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Materials and Methods 
Numerical Methods 

The results of this study relied on two well-established, open source, N-body orbit integrators, 
ORBIT9 (29) and REBOUND (30). In particular, ORBIT9 was used in the computation of the fast-
Lyapunov indicator (FLI) maps (Fig. 1); while the Mercurius package within REBOUND, being 
specifically designed for accurate close-encounter and collisional dynamics, was used for the 
Jovian-minimum-distance maps (Figs. 2-4) and subsequent simulations (fig. S3; movies S1-S3). 
The dynamical models employed contain the seven major planets (from Venus to Neptune) as 
perturbers or Jupiter as the only perturber, both in realistic N-body simulations as opposed to 
simple mathematical models like the planar, circular, and restricted three-body problem 
(PCR3BP). 

 
One approach to visualizing phase-space structures in systems of more than two degrees of 

freedom relies on the computation of the fast-Lyapunov indicator (FLI) over sets of initial 
conditions of interest (21-26). Writing the first-order differential equations defining the dynamics 
of the (test particle) TP, 𝑥 = 𝑓 𝑥, 𝑡 , where 𝑥 = 𝑟, 𝑣  is the state vector of the Cartesian 
components of the position 𝑟 and velocity 𝑣 in a heliocentric reference frame, the variational 
equations can be stated from the Jacobian matrix as 𝑤 = 𝜕𝑓/𝜕𝑥	 𝑥, 𝑡 𝑤. The FLI follows from 
the variational system and reflects the growth of the tangent vector 𝑤 in some fixed time 𝑡 by 
𝐹𝐿𝐼/	 𝑥, 𝑤 = 	 𝑠𝑢𝑝34/ log |𝑤 𝜏 |. For chaotic orbits, the FLI will grow faster than for stable ones, 
enabling a quick distinction between them (20). Various dynamical regimes, including orbital 
resonances, can be distinguished by monitoring time histories of the FLI. Here, we compute the 
FLI for refined grids of initial conditions over very short timescales (Fig. 1) to capture traces of 
the manifolds of hyperbolic trajectories (25-27). 

 
To drastically reduce the computational burden, past studies have relied on the calculation of 

more practical, though less rigorous, quantities of interest, such as the maximum eccentricity 
reached by an orbit during its evolution or the collisional or scattering timescale (12-18), which 
otherwise do not require the simultaneous integration of the variational system. We have correlated 
the structures in the FLI map with close approaches to Jupiter through the computation of Jovian-
minimum-distance maps (Figs. 2-4). This permitted us to cover a much broader range of three-
body energies than previously considered, which, hitherto, have largely been limited to the 
‘bottlenecks’ about L1 and L2 (2, 3, 9–11, 27); but also somewhat precludes the possibility of easily 
identifying the exact homoclinic-heteroclinic connections responsible for all foliated substructure. 
In Figs. 2-4 and movie S1, we monitor the distance between Jupiter and the TPs during their 100-
year evolution and record the minimum values in units of planetary radii. The colorbar then 
represents the logarithm of the minimum approach distance, such that a value of less than 2.87 
means that the TP entered the Jovian Hill sphere with 0 corresponding to a Jovian impact, and a 
value above 3.35 implies it never got within 3 Hill radii. 

 
Auxiliary Data 

Our results relied on data obtained from NASA’s JPL/Horizons service (35). 
  



 
 

 
 

Supplementary Text 
Nomenclature 

The PCR3BP refers to the idealized dynamical model that consists of a massless TP and two 
massive bodies (e.g., Jupiter and the Sun) moving in circular orbits about their common center of 
mass, with all bodies moving in the same plane. The Sun-Jupiter Lagrange points are the five 
stationary solutions or equilibria in the PCR3BP, where L1, L2, and L3 lie along a line joining the 
Sun and Jupiter, and L4 and L5 form equilateral triangles with them (see fig. S1). Jupiter’s Hill 
sphere is the region between diametrically opposite Lagrange points L1 and L2, in which the motion 
of the TP is dominated by the attraction of Jupiter. A vast and hardly surveyable literature exists 
on the study of the PCR3BP (1-4, 6-9, 25) and a hierarchy of more realistic, and more complicated, 
models, e.g., the elliptic orbit of the massive bodies (22), three-dimensional motion of the TP (5, 
10, 11, 27). In our N-body simulations, all of these additional complications and more are 
inherently taken into account.  

 
Associated with the collinear Lagrange points, or their dynamical extensions to periodic or 

quasi-periodic orbits, are stable and unstable manifolds, certain phase-space structures that 
asymptotically approach or depart the Lagrange points (or their dynamical extensions). The 
periodic orbits most often treated in the literature (1-4, 6-9), the Lyapunov orbits, reside in the 
bottlenecks that partitions the interior and exterior Hill’s regions. Figure S2 shows an illustration 
of such Lyapunov orbits about L1 and L2, and their associated stable and unstable manifold tubes 
that structure the phase space and provide a conduit for particles traveling to and from Jupiter. A 
homoclinic orbit is the intersection between a stable and unstable manifold of the same equilibrium 
point, or periodic/quasi-periodic orbit; while a heteroclinic orbit is the intersection of such 
manifolds from two different invariant objects. The underlying homoclinic-heteroclinic structures 
allow one to classify and organize distinctly different types of global motions of the PCR3BP in 
terms of their relation to the equilibrium points (1).  

 
Also connected with any three-body problem model is orbital resonances, which are 

commensurabilities amongst the frequencies of orbital motions (2, 4, 12, 13, 16-18, 22-24); the 
most studied of which are known as mean-motion resonances (MMRs) involving integer ratios of 
orbital periods. The vicinity interior and exterior to Jupiter where first-order MMRs overlap is 
known as the planetary chaotic zone (12, 13), in which the timescales for scattering are some 
thousands of orbital periods for the strongest regions.  

 
In the PCR3BP, the Tisserand parameter with respect to Jupiter is defined as 𝑇; = 𝑎;/𝑎	 +

2	 1 − 𝑒B 𝑎/𝑎; cos 𝑖, where 𝑎; = 5.2 AU is Jupiter’s semi-major axis (17, 34). It is an 
approximation to the Jacobi constant, which is an integral of the motion in the PCR3BP, and is 
used to distinguish among, e.g., Halley-family comets or Damocloids (𝑇; ≤ 2), JFCs (2 < 𝑇; ≤
3), and asteroids (𝑇; > 3). 

 
Placing results in context of the PCR3BP 

Figure 3 portrayed a highly resolved image of the uncovered structures, along with callouts 
to specific evolutions in Cartesian inertial-frame coordinates of several initial conditions located 
on the stable manifolds. Additional context for our results is given in fig. S3, which shows example 
trajectories taken from the map and projected into the Sun-Jupiter rotating frame. Such evolutions 
exhibit a complicated array of behaviors, characteristic of manifold dynamics.  



 
 

 
 

 

Figure S1. Location of the five Lagrange equilibrium points for the PCR3BP in the Sun-
Jupiter system 
The collinear points, L1, L2, and L3, which lie along the straight line joining the Sun and Jupiter, 
are unstable stationary solutions, while the equilateral points, L4 and L5, which lead or trail Jupiter 
in its orbit by an angular distance of 60°, are stable equilibria. In each equilibrium case, the three 
bodies are at rest when viewed in a coordinate system that rotates at constant angular velocity 
about their barycenter. Given at a certain time both the position 𝑥, 𝑦  and velocity 𝑥, 𝑦  of a 
small Solar System body (e.g., comet), it is generally impossible to predict for any arbitrary time 
interval the future progress of its motion. Nevertheless, the invariant manifold structures provide 
the framework for understanding many complex dynamical phenomena within the PCR3BP.  
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Figure S2. The stable and unstable invariant manifold tubes associated with Lyapunov orbits 
around L1 and L2 governing flow near Jupiter 
The stable (green, black arrows pointing towards the periodic orbit) and unstable (red, black 
arrows pointing away from the periodic orbit) manifolds associated to Lyapunov orbits around the 
collinear Lagrange points. The energetically forbidden zone is gray and Hill’s region contains 
bottlenecks about L1 and L2. Transition between the interior and exterior realms, scattering, 
temporary capture, and collision are conditioned by such invariant manifold structures. 
 

  



 
 

 
 

 

Figure S3. Example evolutionary states in the Sun-Jupiter rotating frame of initial conditions 
located on the uncovered manifold structures  
Superimposed on stability map of Fig. 3 (top left) and PCR3BP rotating frame (top right) are the 
initial conditions whose trajectories are further illustrated in panels A-F. These example 
trajectories are integrated for 100 years with the same dynamical model used to produce the map, 
and then projected into the Sun-Jupiter rotating frame to highlight their relationship with the 
Lagrange points. All six trajectories experience a close encounter with Jupiter after only one or 
two orbital revolutions around the Sun. Five of them (A-C, E, F) transit through the Jupiter’s Hill 
region, while the orbit in panel D stays on the same side of Jupiter after the close encounter. 
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Table S1. Orbital elements used for the numerical experiments 
Relevant Heliocentric-ecliptic orbital elements of Jupiter (in degrees) at the simulation epoch 30 
September 2012, obtained from JPL/Horizons (33), used to setup the numerical experiments in 
Figs. 1-3 and movies S1-S3.  
 

Inclination Argument of 
perihelion 

Longitude of 
ascending node Mean anomaly 

1.304095433921203E+00 2.738332953159384E+02 1.005051860216016E+02 4.684213694231330E+01 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  



 
 

 
 

Table S2. Orbital elements of Jupiter-family comet, Oterma 
Heliocentric-ecliptic orbital elements of 39P/Oterma at the epochs 1 January 1910 and 8 April 
1943, obtained from JPL/Horizons (33), used to setup the numerical experiments in Fig. 4. 
 
 1 January 1910 8 April 1943 

Semi-major axis (AU) 6.925850692714088E+00 3.961516742172333E+00 

Eccentricity 1.594266713982173E-01 1.444995136733259E-01 

Inclination (°) 3.077926672793472E+00 3.983867699367722E+00 

Argument of perihelion (°) 2.411079586498954E+02 3.547675772449415E+02 

Longitude of ascending node (°) 3.588772360504517E+01 1.558388364391905E+02 

Mean anomaly (°) 1.823901134362004E+02 2.869487026767107E+01 

  



 
 

 
 

Movie S1. Global appearance of space manifolds in one century 
Jovian-minimum-distance maps computed over roughly ten orbital revolutions of Jupiter with each 
frame of the animation showing how the arches and foliated substructure manifest over three-year 
increments (Fig. 1 and 2). Each map samples four million initial values of semi-major axis and 
eccentricity, where the initial inclination, argument of perihelion, and longitude of ascending node 
of the TPs are set equal to that of Jupiter at the initial epoch 30 September 2012 (table S1). The 
initial mean anomaly of the TPs is set to 60° ahead of Jupiter in its orbit to reflect the Greek L4 
configuration. Two contours of Sun-Jupiter-TP three-body energy are superimposed, with -1.5194 
corresponding to the value of the L1 Lagrange point. The map covers the inner edge of the main 
asteroid belt at 2 AU to just beyond the semi-major axis of Uranus at 20 AU. The Mercurius 
package within REBOUND (30) was used under the Sun-Jupiter-TP three-body model.   

Movie S2. Small bodies located on manifolds that lead to rapid collision with Jupiter 
Heliocentric-ecliptic inertial frame evolution of the 31 colliding TPs of Fig. 3. The fastest collision 
occurred in just over seven years and the average collision time was roughly 36 years.  

Movie S3. Small bodies located on manifolds that lead to fast escape from the Solar System 
Heliocentric-ecliptic inertial frame evolution of a subset of 38 escaping TPs of Fig. 3. These 
elliptic-to-hyperbolic transitioning orbits reach the distances of Uranus and Neptune in roughly 38 
and 44 years on average, respectively, and 63% of them get kicked to 100 AU over the course of 
a century.  
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