time as that of Dirac for the gravitational constant G [10], 
the UA, as stated here, does not apply. Usually, however, as often done in Cosmology, one may prefer to modify the 
postulational system one is dealing with in such a way as the UA is not sacrificed. All-in-all the UA is very widely 
used, though not always explicitly. It is implicitly assumed in most treatises on theoretical physics. The LLI 
principle is also widely accepted and difficult to avoid. In spite of claims to the contrary by Synge and others [11, 
12], we, following the majority of authors on modern gravitational theory, e.g. Ref. [7] and [9] and many others, 
firmly adopt the LLI principle. There is no question, despite some statements to the contrary [11, 12], that Einstein 
also firmly adopted it [8] and that he thought it had great heuristic value. Synge’s complaint about tidal effects is not 
of much weight since one can always meaningfully assume small enough spacetime regions without any loss 
whatsoever of conceptual generality. There are many examples of this kind of coarse graining procedure in 
theoretical physics, e.g., in condensed matter and in statistical physics the averagings needed to define the charge 
density ρ or the D-field in a dielectric, to name a few. All these lead to meaningful physics. 
 

2.3 Equivalence of Inertial and Passive Gravitational Masses 

 So far and within the standard theoretical frame of GR and related theories, the equality (or proportionality) of 
inertial mass to gravitational mass has to be assumed. It remains unexplained. As correctly stated by Rindler [13], 
“the proportionality of inertial and gravitational mass for different materials is really a very mysterious fact.” 
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However, here we show that within the vacuum approach to inertial mass presented in Ref. [2], such proportionality 
and equivalence comes out rather naturally. 
 When the Einstein LLI principle, discussed in Subsection 2.2, is applied to the situation envisaged in Subsection 
2.1, because the local I* and Iτ frames of Subsection 2.1 are inertial with the same laws of physics holding as in all 
Special Relativity Lorentzian frames, there is a zero-point field (ZPF) that can be associated with each one of then 
exactly in the same way as was done for the extended I* and Iτ frames in Ref. [2]. If so, all the arguments that 
applied to the inertia derivation in Ref. [2] also apply, mutatis mutandis, to the present case. So, as thoroughly 
shown in Ref. [2], in the present case it should appear to the freely falling inertial observers of the local Lorentz 
invariant frames, I* and Iτ, that the body w is uniformly accelerated and that a drag force, as explained in Ref. [2], is 
present and creates the inertia reaction force that we now view as appearing in w and in the direction of W. In this 
new situation, the associated nonrelativistic form of the inertia reaction force, as it was for Ref. [2], should be, in the 
nonrelativistic case: 
                                                                                 f*zp = − migp ,                                                                             (1) 
 
where gp is the acceleration with which w appears in the local inertial frame I*. And as far as the coefficient mi goes, 
it should be exactly the same mi as in Ref. [1], namely: 
 

                                                                 mi = 


2
0

c
V ∫ ( ) 



ω
π
ωωη d

c32

3

2
h ,                                         (2) 

 
where V0 is a parameter we identify with the proper volume of the particle, c is the speed of light, ħ is Planck’s 
constant divided by 2π, and the coupling function η(ω), 0 ≤ η(ω) ≤ 1, assigns the relative effectiveness that each  
ZPF frequency component has in interacting with the accelerated body w and thereby in opposing its acceleration. 
But now clearly what appears as inertial mass to the observer in the local I* inertial frame is of course what 
corresponds to gravitational mass, mg, and it must be that: 
 

                                                                 mg = 


2
0

c
V ∫ ( ) 



ω
π
ωωη d

c32

3

2
h .                                         (3) 

 As done in Ref. [2], Appendix B, it can be shown that mg indeed represents the ZPF energy enclosed within the 
particle’s volume and able to interact with the particle (via the η(ω) coupling function). A more thorough 
development can also be implemented to show that the force expression of Eq. (1) can be extended to the relativistic 
case (Ref. [2], Appendix D). But we do not need to write that explicitly for the present paper. Summarizing  what we 
have shown in this Section, is that if a force f is applied to the w body to prevent it from falling towards the body W, 
in the nonrelativistic case, that force is given by: 
 
                                                                               f = − mgp = mg ,                                                                             (4) 
 
where we have dropped nonessential subscripts and superscripts. The subscripts for the masses mi and mg, of Eqs. (2) 
and (3) above, we may delete as mi = mg ≡ m.  

3. CONSISTENCY WITH GENERAL RELATIVITY 

 The statement that the inertial mass, mi, is exactly equal to the gravitational mass, mg, that we have just shown, 
constitutes what is called the weak equivalence principle (WEP), whose origin goes back to Newton and Galileo 
[7,9]. Ohanian and Ruffini [12] in their textbook make it the basis of their development. As explained by Will [9], if 
the WEP is explicitly assumed together with LLI and UA, one has the Einstein strong equivalence principle (SEP). 
So, clearly our inertial approach [2,3] and its extension to passive gravity done here, is consistent with all theories 
that are derived from the SEP. The two most well-known examples of those theories are the Brans-Dicke theory and 
Einstein’s GR. There are a few more examples [9] but the last two are the ones with more acceptance and, of course, 
GR is by far the most widely accepted of the two. All theories that assume the SEP, in addition to the various 
idiosyncratic assumptions proper of each one of the theories, are called metric theories [9]. They are characterized 
by the fact that they contemplate a “bending” of spacetime associated with the presence of matter. The main 
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consequences of LLI (consequences usually derived by means of Einstein’s lift thought experiments), plus the WEP 
and the UA principle, is that light bends in the presence of matter and that there is a gravitational Doppler shift [14]. 
  Hence our approach of Ref. [2] and the development here, also requires that light bends in the presence of 
gravitational fields. Actually this fact implies that the gravitational field can be identified with the spacetime 
geometrical change associated with this bending. More on this will be discussed below. 
  Having established this consistency with metric theories, we must acknowledge however, that we still need to 
show that our approach yields passive gravity, at least in its most elementary form. Namely, that it yields simple 
well-known results as Newton’s gravitational law. This is the subject of the next Section. 

4. DERIVATION OF NEWTON’S LAW OF GRAVITATION 

4.1 General remarks 

 Here we show how the simple analysis presented above and its predecessor in Ref. [2], lead inexorably to 
Newton’s gravitational law. As in previous Sections, the small speeds and small fields approximation is assumed 
which is the case contemplated here and in most of Ref. [2] anyway (except for Ref. [2] Appendix D, where the 
covariant formulation was developed). However, the idea that the vacuum is ultimately responsible for the 
gravitational effects that we observe, is not new. It goes back to a proposal by Sakharov [15] based in part on work 
of Zeldovich [16]. By attempting to connect Hilbert-Einstein’s action to the quantum vacuum, Sakharov proposed 
that gravity was indeed a “metric elasticity of space.” An instructive review of Sakharov’s views is presented by 
Misner, Thorne, and Wheeler [17]. A paper by Puthoff [18] gives a detailed account of the various approaches, prior 
to 1989 that, in one way or another, attempted to develop Sakharov’s idea. 

4.2 Derivation of Newton’s law of gravitation 

 From Eq. (4) and its surrounding lines, it is clear that the g field generated by the spherically symmetric 
condensed body W is central, i.e., centrally distributed with spherical symmetry around W. It thus has to be radial, 
with its vectorial direction parallel to the corresponding radius vector that comes from W where the origin of 
coordinates is located. So it is in the direction of –r and depends only on the r coordinate. 
 The field is clearly generated by mass. The mass M of W is the field’s negative source (or sink). Physically this 
implies that the field lines of g only can be discontinuous or broken where mass is present. Hence the field lines 
cannot be generated (or destroyed) in free space. More on this we argue below, but we also need what follows. As g 
is also the force on the unit mass, we know that g, because it is a force, behaves vectorially. Namely, it must be that 
if two masses M

1
 and M

2
, each one independently on its own generates the fields g

1
 and g

2
 respectively, when the 

two masses M
1
 and M

2
 are placed at nearby points in space, the resulting field g due to the action of the two masses, 

is going to be the simple additive superposition of the field of M
1
 and the field of M

2
, namely that: 

 
                                                                                  g = g1 + g2                                                                                   (5) 
 
 It can also easily be argued that if we scale the mass M of W by a factor α, α  > 0, namely αM, then the resulting g 
must be of the form αg. So the field g obeys full linear superposition. It is also clear from the above and the 
argument of Section 2 that the field g generated by W is unbounded, it indefinitely extends to infinity. 
 The argument just given naturally leads to the idea that the lines of g (in the sense of Faraday) obey the 
continuity property, a time-honored idea that goes back to Gauss and perhaps even back to Newton [19]! Namely, if 
mass is not present inside the volume enclosed by a closed surface S, we must have that: 
 

                                                           0 =  g . n dS  =   . g  dV ,                                                               (6)
 

 
 
where the second equality follows from Gauss’ divergence theorem. As V is arbitrary we then have that: 
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                              .g = 0 ,      r > a ,                                                                         (7) 
  
where a is the radius of the W body. And as g is radial, we obtain from solving this differential equation that: 

                                                                                 g ~ 
∧
r 2

1
r                                           (8) 

  The field g is also proportional to the mass M that originates it. We can then see that g has to be of the form: 
 

                                                                              g = 
∧
r 2r

GM
,                                                                                  (9) 

where G is just a proportionality constant and from Eq. (4) and recalling that gp = − g we have that: 
 

                                                                               f =  -
∧
r 2r

GMm
,                                                                           (10) 

 
which is Newton’s law of universal gravitation. 

5. A THERMODYNAMICS PARADOX? 

 An apparent paradoxical situation arises when one considers that in the analysis of Section 2 we found that for 
the observers in the freely falling LLI frames I* and Iτ the small massive object w appears as accelerated and 
therefore, according to the reasoning introduced in Ref. [2], under a net Poynting vector that seemingly pushes w in 
the direction of W. If this same analysis is performed along any other radial direction away from the origin at W, one 
obviously finds again exactly the same centrally directed Poynting vector. This would seem to imply that W should 
generate a very odd thermodynamic situation around itself with ZPF energy coming towards W from all directions in 
space. 
 This conclusion though globally valid cannot be rigorously substantiated. Let us locate w not far away from the 
surface of W, that we may identify with the Earth, and for simplicity assume W is perfectly spherical of radius a and 
of strictly homogeneous density. Let the test body w be now very much smaller than W and again assume it is kept 
from falling towards W by the supporting force f as in Eq. (4). 
  We only need to realize two facts. The Poynting vector that appears acting on w is only consistent for a given 
freely falling LLI frame or at most for the family of frames Iτ, where Iτ = 0 = I*, along the particular straight radius 
vector going from W to w.  
  For example, consider a small body w′ and associated set of frames I′τ and I′* falling freely towards W and 
defined exactly the same as Iτ and I* were defined in section 3, but whose radii vectors of free fall towards W are 
along the widely different direction that goes from W to w′. As occurs with the observers of unprimed frame S, 
observers in the primed frame S′ also claim there is a ZPF Poynting vector along their radial direction or x′-axis and 
hitting the body w′ in the direction pointing towards W. But for the primed frames observers the unprimed frames 
direction of the fall towards W that goes from w to W, is not a direction of any net Poynting vector. The reverse 
conclusion also holds. For the unprimed frames there is not a net Poynting vector along the radial direction (x′-axis) 
of the primed frames. 
  Therefore this shows that those Poynting vectors appear as such only for a selectively restricted class of LLI 
frames. The only way we could produce a consistent conclusion about this odd thermodynamic situation would be if 
we could find a single freely falling LLI frame from which we could simultaneously make a consistent conclusion 
about the nature of all such Poynting vectors. Fortunately there precisely exists such a frame. 
  Consider the sphere of the Earth. As one goes more and more deeply inside, the g field decreases more and more. 
Freely falling frames found more and more inside the Earth fall with smaller and smaller accelerations, and at the 
exact center of the Earth the g acceleration is exactly zero. We can actually quantify this in full precision since we 
have already discovered that the gravitational force goes as 1/r2. To show these details is a simple exercise in 
elementary physics. 
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  There is one single freely falling LLI frame that is a member of all radial families of free falling frames and that 
is the LLI frame exactly at the center of the Earth that we shall call C. From that frame C  we can observe and make 
consistent conclusions about all the Poynting vectors along all possible radial directions towards the center of W. But 
surprisingly C is not only freely falling with exactly zero acceleration but also, as it started from rest, it has always 
been at rest at the center of the Earth. 
  Then for this frame C at the center of the Earth, we can consistently look in all possible radial directions. 
Consider the typical one that goes from the center of W to w. As w is at a fixed distance from the center of W and 
thus is fixed, has zero acceleration, and is not moving with respect to an observer in C, there cannot be any Poynting 
vector due to the ZPF of C impinging on w, because w does not appear accelerated as viewed from C. So, the 
Poynting vector disappears along that particular radial direction. Therefore by symmetry, it disappears along all 
radial directions from the center of W and the paradox is resolved: The only single frame from which a consistent 
conclusion referring to all Poynting vectors along all possible radial directions from the center of W can be drawn, 
yields that such Poynting vectors exactly vanish! The observer in C does not infer any net radiation influx towards W 
from any direction in space. This enormously weakens the strength of the thermodynamics objection. 
  In spite of this let us assume, for the sake of the discussion and because of its global validity, there was such an 
inflow of energy from the falling vacuum towards W: Observe then that any massive body, W, as it produces a 
surrounding gravitational field will present the same falling vacuum phenomenon we alluded to in the previous 
paragraph. Such falling vacuum we assume may imply some inner inflow of energy towards the body W. If so, that 
energy should be balanced by an equal outward outflow of energy. There is a source of that outflow: The 
electromagnetically interacting charged particles of the massive body are seen as uniformly accelerated from the 
falling LLI Einstein frames. Therefore they should radiate energy outwards! We conjecture that this outward flow 
should balance the falling energy flow surmised above. We plan to explore this conjuncture in more detail.  

6. DISCUSSION 

  We would like first to elucidate something about the nature of the gravitational field. In the low fields and low 
velocities version, or Newtonian limit, we have seen above that gravity manifests itself as the attractive force per 
unit mass, g, of Eq. (4) that pulls any massive test body present at a given point in space towards the body W that 
originates the field. As we assumed the Einstein LLI principle and from this derived the WEP, this, together with the 
very natural UA, or invariance in the laws of physics throughout universal spacetime, lead us to the Einstein SEP 
which necessarily implies the spacetime bending representation of the generalized gravitational field [9]. 
     A simple thought experiment (Einstein’s lift) immediately shows that light rays propagate along geodesics, and 
more specifically along null geodesics. The spacetime bending is dramatically evident when a light ray goes from 
one side to the other of the freely falling elevator. For the observer attached to the elevator’s frame that indeed acts 
as a LLI frame, the light ray propagates in a straight line from one side to the other of the elevator. But for the 
stationary observer that sees the elevator falling with acceleration g, the light ray bends along a path that locally is 
seen as a parabolic curve. Undoubtedly the most natural explanation for the stationary observer is that spacetime 
bends and therefore, the association that this bending is a manifestation of the gravitational field of W, or rather that 
this bending of spacetime is what constitutes the gravitational field itself [20]. 
  Starting from the above fact taken as a given, the various metric theories proceed from there to formulate their 
equations. In the version of Brans and Dicke a scalar-tensor field is assumed. In Einstein’s General Relativity only a 
tensor field is proposed. Following this maximally simplistic proposal, and guided by general considerations of 
general covariance (the need of arbitrary coordinates and tensor laws) Einstein was led to his field equations in the 
presence of matter. And then GR naturally unfolded [7, 9, 11, 12, 20]. 
  We have shown here that our inertia proposal of Ref. [2] leads us, when constrained by the LLI principle, to the 
metric theories and therefore that this proposal is consistent with those theories and in particular with Einstein’s GR. 
In addition, there is the following interesting feature in our proposal. 
  From our analysis in Ref. [2], and in particular in Appendix B of Ref. [2], it was made clear that as far as the 
vacuum electromagnetic ZPF contribution to inertia is concerned, the mass of the object, m, could be viewed as the 
energy in the equivalent vacuum electromagnetic ZPF captured within the structure of the object and that readily 
interacted with the object. It was surprising how this view matched perfectly with the complementary view 
thoroughly exposed in other parts of the paper [2] that presented inertia as the result of a vacuum reaction effect, a 
kind of drag force exerted by the vacuum field on accelerated objects. Quantitatively both approaches lead to exactly 
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the same inertial mass and moreover they were partly complementary. Both viewpoints were needed. One could not 
exist without the other, they were like two sides of the same coin. 
  The idea that the electromagnetic ZPF background freely falls in a gravitational field has been essential 
throughout the development of this work. Very recently we have found support in a related idea in the literature. 
When studying the problem of radiation from an accelerated charge in a gravitational field Harpaz and Soker [21] 
proposed that the electric field from a charge, irrespective of the state of motion of the charge, falls freely when 
submitted to the action of a gravitational field. We think that their argument is conclusive, as it presents a much 
more clear and consistent understanding of radiation reaction that exactly fits Einstein’s SEP. It is better than many 
prior proposals and it both uses previous developments and gives an overall clear view of those developments. 
  The question is now why massive objects, when freely falling, also follow geodesic paths. The temptative view 
suggested here is that, as a massive body (according to our analysis of Ref. [2], Appendix B) has a mass that is made 
of the vacuum  fields and at least part of it from vacuum electromagnetic energy contained within its structure and 
that readily interacts with such structure, it is no surprise that geodesics are its natural path of motion during free 
fall. Electromagnetic radiation has been shown by Einstein to follow precisely geodesic paths. The only difference 
now is that, as the radiation stays within the accelerated body structure and is contained within that structure and 
thereby as a whole moves subrelativistically, these geodesics are just time-like and not null ones as in the case of 
freely propagating light rays. 
  Neither our approach nor the conventional presentations of general relativity can offer a physical explanation for 
the mechanism generating the bending of spacetime as related to energy density. Misner, Thorne and Wheeler [17] 
present six different proposed explanations. The sixth one is that already mentioned (due to Sakharov [15,16]), 
which starts from general vacuum considerations. As our approach starts also from vacuum considerations, it 
naturally fits better the concept of this conjecture of Sakharov [15] and Zeldovich [16] than the other proposals, but 
it is not inconsistent with any of them. In particular the strictly formal proposal of Hilbert [17] that introduces the so-
called Einstein-Hilbert action, is also at the origin of the Sakharov proposal. 

7. CONCLUSION 

We would like to state as a summary, the highlights of this paper: 
 

a) Derivation of the identity of inertial mass with passive gravitational mass, mi = mg. (Weak Equivalence 
Principle) 

 
It has been shown that the approach of Ref. [2] obtains this particular feature that, so far and as we know, had 

never been previously justified. 
 
b) Realize the fitting of the inertia approach of Ref. [2] to the fundamental assumptions of Einstein’s GR. 
 
We have already commented above, in particular in Section 6, on this interesting feature presented in Section 3 

that puts the vacuum inertia approach of Ref. [2] within the mainstream of contemporary gravitational theories, 
specifically within theories of the metric type and in particular in rapport to Einstein’s GR. 

 
c) Derivation of Newton’s gravitational law from general principles plus the vacuum inertia approach of Ref. 

[2]. 
 

  By means of a simple argument based on potential theory we obtain in a natural way Newton’s inverse square 
force with distance from the vacuum approach to inertia of Ref. [2]. 
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