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Abstract

Low dimensional embeddings of manifold data have gained popularity in the last decade.
However, a systematic finite sample analysis of manifold embedding algorithms largely
eludes researchers. Here we present two algorithms that embed a general n-dimensional
manifold into Rd (where d only depends on some key manifold properties such as its intrinsic
dimension, volume and curvature) that guarantee to approximately preserve all interpoint
geodesic distances.
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1. Introduction

Finding low dimensional representations of manifold data has gained popularity in the last
decade. One typically assumes that points are sampled from an n-dimensional manifold
residing in some high-dimensional ambient space R

D and analyzes to what extent their
low dimensional embedding maintains some important manifold property, say, interpoint
geodesic distances.

Despite an abundance of manifold embedding algorithms, only a few provide any kind
of distance preserving guarantee. Isomap (Tenebaum et al., 2000), for instance, provides
an asymptotic guarantee that as one increases the amount of data sampled from an under-
lying manifold, one can approximate the geodesic distances between the sample points well
(Bernstein et al., 2000). Then, under a very restricted class of n-dimensional manifolds, one
can show that the n-dimensional embedding returned by Isomap is approximately distance
preserving on the input samples.

Unfortunately any kind of systematic finite sample analysis of manifold embedding
algorithms—especially for general classes of manifolds—still largely eludes the manifold
learning community. Part of the difficulty is due to the restriction of finding an embedding
in exactly n dimensions. It turns out that many simple manifolds (such as a closed loop,
a cylinder, a section of a sphere) cannot be isometrically embedded in R

n, where n is the
manifold’s intrinsic dimension. If these manifolds reside in some high dimensional ambient
space, we would at least like to embed them in a lower dimensional space (possibly slightly
larger than n) while still preserving interpoint geodesic distances.
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Verma

Here we are interested in investigating low-dimensional distance-preserving manifold
embeddings more formally. Given a sample X from an underlying n-dimensional manifold
M ⊂ R

D, and an embedding procedure A : M → R
d that (uses X in training and) maps

points from M into some low dimensional space Rd, we define the quality of the embedding
A as (1± ǫ)-isometric if for all p, q ∈M :

(1− ǫ)DG(p, q) ≤ DG(A(p),A(q)) ≤ (1 + ǫ)DG(p, q),

where DG denotes the geodesic distance. We would like to know i) can one come up with
an embedding algorithm A that achieves (1± ǫ)-isometry for all points in M? ii) how much
can one reduce the target dimension d and still have (1± ǫ)-isometry? and, iii) what kinds
of restrictions (if any) does one need on M and X?

Since A only gets to access a finite size sample X from the underlying non-linear mani-
fold M , it is essential to assume certain amount of curvature regularity on M . Niyogi et al.
(2008) provide a nice characterization of manifold curvature via a notion of manifold con-
dition number that will be useful throughout the text (details later).

Perhaps the first algorithmic result for embedding a general n-dimensional manifold
is due to Baraniuk and Wakin (2009). They show that an orthogonal linear projection
of a well-conditioned n-dimensional manifold M ⊂ R

D into a sufficiently high dimensional
random subspace is enough to approximately preserve all pairwise geodesic distances. To get
(1±ǫ)-isometry, they show that a target dimension d of size about O

(
n
ǫ2
log V D

τ

)
is sufficient,

where V is the n-dimensional volume of the manifold and τ is the manifold’s curvature
condition number. This result was sharpened by Clarkson (2008) and Verma (2011) by
completely removing the dependence on ambient dimension D and partially substituting
the curvature-condition τ with more average-case manifold properties. In either case, the
1/ǫ2 dependence is troublesome: if we want an embedding with all distances within 99% of
the original distances (i.e., ǫ = 0.01), the bounds require the dimension of the target space
to be at least 10,000!

1.1 Our Contributions

In this work, we give two algorithms that achieve (1 ± ǫ)-isometry where the dimension of
the target space is independent of the isometry constant ǫ. As one expects, this dependency
shows up in the sampling density (i.e. the size of X) required to compute the embedding.
The first algorithm we propose is simple and easy to implement but embeds the given
n-dimensional manifold in Õ(2cn) dimensions1 (where c is an absolute constant). The
second algorithm, a variation on the first, focuses on minimizing the target dimension. It
is computationally more involved and serves a more theoretical purpose: it shows that one
can embed the manifold in just Õ(n) dimensions.

We would like to highlight that both of our proposed algorithms work for a very general
class of well-conditioned manifolds. There is no requirement that the underlying manifold
is connected, or is globally isometric (or even globally diffeomorphic) to some subset of Rn

as is frequently assumed by several manifold embedding algorithms. In addition, unlike

1. Õ(·) notation suppresses the logarithmic dependence on quantities that depend on the intrinsic geometry
of the underlying manifold, such as its volume and curvature-condition terms.
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spectrum-based embedding algorithms in the literature, our algorithms yield an explicit
embedding that cleanly embeds out-of-sample data points, and provide isometry guarantees
over the entire manifold (not just the input samples).

As we shall discuss in the next section, our algorithms are heavily inspired by Nash’s
embedding technique (Nash, 1954). It is worth noting that the techniques used in our proof
are different from what Nash uses in his work; unlike traditional differential-geometric
settings, we can only access the underlying manifold through a finite size sample. This
makes it difficult to compute quantities (such as the curvature tensor and local functional
form of the input manifold, etc.) that are important in Nash’s approach for constructing an
isometric embedding. Our work provides insight on how and under what conditions can one
use just the samples to construct an approximate isometric embedding of the underlying
manifold. In that sense, this work can be viewed as an algorithmic realization of Nash’s
Embedding Theorem.

2. Isometrically Embedding n-Dimensional Manifolds: Intuition

Given an underlying n-dimensional manifold M ⊂ R
D, we shall use ideas from Nash’s

embedding (Nash, 1954) to develop our algorithms. To ease the burden of finding a (1± ǫ)-
isometric embedding directly, our proposed algorithm will be divided in two stages. The first
stage will embed M in a lower dimensional space without having to worry about preserving
any distances. Since interpoint distances will potentially be distorted by the first stage, the
second stage will focus on adjusting these distances by applying a series of corrections. The
combined effect of both stages is a distance preserving embedding ofM in lower dimensions.
We now describe the stages in detail.

2.1 Embedding Stage

We shall use the random projection result by Clarkson (2008) (with ǫ set to a constant)
to embed M into d = Õ(n) dimensions. This gives an easy one-to-one low-dimensional
embedding that doesn’t collapse interpoint distances. Note that a projection does contract
interpoint distances; by appropriately scaling the random projection, we can make sure that
the distances are contracted by at most a constant amount, with high probability.

2.2 Correction Stage

Since the random projection can contract different parts of the manifold by different amounts,
we will apply several corrections—each corresponding to a different local region—to stretch-
out and restore the local distances.

To understand a single correction better, we can consider its effect on a small section
of the contracted manifold. Since manifolds are locally linear, the section effectively looks
like a contracted n-dimensional affine space. Our correction map needs to restore distances
over this n-flat.

For simplicity, let’s temporarily assume n = 1 (this corresponds to a 1-dimensional
manifold), and let t ∈ [0, 1] parameterize a unit-length segment of the contracted 1-flat.
Suppose we want to stretch the segment by a factor of L ≥ 1 to restore the contracted
distances. How can we accomplish this?
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Perhaps the simplest thing to do is apply a linear correction Ψ : t 7→ Lt. While this
mapping works well for individual local regions, it turns out that this mapping makes it
difficult to control the interference between different corrections with overlapping localities.

We instead use extra coordinates and apply a non-linear map Ψ : t 7→ (t, sin(Ct), cos(Ct)),
where C controls the stretch-size. Note that such a spiral map stretches the length of the tan-
gent vectors by a factor of

√
1 + C2, since ‖Ψ′‖ = ‖dΨ/dt‖ = ‖(1, C cos(Ct),−C sin(Ct))‖ =√

1 + C2. Now since the geodesic distance between any two points p and q on a manifold
is given by the expression

∫
‖γ′(s)‖ds, where γ is a parameterization of the geodesic curve

between points p and q (that is, length of a curve is infinitesimal sum of the length of
tangent vectors along its path), Ψ stretches the interpoint geodesic distances by a factor of√
1 + C2 on the resultant surface as well. Thus, to stretch the distances by a factor of L,

we can set C :=
√
L2 − 1.

Now generalizing this to a local region for an arbitrary n-dimensional manifold, let
U := [u1, . . . , un] be a d×n matrix whose columns form an orthonormal basis for the (local)
contracted n-flat in the embedded space Rd and let σ1, . . . , σn be the corresponding shrink-
ages along the n orthogonal directions. Then one can consider applying an n-dimensional
analog of the spiral mapping: Ψ : t 7→ (t,Ψsin(t),Ψcos(t)), where t ∈ R

d

Ψsin(t) := (sin((Ct)1), . . . , sin((Ct)n)), and
Ψcos(t) := (cos((Ct)1), . . . , cos((Ct)n)).

Here C is an n × d “correction” matrix that encodes how much of the surface needs to
stretch in the various orthogonal directions. It turns out that if one sets C to be the matrix
SUT, where S is a diagonal matrix with entry Sii :=

√

(1/σi)2 − 1 (recall that σi was
the shrinkage along direction ui), then the correction Ψ precisely restores the shrinkages
along the n orthonormal directions on the resultant surface (see Section 5.2.1 for a detailed
derivation).

This takes care of the local regions individually. Now, globally, since different parts of
the contracted manifold need to be stretched by different amounts, we localize the effect
of the individual Ψ’s to a small enough neighborhood by applying a specific kind of kernel
function known as the “bump” function in the analysis literature, given by (see also Figure
5 middle)

λx(t) := 1{‖t−x‖<ρ} ·e−1/(1−(‖t−x‖/ρ)2).

Applying different Ψ’s at different parts of the manifold has an aggregate effect of creating
an approximate isometric embedding.

We now have a basic outline of our algorithm. Let M be an n-dimensional manifold
in R

D. We first find a contraction of M in d = Õ(n) dimensions via a random projection.
This embeds the manifold in low dimensions but distorts the interpoint geodesic distances.
We estimate the distortion at different regions of the projected manifold by comparing a
sample from M (i.e. X) with its projection. We then perform a series of corrections—each
applied locally—to adjust the lengths in the local neighborhoods. We will conclude that
restoring the lengths in all neighborhoods yields a globally consistent approximately iso-
metric embedding of M . See also Figure 1.
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Random

projection
Corrections

Figure 1: A simple example demonstrating our embedding technique on a 1-dimensional
manifold. Left: The original 1-dimensional manifold in some high dimensional
space. Middle: A low dimensional mapping of the original manifold via, say,
a linear projection onto the vertical plane. Different parts of the manifold are
contracted by different amounts – distances at the tail-ends are contracted more
than the distances in the middle. Right: Final embedding after applying a se-
ries of spiraling corrections. Small size spirals are applied to regions with small
distortion (middle), large spirals are applied to regions with large distortions (tail-
ends). Resulting embedding is isometric (i.e., geodesic distance preserving) to the
original manifold.

As briefly mentioned earlier, a key issue in preserving geodesic distances across points
in different neighborhoods is reconciling the interference between different corrections with
overlapping localities. Based on exactly how we apply these different local Ψ’s gives rise to
our two algorithms. For the first algorithm, we shall allocate a fresh set of coordinates for
each correction Ψ so that the different corrections don’t interfere with each other. Since
a local region of an n-dimensional manifold can potentially have up to O(2cn) overlapping
regions, we shall require O(2cn) additional coordinates to apply the corrections, making
the final embedding dimension of Õ(2cn) (where c is an absolute constant). For the second
algorithm, we will follow Nash’s technique (Nash, 1954) more closely and apply Ψ maps
iteratively in the same embedding space without the use of extra coordinates. At each
iteration we need to compute a pair of vectors normal to the embedded manifold. Since
locally the manifold spreads across its tangent space, these normals indicate the locally
empty regions in the embedded space. Applying the local Ψ correction in the direction of
these normals gives a way to mitigate the interference between different Ψ’s. Since we don’t
use extra coordinates, the final embedding dimension remains Õ(n).

3. Preliminaries

Let M be a smooth, n-dimensional compact Riemannian submanifold of RD. Note that we
do not have any further topological restrictions onM ; it may or may not have a boundary, or
may or may not be orientable. We will frequently refer to such a manifold as an n-manifold.

Since we will be working with samples from M , we need to ensure certain amount of
curvature regularity. Here we borrow the notation from Niyogi et al. (2008) about the
condition number of M .
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Figure 2: Tubular neighborhood of a manifold. Note that the normals (dotted lines) of a
particular length incident at each point of the manifold (solid line) will intersect
if the manifold is too curvy.

Definition 1 (condition number (Niyogi et al., 2008)) Let M ⊂ R
D be a compact

Riemannian manifold. The condition number of M is 1
τ , if τ is the largest number such

that the normals of length r < τ at any two distinct points p, q ∈M don’t intersect.

The condition number is based on the notion of “reach” introduced by Federer (1959)
and is closely related to the Second Fundamental Form of the manifold. Intuitively, it cap-
tures the complexity of a manifold in terms of the manifold’s curvature. If M has condition
number 1/τ , we can, for instance, bound the directional curvature at any p ∈ M by τ .
Figure 2 depicts the normals of a manifold. Notice that long non-intersecting normals are
possible only if the manifold is relatively flat. Hence, the condition number of M gives us a
handle on how curvy canM be. As a quick example, let’s calculate the condition number of
an n-dimensional sphere of radius r (embedded in R

D). Note that in this case one can have
non-intersecting normals of length less than r (since otherwise they will start intersecting at
the center of the sphere). Thus, the condition number of such a sphere is 1/r. Henceforth
we shall assume that M is well-conditioned, that is, M has condition number 1/τ . There
are several useful properties of well-conditioned manifolds that would be helpful throughout
the text; these are outlined in Appendix A.

Since we make minimal topological assumptions on M , even a well-conditioned M can
have computational degeneracies: M , for instance, can have an unbounded number of well-
conditioned connected components, yielding unusually large cover sizes. Since we make
use of a random projection for the Embedding Stage, it is essential to have good manifold
covers. Thus in order to avoid degenerate cases, we shall assume covering regularity on M .

Definition 2 (manifold regularity) Let M ⊂ R
D be an n-manifold with condition num-

ber 1/τ . We call M as CM -regular, if for any r ≤ τ/2, the r-covering number of M is
of size at most (CM/r)

n, where CM is a universal constant dependent only on intrinsic
properties of M (such as its n-dimensional volume, etc.). That is, there exists a set S ⊂M
of size at most (CM/r)

n such that for all p ∈M , exists x ∈ S such that ‖p− x‖ ≤ r.
We will use the notation DG(p, q) to indicate the geodesic distance between points p and

q where the underlying manifold is understood from the context, and ‖p − q‖ to indicate
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the Euclidean distance between points p and q where the ambient space is understood from
the context.

To correctly estimate the distortion induced by the initial contraction mapping, our
algorithm needs access to a high-resolution sample from our underlying manifold.

Definition 3 (bounded manifold cover) Let M ⊂ R
D be a Riemannian n-manifold.

We call X ⊂ M an α-bounded (ρ, δ)-cover of M if for all p ∈ M and ρ-neighborhood
Xp := {x ∈ X : ‖x− p‖ < ρ} around p, we have

• there exist points x0, . . . , xn ∈ Xp such that
∣
∣
∣
xi−x0

‖xi−x0‖
· xj−x0‖xj−x0‖

∣
∣
∣ ≤ 1/2n, for i 6= j. (local

spread criterion)

• |Xp| ≤ α. (local boundedness criterion)

• exists point x ∈ Xp such that ‖x− p‖ ≤ ρ/2. (covering criterion)

• for any n + 1 points in Xp satisfying the local spread criterion, let T̂p denote the n-
dimensional affine space passing through them (note that T̂p does not necessarily pass
through p). Then, for any unit vector v̂ in T̂p, we have

∣
∣v̂ · v

‖v‖

∣
∣ ≥ 1 − δ, where v is

the projection of v̂ onto the tangent space of M at p. (tangent space approximation
criterion)

The above is an intuitive notion of manifold sampling that can estimate the local tangent
spaces. Curiously, we haven’t found such “tangent-space approximating” notions of mani-
fold sampling in the literature. We do note in passing that our sampling criterion is similar
in spirit to the (ǫ, δ)-sampling (also known as “tight” ǫ-sampling) criterion popular in the
Computational Geometry literature (see e.g. Dey et al., 2002; Giesen and Wagner, 2003).

Remark 4 Given an n-manifold M with condition number 1/τ , and some 0 < δ ≤ 1. If
ρ ≤ τδ/16n, then there exists a 213n-bounded (ρ, δ)-cover of M (see Appendix B).

We can now state our two algorithms.

4. The Algorithms

Inputs. We assume the following quantities are given:

(i) n – the intrinsic dimension of M .

(ii) 1/τ – the condition number of M .

(iii) X – an α-bounded (ρ, δ)-cover of M .

(iv) ρ – the ρ parameter of the cover.
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Notation. Let φ be a random orthogonal projection map that maps points from R
D into

a random subspace of dimension d (n ≤ d ≤ D). We will have d to be about Õ(n). Set
Φ := (2/3)(

√

D/d)φ as a scaled version of φ. Since Φ is linear, Φ can also be represented as
a d ×D matrix. In our discussion below we will use the function notation and the matrix
notation interchangeably, that is, for any p ∈ R

D, we will use the notation Φ(p) (applying
function Φ to p) and the notation Φp (matrix-vector multiplication) interchangeably.

For any x ∈ X, let x0, . . . , xn be n+ 1 points from the set {x′ ∈ X : ‖x− x′‖ < ρ} such
that

∣
∣ xi−x0
‖xi−x0‖

· xj−x0
‖xj−x0‖

∣
∣ ≤ 1/2n, for i 6= j (cf. Definition 3). Let Fx be the D × n matrix

whose column vectors form some orthonormal basis of the n-dimensional subspace spanned
by the vectors {xi − x0}i∈[n]. Note that Fx serves as a good approximation to the tangent

spaces at different points in the neighborhood of x ∈M ⊂ R
D.

Estimating local contractions. We estimate the contraction caused by Φ at a small
enough neighborhood of M containing the point x ∈ X, by computing the “thin” Singular
Value Decomposition (SVD) UxΣxV

T
x of the d×n matrix ΦFx and representing the singular

values in the conventional descending order. That is, ΦFx = UxΣxV
T
x , and since ΦFx is a

tall matrix (n ≤ d), we know that the bottom d−n singular values are zero. Thus, we only
consider the top n (of d) left singular vectors in the SVD (so, Ux is d× n, Σx is n× n, and
Vx is n× n) and σ1x ≥ σ2x ≥ . . . ≥ σnx where σix is the ith largest singular value.

Observe that the singular values σ1x, . . . , σ
n
x are precisely the distortion amounts in the

directions u1x, . . . , u
n
x at Φ(x) ∈ R

d ([u1x, . . . , u
n
x] = Ux) when we apply Φ. To see this,

consider the direction wi := Fxv
i
x in the column-span of Fx ([v1x, . . . , v

n
x ] = Vx). Then

Φwi = (ΦFx)v
i
x = σixu

i
x, which can be interpreted as: Φ maps the vector wi in the column-

space of Fx (in R
D) to the vector uix (in R

d) with the scaling of σix.

Note that if 0 < σix ≤ 1 (for all x ∈ X and 1 ≤ i ≤ n), we can define an n× d correction
matrix (corresponding to each x ∈ X) Cx := SxU

T
x , where Sx is a diagonal matrix with

(Sx)ii :=
√

(1/σix)
2 − 1. We can also write Sx as (Σ−2

x − I)1/2. The correction matrix
Cx will have an effect of stretching the direction uix by the amount (Sx)ii and killing any
direction v that is orthogonal to (column-span of) Ux.

Algorithm 1 Compute Corrections Cx’s

1: for x ∈ X (in any order) do
2: Let x0, . . . , xn ∈ {x′ ∈ X : ‖x′ − x‖ < ρ} be such that

∣
∣ xi−x0
‖xi−x0‖

· xj−x0
‖xj−x0‖

∣
∣ ≤ 1/2n (for

i 6= j).
3: Let Fx be a D × n matrix whose columns form an orthonormal basis of the n-

dimensional span of the vectors {xi − x0}i∈[n].
4: Let UxΣxV

T
x be the “thin” SVD of ΦFx.

5: Set Cx := (Σ−2
x − I)1/2UT

x .
6: end for
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Algorithm 2 Embedding Technique I

Preprocessing Stage: Partition the given covering X into disjoint subsets such that
no subset contains points that are too close to each other. Let x1, . . . , x|X| be the
points in X in some arbitrary but fixed order. We can do the partition as fol-
lows:

1: Initialize X(1), . . . ,X(K) as empty sets.
2: for xi ∈ X (in any fixed order) do
3: Let j be the smallest positive integer such that xi is not within distance 2ρ of any

element in X(j). That is, the smallest j such that for all x ∈ X(j), ‖x− xi‖ ≥ 2ρ.
4: X(j) ← X(j) ∪ {xi}.
5: end for

The Embedding: For any p ∈M ⊂ R
D, embed it in R

d+2nK as follows:

1: Let t = Φ(p).
2: Define Ψ(t) := (t,Ψ1,sin(t),Ψ1,cos(t), . . . ,ΨK,sin(t),ΨK,cos(t)) where

Ψj,sin(t) := (ψ1
j,sin(t), . . . , ψ

n
j,sin(t)),

Ψj,cos(t) := (ψ1
j,cos(t), . . . , ψ

n
j,cos(t)).

The individual terms are given by

ψij,sin(t) :=
∑

x∈X(j)

(√

ΛΦ(x)(t)/ω
)
sin(ω(Cxt)i)

ψij,cos(t) :=
∑

x∈X(j)

(√

ΛΦ(x)(t)/ω
)
cos(ω(Cxt)i)

i = 1, . . . , n;
j = 1, . . . ,K

where Λa(b) =
λa(b)∑

q∈X λΦ(q)(b)
.

3: return Ψ(t) as the embedding of p in R
d+2nK .

A few remarks are in order.

Remark 5 The goal of the Preprocessing Stage is to identify samples from X that can have
overlapping (ρ-size) local neighborhoods. The partitioning procedure described above ensures
that corrections associated with nearby neighborhoods are applied in separate coordinates to
minimize interference.

Remark 6 If ρ ≤ τ/8, the number of subsets (i.e. K) produced by Embedding I is at most
α2cn for an α-bounded (ρ, δ) cover X of M (where c ≤ 4). See Appendix C for details.

Remark 7 The function Λ acts as a (normalized) localizing kernel that helps in localizing
the effects of the spiraling corrections (discussed in detail in Section 5.2).

Remark 8 ω > 0 is a free parameter that controls the interference due to overlapping local
corrections.
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Algorithm 3 Embedding Technique II

The Embedding: Let x1, . . . , x|X| be the points inX in some arbitrary but fixed order. For

any point p ∈M ⊂ R
D, we embed it in R

2d+3 by:

1: Let t = Φ(p).
2: Define Ψ0,n(t) := (t, 0, . . . , 0

︸ ︷︷ ︸

d+3

). [Extension needed to efficiently find the normal vectors]

3: for i = 1, . . . , |X| do
4: Define Ψi,0 := Ψi−1,n.
5: for j = 1, . . . , n do
6: Let ηi,j(t) and νi,j(t) be two mutually orthogonal unit vectors normal to

Ψi,j−1(ΦM) at Ψi,j−1(t).
7: Define

Ψi,j(t) := Ψi,j−1(t) + ηi,j(t)

(
√

ΛΦ(xi)(t)

ωi,j

)

sin(ωi,j(C
xit)j) + νi,j(t)

(
√

ΛΦ(xi)(t)

ωi,j

)

cos(ωi,j(C
xit)j),

where Λa(b) =
λa(b)∑

q∈X λΦ(q)(b)
.

8: end for
9: end for

10: return Ψ|X|,n(t) as the embedding of p into R
2d+3.

Remark 9 The function Λ, and the free parameters ωi,j (one for each i, j iteration) have
roles similar to those in Embedding I.

Remark 10 The success of Embedding II depends upon finding a pair of normal unit vectors
η and ν in each iteration; we discuss how to approximate these in Appendix E.

For appropriate choice of d, ρ, δ and ω (or ωi,j), we have the following.

4.1 Main Result

Theorem 11 Let M ⊂ R
D be a CM -regular n-manifold with condition number 1/τ . Let

d = Ω(n log(CM/τ)) be the target dimension of the initial random projection mapping such
that d ≤ D. For any 0 < ǫ ≤ 1, let ρ ≤ (τd/D)(ǫ/350)2 , δ ≤ (d/D)(ǫ/250)2, and let
X ⊂M be an α-bounded (ρ, δ)-cover of M . Now, given access to the sample X, let

i. NI ⊂ R
d+2αn2cn be the embedding of M returned by Algorithm I (where c ≤ 4),

ii. NII ⊂ R
2d+3 be the embedding of M returned by Algorithm II.

Then, with probability at least 1−1/poly(n) over the choice of the initial random projection,
for all p, q ∈M and their corresponding mappings pI, qI ∈ NI and pII, qII ∈ NII, we have

i. (1− ǫ)DG(p, q) ≤ DG(pI, qI) ≤ (1 + ǫ)DG(p, q),

ii. (1− ǫ)DG(p, q) ≤ DG(pII, qII) ≤ (1 + ǫ)DG(p, q).
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p

v

M

TpM

TF (p)F (M)

F (M)
F (p) (DF )p(v)

Figure 3: Effects of applying a smooth map F on various quantities of interest. Left: A
manifold M containing point p. v is a vector tangent to M at p. Right: Mapping
of M under F . Point p maps to F (p), tangent vector v maps to (DF )p(v).

5. Proof

Our goal is to show that the two proposed embeddings approximately preserve the lengths
of all geodesic curves. Now, since the length of any given curve γ : [a, b] → M is given

by
∫ b
a ‖γ′(s)‖ds, it is vital to study how our embeddings modify the length of the tangent

vectors at any point p ∈M .

In order to discuss tangent vectors, we need to introduce the notion of a tangent space
TpM at a particular point p ∈ M . Consider any smooth curve c : (−ǫ, ǫ) → M such that
c(0) = p, then we know that c′(0) is the vector tangent to c at p. The collection of all such
vectors formed by all such curves is a well defined vector space (with origin at p), called the
tangent space TpM . In what follows, we will fix an arbitrary point p ∈ M and a tangent
vector v ∈ TpM and analyze how the various steps of the algorithm modify the length of v.

Let Φ be the initial (scaled) random projection map (from R
D to R

d) that may contract
distances on M by various amounts, and let Ψ be the subsequent correction map that
attempts to restore these distances (as defined in Step 2 for Embedding I or as a sequence
of maps in Step 7 for Embedding II). To get a firm footing for our analysis, we need to study
how Φ and Ψ modify the tangent vector v. It is well known from differential geometry that
for any smooth map F : M → N that maps a manifold M ⊂ R

k to a manifold N ⊂ R
k′ ,

there exists a linear map (DF )p : TpM → TF (p)N , known as the derivative map or the
pushforward (at p), that maps tangent vectors incident at p inM to tangent vectors incident
at F (p) in N . To see this, consider a vector u tangent to M at some point p. Then, there
is some smooth curve c : (−ǫ, ǫ) → M such that c(0) = p and c′(0) = u. By mapping the
curve c into N , i.e. F (c(t)), we see that F (c(t)) includes the point F (p) at t = 0. Now, by

calculus, we know that the derivative at this point, dF (c(t))
dt

∣
∣
∣
t=0

is the directional derivative

(∇F )p(u), where (∇F )p is a k′ × k matrix called the gradient (at p). The quantity (∇F )p
is precisely the matrix representation of this linear “pushforward” map that sends tangent
vectors of M (at p) to the corresponding tangent vectors of N (at F (p)). Figure 3 depicts
how these quantities are affected by applying F . Also note that if F is linear, then DF = F .

Observe that since pushforward maps are linear, without loss of generality we can as-
sume that v has unit length. Also, since for n = 0 there is nothing to prove, we shall assume
that n ≥ 1.

11
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Φ

R
d+k

t = Φp

Ψ

M ΦM

R
D

R
d

ΨΦM

p Ψ(t)

v

‖v‖ = 1

u = Φv (DΨ)t(u)

‖(DΨ)t(u)‖ ≈ ‖v‖‖u‖ ≤ 1

Figure 4: Two stage mapping of our embedding technique. Left: Underlying manifold
M ⊂ R

D with the quantities of interest – a fixed point p and a fixed unit-vector
v tangent to M at p. Center: A (scaled) linear projection of M into a random
subspace of d dimensions. The point p maps to Φp and the tangent vector v maps
to u := (DΦ)p(v) = Φv. The length of v contracts to ‖u‖. Right: Correction of
ΦM via a non-linear mapping Ψ into R

d+k. We have k = O(α2cn) for correction
technique I, and k = d+3 for correction technique II (see also Section 4). Our goal
is to show that Ψ stretches length of contracted v (i.e. u) back to approximately
its original length.

A quick roadmap for the proof. In the next three sections, we take a brief detour to
study the effects of applying Φ, applying Ψ for Algorithm I, and applying Ψ for Algorithm II
separately. This will give us the necessary tools to analyze the combined effect of applying
Ψ ◦Φ on v (Section 5.4). We will conclude by relating tangent vectors to lengths of curves,
showing approximate isometry (Section 5.5). Figure 4 provides a quick sketch of our two
stage mapping with the quantities of interest. We defer the proofs of all the supporting
lemmas to Appendix D.

5.1 Effects of Applying Φ

It is well known as an application of Sard’s theorem from differential topology (see e.g.
Milnor, 1972) that almost every smooth mapping of an n-dimensional manifold into R

2n+1

is a differential structure preserving embedding of M . In particular, a projection onto a
random subspace (of dimension 2n+ 1) constitutes such an embedding with probability 1.

This translates to stating that a random projection into R
2n+1 is enough to guarantee

that Φ doesn’t collapse the lengths of non-zero tangent vectors almost surely. However, due
to computational issues, we additionally require that the lengths are bounded away from
zero (that is, a statement of the form ‖(DΦ)p(v)‖ ≥ Ω(1)‖v‖ for all v tangent to M at all
points p).

We can thus appeal to the random projections result by Clarkson (2008) (with the
isometry parameter set to a constant, say 1/4) to ensure this condition. In particular, the
following holds.

Lemma 12 Let M ⊂ R
D be a CM -regular n-manifold with condition number 1/τ . Let

R be a random projection matrix that maps points from R
D into a random subspace of

12
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dimension d (d ≤ D). Define Φ := (2/3)(
√

D/d)R as a scaled projection mapping. If
d = Ω(n log(CM/τ)), then with probability at least 1 − 1/poly(n) over the choice of the
random projection matrix, we have

(a) For all p ∈M and all tangent vectors v ∈ TpM , (1/2)‖v‖ ≤ ‖(DΦ)p(v)‖ ≤ (5/6)‖v‖.

(b) For all p, q ∈M , (1/2)‖p − q‖ ≤ ‖Φp− Φq‖ ≤ (5/6)‖p − q‖.

(c) For all x ∈ R
D, ‖Φx‖ ≤ (2/3)(

√

D/d)‖x‖.

In what follows, we assume that Φ is such a scaled random projection map. Then, a bound
on the length of tangent vectors also gives us a bound on the spectrum of ΦFx (recall the
definition of Fx from Section 4).

Corollary 13 Let Φ, Fx and n be as described above (recall that x ∈ X that forms a
bounded (ρ, δ)-cover of M). Let σix represent the ith largest singular value of the matrix
ΦFx. Then, for δ ≤ d/32D, we have 1/4 ≤ σnx ≤ σ1x ≤ 1 (for all x ∈ X).

We will be using these facts in our discussion below in Section 5.4.

5.2 Effects of Applying Ψ (Algorithm I)

As discussed in Section 2, the goal of Ψ is to restore the contraction induced by Φ on M .
To understand the action of Ψ on a tangent vector better, we will first consider a simple
case of flat manifolds (Section 5.2.1), and then develop the general case (Section 5.2.2).

5.2.1 Warm-up: flat M

Let’s first consider applying a simple one-dimensional spiral map Ψ̄ : R → R
3 given by

t 7→ (t, sin(Ct), cos(Ct)), where t ∈ I = (−ǫ, ǫ). Let v̄ be a unit vector tangent to I (at, say,
0). Then note that

(DΨ̄)t=0(v̄) =
dΨ̄

dt

∣
∣
∣
t=0

= (1, C cos(Ct),−C sin(Ct))
∣
∣
t=0

.

Thus, applying Ψ̄ stretches the length of v̄ from 1 to
∥
∥(1, C cos(Ct),−C sin(Ct))|t=0

∥
∥ =√

1 + C2. Notice the advantage of applying the spiral map in computing the lengths: the
sine and cosine terms combine together to yield a simple expression for the size of the
stretch. In particular, if we want to stretch the length of v̄ from 1 to, say, L ≥ 1, then we
simply need C =

√
L2 − 1 (notice the similarity between this expression and our expression

for the diagonal component Sx of the correction matrix Cx in Section 4).

We can generalize this to the case of n-dimensional flat manifold (a section of an n-
flat) by considering a map similar to Ψ̄. For concreteness, let F be a D × n matrix whose
column vectors form some orthonormal basis of the n-flat manifold (in the original space
R
D). Let UΣV T be the “thin” SVD of ΦF . Then FV forms an orthonormal basis of

the n-flat manifold (in R
D) that maps to an orthogonal basis UΣ of the projected n-flat

manifold (in R
d) via the contraction mapping Φ. Define the spiral map Ψ̄ : Rd → R

d+2n

13
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in this case as follows. Ψ̄(t) := (t, Ψ̄sin(t), Ψ̄cos(t)), with Ψ̄sin(t) := (ψ̄1
sin(t), . . . , ψ̄

n
sin(t)) and

Ψ̄cos(t) := (ψ̄1
cos(t), . . . , ψ̄

n
cos(t)). The individual terms are given as

ψ̄isin(t) := sin((Ct)i)
ψ̄icos(t) := cos((Ct)i)

i = 1, . . . , n,

where C is now an n × d correction matrix. It turns out that setting C = (Σ−2 − I)1/2UT

precisely restores the contraction caused by Φ to the tangent vectors (notice the simi-
larity between this expression with the correction matrix in the general case Cx in Sec-
tion 4 and our motivating intuition in Section 2). To see this, let v be a vector tangent
to the n-flat at some point p (in R

D). We will represent v in the FV basis (that is,
v =

∑

i αi(Fv
i) where [Fv1, . . . , Fvn] = FV ). Note that ‖Φv‖2 = ‖∑i αiΦFv

i‖2 =
‖∑i αiσ

iui‖2 =
∑

i(αiσ
i)2 (where σi are the individual singular values of Σ and ui are

the left singular vectors forming the columns of U). Now, let w be the pushforward of
v (that is, w = (DΦ)p(v) = Φv =

∑

iwie
i, where {ei}i forms the standard basis of

R
d). Now, since DΨ̄ is linear, we have ‖(DΨ̄)Φ(p)(w)‖2 = ‖∑iwi(DΨ̄)Φ(p)(e

i)‖2, where
(DΨ̄)Φ(p)(e

i) = dΨ̄
dti

∣
∣
t=Φ(p)

=
(
dt
dti
, dΨ̄sin(t)

dti
, dΨ̄cos(t)

dti

) ∣
∣
∣
t=Φ(p)

. The individual components are

given by
dψ̄ksin(t)/dt

i = +cos((Ct)k)Ck,i
dψ̄kcos(t)/dt

i = − sin((Ct)k)Ck,i
k = 1, . . . , n; i = 1, . . . , d.

By algebra, we see that

‖(D(Ψ̄ ◦ Φ))p(v)‖2 = ‖(DΨ̄)Φ(p)((DΦ)p(v))‖2 = ‖(DΨ̄)Φ(p)(w)‖2

=
d∑

i=1

w2
i

( dt

dti

)2
+

d∑

i=1

n∑

k=1

w2
i

(dψksin(t)

dti

)2
+

d∑

i=1

n∑

k=1

w2
i

(dψkcos(t)

dti

)2
∣
∣
∣
∣
t=Φ(p)

=

d∑

k=1

w2
k +

n∑

k=1

cos2((CΦ(p))k)((CΦv)k)
2 +

n∑

k=1

sin2((CΦ(p))k)((CΦv)k)
2

=
d∑

k=1

w2
k +

n∑

k=1

((CΦv)k)
2 = ‖Φv‖2 + ‖CΦv‖2 = ‖Φv‖2 + (Φv)TCTC(Φv)

= ‖Φv‖2 + (
∑

i

αiσ
iui)TU(Σ−2 − I)UT(

∑

i

αiσ
iui)

= ‖Φv‖2 + [α1σ
1, . . . , αnσ

n](Σ−2 − I)[α1σ
1, . . . , αnσ

n]T

= ‖Φv‖2 + (
∑

i

α2
i −

∑

i

(αiσ
i)2) = ‖Φv‖2 + ‖v‖2 − ‖Φv‖2 = ‖v‖2.

In other words, our non-linear correction map Ψ̄ can exactly restore the contraction caused
by Φ for any vector tangent to an n-flat manifold.

In the fully general case, the situation gets slightly more complicated since we need to
apply different spiral maps, each corresponding to a different size correction at different
locations on the contracted manifold. Recall that we localize the effect of a correction by
applying the so-called “bump” function (details below). These bump functions, although

14



Distance Preserving Embeddings for Manifolds

−4 −3 −2 −1 0 1 2 3 4

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

|t−x|/ρ

λ x(t
)

−4 −3 −2 −1 0 1 2 3 4

−0.4

−0.2

0

0.2

0.4

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Figure 5: Effects of applying a bump function on a spiral mapping. Left: Spiral mapping
t 7→ (t, sin(t), cos(t)). Middle: Bump function λx: a smooth function with com-
pact support. The parameter x controls the location while ρ controls the width.
Right: The combined effect: t 7→ (t, λx(t) sin(t), λx(t) cos(t)). Note that the effect
of the spiral is localized while keeping the mapping smooth.

important for localization, have an undesirable effect on the stretched length of the tangent
vector. Thus, to ameliorate their effect on the length of the resulting tangent vector, we
control their contribution via a free parameter ω.

5.2.2 The General Case

More specifically, Embedding Technique I restores the contraction induced by Φ by applying
a non-linear map Ψ(t) := (t,Ψ1,sin(t),Ψ1,cos(t), . . . ,ΨK,sin(t),ΨK,cos(t)) (recall that K is the
number of subsets we decompose X into – cf. description in Embedding I in Section 4), with
Ψj,sin(t) := (ψ1

j,sin(t), . . . , ψ
n
j,sin(t)) and Ψj,cos(t) := (ψ1

j,cos(t), . . . , ψ
n
j,cos(t)). The individual

terms are given as

ψij,sin(t) :=
∑

x∈X(j) (
√

ΛΦ(x)(t)/ω) sin(ω(C
xt)i)

ψij,cos(t) :=
∑

x∈X(j) (
√

ΛΦ(x)(t)/ω) cos(ω(C
xt)i)

i = 1, . . . , n; j = 1, . . . ,K,

where Cx’s are the correction amounts for different locations x on the manifold, ω > 0
controls the frequency (cf. Section 4), and ΛΦ(x)(t) is defined to be λΦ(x)(t)/

∑

q∈X λΦ(q)(t),
with

λΦ(x)(t) :=

{
exp(−1/(1 − ‖t− Φ(x)‖2/ρ2)) if ‖t− Φ(x)‖ < ρ.
0 otherwise.

λ is a classic example of a bump function (see Figure 5 middle). It is a smooth func-
tion with compact support. Its applicability arises from the fact that it can be made “to
specifications”. That is, it can be made to vanish outside any interval of our choice. Here
we exploit this property to localize the effect of our corrections. The normalization of λ
(the function Λ) creates the so-called smooth partition of unity that helps to vary smoothly
between the spirals applied at different regions of M .

Since any tangent vector in R
d can be expressed in terms of the basis vectors, it suffices

to study how DΨ acts on the standard basis {ei}. Note that

(DΨ)t(e
i) =

( dt

dti
,
dΨ1,sin(t)

dti
,
dΨ1,cos(t)

dti
, . . . ,

dΨK,sin(t)

dti
,
dΨK,cos(t)

dti

)∣
∣
∣
t
,
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where

dψk
j,sin(t)

dti
=
∑

x∈X(j)
1
ω

(

sin(ω(Cxt)k)
dΛ

1/2
Φ(x)

(t)

dti

)

+
√

ΛΦ(x)(t) cos(ω(C
xt)k)C

x
k,i

dψk
j,cos(t)

dti
=
∑

x∈X(j)
1
ω

(

cos(ω(Cxt)k)
dΛ

1/2
Φ(x)

(t)

dti

)

−
√

ΛΦ(x)(t) sin(ω(C
xt)k)C

x
k,i

k ∈ [n]; i ∈ [d]
j ∈ [K]

.

One can now observe the advantage of having the term ω. By picking ω sufficiently large,
we can make the first part of the expression sufficiently small. Now, for any tangent vector
u =

∑

i uie
i such that ‖u‖ ≤ 1, we have (by algebra)

∥
∥(DΨ)t(u)

∥
∥2 =

∥
∥
∥

∑

i

ui(DΨ)t(e
i)
∥
∥
∥

2

=
d∑

i=1

u2i

( dt

dti

)2
+

d∑

i=1

K∑

j=1

n∑

k=1

u2i

(dψkj,sin(t)

dti

)2
+

d∑

i=1

K∑

j=1

n∑

k=1

u2i

(dψkj,cos(t)

dti

)2

=
d∑

k=1

u2k +
n∑

k=1

K∑

j=1

[ ∑

x∈X(j)

(Ak,xsin (t)

ω

)

+
√

ΛΦ(x)(t) cos(ω(C
xt)k)(C

xu)k

]2

+
[ ∑

x∈X(j)

(Ak,xcos(t)

ω

)

−
√

ΛΦ(x)(t) sin(ω(C
xt)k)(C

xu)k

]2
, (1)

whereAk,xsin (t) :=
∑

i ui sin(ω(C
xt)k)(dΛ

1/2
Φ(x)(t)/dt

i) andAk,xcos(t) :=
∑

i ui cos(ω(C
xt)k)(dΛ

1/2
Φ(x)(t)/dt

i).

We can further simplify Eq. (1) and get

Lemma 14 Let t be any point in Φ(M) and u be any vector tangent to Φ(M) at t such
that ‖u‖ ≤ 1. Let d, ǫ, ρ and α be as per the statement of Theorem 11. Pick ω ≥
Ω(nα216n

√
d/ρǫ), then

‖(DΨ)t(u)‖2 = ‖u‖2 +
∑

x∈X

ΛΦ(x)(t)

n∑

k=1

(Cxu)2k + ζ, (2)

where |ζ| ≤ ǫ/2.

We will use this derivation of ‖(DΨ)t(u)‖2 to study the combined effect of Ψ ◦Φ on M
in Section 5.4.

5.3 Effects of Applying Ψ (Algorithm II)

The goal of the second algorithm is to apply the spiraling corrections while using the
coordinates more economically. We achieve this goal by applying them sequentially in the
same embedding space (rather than simultaneously by making use of extra 2nK coordinates
as done in the first algorithm), see also Nash (1954). Since all the corrections will be sharing
the same coordinate space, one needs to keep track of a pair of normal vectors in order to
prevent interference among the different local corrections.
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More specifically, Ψ : Rd → R
2d+3 (in Algorithm II) is defined recursively as Ψ := Ψ|X|,n

such that (see also Embedding II in Section 4)

Ψi,j(t) := Ψi,j−1(t) + ηi,j(t)

√

ΛΦ(xi)(t)

ωi,j
sin(ωi,j(C

xit)j) + νi,j(t)

√

ΛΦ(xi)(t)

ωi,j
cos(ωi,j(C

xit)j),

where Ψi,0(t) := Ψi−1,n(t), and the base function Ψ0,n(t) is given as t 7→ (t,

d+3
︷ ︸︸ ︷

0, . . . , 0).
ηi,j(t) and νi,j(t) are mutually orthogonal unit vectors that are approximately normal to
Ψi,j−1(ΦM) at Ψi,j−1(t). In this section we assume that the normals η and ν have the
following properties:

- |ηi,j(t)·v| ≤ ǫ0 and |νi,j(t)·v| ≤ ǫ0 for all unit-length v tangent to Ψi,j−1(ΦM) at Ψi,j−1(t).
(quality of normal approximation)

- For all 1 ≤ l ≤ d, we have ‖dηi,j(t)/dtl‖ ≤ Ki,j and ‖dνi,j(t)/dtl‖ ≤ Ki,j. (bounded
directional derivatives)

We refer the reader to Appendix E for details on how to estimate such normals.

Now, as before, representing a tangent vector u =
∑

l ule
l (such that ‖u‖2 ≤ 1) in

terms of its basis vectors, it suffices to study how DΨ acts on basis vectors. Observe that

(DΨi,j)t(e
l) =

(
dΨi,j(t)

dtl

)2d+3

k=1

∣
∣
∣
t
, with the kth component given as

(
dΨi,j−1(t)

dtl

)

k

+ (ηi,j(t))k

√

ΛΦ(xi)(t)C
xi
j,lB

i,j
cos(t)− (νi,j(t))k

√

ΛΦ(xi)(t)C
xi
j,lB

i,j
sin(t)

+
1

ωi,j

[(dηi,j(t)

dtl

)

k

√

ΛΦ(xi)(t)B
i,j
sin(t) +

(dνi,j(t)

dtl

)

k

√

ΛΦ(xi)(t)B
i,j
cos(t)

+ (ηi,j(t))k
dΛ

1/2
Φ(xi)

(t)

dtl
Bi,j

sin(t) + (νi,j(t))k
dΛ

1/2
Φ(xi)

(t)

dtl
Bi,j

cos(t)
]

,

where Bi,j
cos(t) := cos(ωi,j(C

xit)j) and Bi,j
sin(t) := sin(ωi,j(C

xit)j). For ease of notation, let

Rk,li,j be the terms in the bracket (being multiplied to 1/ωi,j) in the above expression. Then,
we have (for any i, j)

‖(DΨi,j)t(u)‖2 =
∥
∥
∑

l

ul(DΨi,j)t(e
l)
∥
∥2

=

2d+3∑

k=1

[∑

l

ul

(
dΨi,j−1(t)

dtl

)

k
︸ ︷︷ ︸

ζk,1i,j

+(ηi,j(t))k

√

ΛΦ(xi)(t) cos(ωi,j(C
xit)j)

∑

l

Cxij,lul

︸ ︷︷ ︸

ζk,2i,j

−(νi,j(t))k
√

ΛΦ(xi)(t) sin(ωi,j(C
xit)j)

∑

l

Cxij,lul

︸ ︷︷ ︸

ζk,3i,j

+(1/ωi,j)
∑

l

ulR
k,l
i,j

︸ ︷︷ ︸

ζk,4i,j

]2
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= ‖(DΨi,j−1)t(u)‖2
︸ ︷︷ ︸

=
∑

k

(
ζk,1i,j

)2

+ ΛΦ(xi)(t)(C
xiu)2j

︸ ︷︷ ︸

=
∑

k

(
ζk,2i,j

)2
+
(
ζk,3i,j

)2

+
∑

k

[(
ζk,4i,j /ωi,j

)2
+
(
2ζk,4i,j /ωi,j

)(
ζk,1i,j + ζk,2i,j + ζk,3i,j

)
+ 2
(
ζk,1i,j ζ

k,2
i,j + ζk,1i,j ζ

k,3
i,j

)]

︸ ︷︷ ︸

Zi,j

, (3)

where the last equality is by expanding the square and by noting that
∑

k ζ
k,2
i,j ζ

k,3
i,j = 0 since

η and ν are orthogonal to each other. The base case ‖(DΨ0,n)t(u)‖2 equals ‖u‖2.

Again, by picking ωi,j sufficiently large, and by noting that the cross terms
∑

k(ζ
k,1
i,j ζ

k,2
i,j ) and

∑

k(ζ
k,1
i,j ζ

k,3
i,j ) are very close to zero since η and ν are approximately normal to the tangent

vector, we have

Lemma 15 Let t be any point in Φ(M) and u be any vector tangent to Φ(M) at t such
that ‖u‖ ≤ 1. Let ǫ be the isometry parameter chosen in Theorem 11. Pick ωi,j ≥ Ω

(
(Ki,j+

(α16n/ρ))(nd|X|)2/ǫ
)
(recall that Ki,j is the bound on the directional derivative of η and

ν). If ǫ0 ≤ O
(
ǫ/
√
d(n|X|)2

)
(recall that ǫ0 is the quality of approximation of the normals η

and ν), then we have

‖(DΨ)t(u)‖2 = ‖(DΨ|X|,n)t(u)‖2 = ‖u‖2 +
|X|
∑

i=1

ΛΦ(xi)(t)

n∑

j=1

(Cxiu)2j + ζ, (4)

where |ζ| ≤ ǫ/2.

5.4 Combined Effect of Ψ(Φ(M))

We can now analyze the aggregate effect of both our embeddings on the length of an
arbitrary unit vector v tangent to M at p. Let u := (DΦ)p(v) = Φv be the pushforward of
v. Then ‖u‖ ≤ 1 (cf. Lemma 12). See also Figure 4.

Now, recalling that D(Ψ ◦Φ) = DΨ ·DΦ, and noting that pushforward maps are linear,

we have ‖(D(Ψ ◦ Φ))p(v)‖2 =
∥
∥(DΨ)Φ(p)(u)

∥
∥2. Thus, representing u as

∑

i uie
i in ambient

coordinates of Rd, and using Eq. (2) (for Algorithm I) or Eq. (4) (for Algorithm II), we get

∥
∥(D(Ψ ◦Φ))p(v)

∥
∥2 =

∥
∥(DΨ)Φ(p)(u)

∥
∥2 = ‖u‖2 +

∑

x∈X

ΛΦ(x)(Φ(p))‖Cxu‖2 + ζ,

where |ζ| ≤ ǫ/2. We can give simple lower and upper bounds for the above expression by
noting that ΛΦ(x) is a localization function. Define Np := {x ∈ X : ‖Φ(x) − Φ(p)‖ < ρ} as
the neighborhood around p (ρ as per the theorem statement). Then only the points in Np

contribute to above equation, since ΛΦ(x)(Φ(p)) = dΛΦ(x)(Φ(p))/dt
i = 0 for ‖Φ(x)−Φ(p)‖ ≥

ρ. Also note that for all x ∈ Np, ‖x− p‖ < 2ρ (cf. Lemma 12).
Let xM := argmaxx∈Np ‖Cxu‖2 and xm := argminx∈Np ‖Cxu‖2 be the quantities that

attain the maximum and the minimum respectively. Then:

‖u‖2 + ‖Cxmu‖2 − ǫ/2 ≤ ‖(D(Ψ ◦ Φ))p(v)‖2 ≤ ‖u‖2 + ‖CxMu‖2 + ǫ/2. (5)
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Notice that ideally we would like to have the correction factor “Cpu” in Eq. (5) since that
would give the perfect stretch around the point p. But what about correction Cxu for
nearby x’s? The following lemma helps us continue in this situation.

Lemma 16 Let p, v, u be as above. For any x ∈ Np ⊂ X, let Cx and Fx also be as
discussed above (recall that ‖p − x‖ < 2ρ, and X ⊂ M forms a bounded (ρ, δ)-cover of the
fixed underlying manifold M with condition number 1/τ). Define ξ := (4ρ/τ)+δ+4

√

ρδ/τ .
If ρ ≤ τ/4 and δ ≤ d/32D, then

1− ‖u‖2 − 40 ·max
{√

ξD/d, ξD/d
}
≤ ‖Cxu‖2 ≤ 1− ‖u‖2 + 51 ·max

{√

ξD/d, ξD/d
}
.

Note that we chose ρ ≤ (τd/D)(ǫ/350)2 and δ ≤ (d/D)(ǫ/250)2 (cf. theorem statement).
Thus, combining Eq. (5) and Lemma 16, we get (recall ‖v‖ = 1)

(1− ǫ)‖v‖2 ≤ ‖(D(Ψ ◦ Φ))p(v)‖2 ≤ (1 + ǫ)‖v‖2.

So far we have shown that our embedding approximately preserves the length of a fixed
tangent vector at a fixed point. Since the choice of the vector and the point was arbitrary, it
follows that our embedding approximately preserves the tangent vector lengths throughout
the embedded manifold uniformly. We will now show that preserving the tangent vector
lengths implies preserving the geodesic curve lengths.

5.5 Preservation of the Geodesic Lengths

Pick any two (path-connected) points p and q inM , and let α be the geodesic2 path between
p and q. Further let p̄, q̄ and ᾱ be the images of p, q and α under our embedding. Note
that ᾱ is not necessarily the geodesic path between p̄ and q̄, thus we need an extra piece of
notation: let β̄ be the geodesic path between p̄ and q̄ (under the embedded manifold) and
β be its inverse image in M . We need to show (1 − ǫ)L(α) ≤ L(β̄) ≤ (1 + ǫ)L(α), where
L(·) denotes the length of the path · (end points are understood).

First recall that for any differentiable map F and curve γ, γ̄ = F (γ)⇒ γ̄′ = (DF )(γ′).
By (1 ± ǫ)-isometry of tangent vectors, this immediately gives us (1 − ǫ)L(γ) ≤ L(γ̄) ≤
(1 + ǫ)L(γ) for any path γ in M and its image γ̄ in embedding of M . So,

(1− ǫ)DG(p, q) = (1− ǫ)L(α) ≤ (1− ǫ)L(β) ≤ L(β̄) = DG(p̄, q̄).

Similarly,

DG(p̄, q̄) = L(β̄) ≤ L(ᾱ) ≤ (1 + ǫ)L(α) = (1 + ǫ)DG(p, q).

6. Conclusion

This work provides two algorithms for (1± ǫ)-isometric embedding of generic n-dimensional
manifolds. Our algorithms are similar in spirit to Nash’s construction (Nash, 1954), and
manage to remove the dependence on the isometry constant ǫ from the final embedding

2. Globally, geodesic paths between points are not necessarily unique; we are interested in a path that
yields the shortest distance between the points.
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dimension. Note that this dependency does necessarily show up in the sampling density
required to make the corrections.

The correction procedure discussed here can also be readily adapted to create isometric
embeddings from any manifold embedding procedure (under some mild conditions). Take
any off-the-shelf manifold embedding algorithm A (such as LLE, Laplacian Eigenmaps,
etc.) that maps an n-dimensional manifold in, say, d dimensions, but does not necessarily
guarantee an approximate isometric embedding. Then as long as one can ensure that A is
a one-to-one mapping that doesn’t collapse interpoint distances, we can scale the output
returned by A to create a contraction. The scaled version of A acts as the Embedding
Stage of our algorithm. We can thus apply the Corrections Stage (either the one discussed
in Algorithm I or Algorithm II) to produce an approximate isometric embedding of the given
manifold in slightly higher dimensions. In this sense, the correction procedure presented
here serves as a universal procedure for approximate isometric manifold embeddings.
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Appendix A. Properties of a Well-conditioned Manifold

Throughout this section we will assume thatM is a compact submanifold of RD of dimension
n, and condition number 1/τ . The following are some properties of such a manifold that
would be useful throughout the text.

Lemma 17 (relating nearby tangent vectors – implicit in the proof of Propo-
sition 6.2 Niyogi et al. (2008)) Pick any two (path-connected) points p, q ∈ M . Let
u ∈ TpM be a unit length tangent vector and v ∈ TqM be its parallel transport along the
(shortest) geodesic path to q. Then3, i) u · v ≥ 1−DG(p, q)/τ , ii) ‖u− v‖ ≤

√

2DG(p, q)/τ .

Lemma 18 (relating geodesic distances to ambient distances – Proposition 6.3
of Niyogi et al. (2008)) If p, q ∈ M such that ‖p − q‖ ≤ τ/2, then DG(p, q) ≤ τ(1 −
√

1− 2‖p − q‖/τ ) ≤ 2‖p− q‖.

Lemma 19 (projection of a section of a manifold onto the tangent space) Pick
any p ∈ M and define Mp,r := {q ∈ M : ‖q − p‖ ≤ r}. Let f denote the orthogonal linear
projection of Mp,r onto the tangent space TpM . Then, for any r ≤ τ/4

(i) the map f : Mp,r → TpM is one-to-one. (follows from Lemma 5.4, 6.1-6.3 of
Niyogi et al. (2008))

3. Technically, it is not possible to directly compare two vectors that reside in different tangent spaces.
However, since we only deal with manifolds that are immersed in some ambient space, we can treat the
tangent spaces as n-dimensional affine subspaces. We can thus parallel translate the vectors to the origin
of the ambient space, and do the necessary comparison (such as take the dot product, etc.). We will
make a similar abuse of notation for any calculation that uses vectors from different affine subspaces to
mean to first translate the vectors and then perform the necessary calculation.
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q

TpM

q′
θ

τ

p

c

v

Figure 6: Plane spanned by vectors q − p and v ∈ TpM (where v is the projection of q − p
onto TpM), with τ -balls tangent to p. Note that q′ is the point on the ball such
that ∠pcq = ∠pcq′ = θ.

(ii) for any x, y ∈ Mp,r, ‖f(x) − f(y)‖2 ≥
(
1 −

(
r
τ +

√
2r
τ

)2) · ‖x − y‖2. (follows from

Lemma 5.3, 6.2, 6.3 of Niyogi et al. (2008))

Lemma 20 (coverings of a section of a manifold) Pick any p ∈M and define Mp,r :=
{q ∈M : ‖q − p‖ ≤ r}. If r ≤ τ/4, then there exists C ⊂Mp,r of size at most 16n with the
property: for any p′ ∈Mp,r, exists c ∈ C such that ‖p′ − c‖ ≤ r/2.

Proof The proof closely follows the arguments presented in the proof of Theorem 22 of
Dasgupta and Freund (2008).

For r ≤ τ/4, note that Mp,r ⊂ R
D is (path-)connected. Let f denote the projection

of Mp,r onto TpM ∼= R
n. Quickly note that f is one-to-one (see Lemma 19(i)). Then,

f(Mp,r) ⊂ R
n is contained in an n-dimensional ball of radius r. By standard volume argu-

ments, f(Mp,r) can be covered by at most 16n balls of radius r/7 (see e.g. Lemma 5.2 of
Vershynin (2010)). WLOG we can assume that the centers of these covering balls are in
f(Mp,r). Note that the inverse image of each of these covering balls (in R

n) is contained in a
D-dimensional ball of radius r/2 that is centered at some point in Mp,r (by noting r ≤ τ/4
and using Lemma 19(ii)). Thus, the centers of these D-dimensional balls (containing the
inverse images) forms the desired covering.

Lemma 21 (relating nearby manifold points to tangent vectors) Pick any point
p ∈ M and let q ∈ M (distinct from p) be such that DG(p, q) ≤ τ . Let v ∈ TpM be the

projection of the vector q − p onto TpM . Then, i)
∣
∣
∣
v

‖v‖ ·
q−p

‖q−p‖

∣
∣
∣ ≥ 1 − (DG(p, q)/2τ)

2, ii)
∥
∥
∥

v
‖v‖ −

q−p
‖q−p‖

∥
∥
∥ ≤ DG(p, q)/τ

√
2.

Proof If vectors v and q−p are in the same direction, we are done. Otherwise, consider the
plane spanned by vectors v and q − p. Then since M has condition number 1/τ , we know
that the point q cannot lie within any τ -ball tangent to M at p (see Figure 6). Consider
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such a τ -ball (with center c) whose center is closest to q and let q′ be the point on the
surface of the ball which subtends the same angle (∠pcq′) as the angle formed by q (∠pcq).
Let this angle be called θ. Then using cosine rule, we have cos θ = 1− ‖q′ − p‖2/2τ2.

Define α as the angle subtended by vectors v and q − p, and α′ the angle subtended by
vectors v and q′ − p. WLOG we can assume that the angles α and α′ are less than π/2.
Then, cosα ≥ cosα′ = cos θ/2. Using the trigonometric identity cos θ = 2cos2

(
θ
2

)
− 1, and

noting ‖q − p‖2 ≥ ‖q′ − p‖2, we have

∣
∣
∣
∣

v

‖v‖ ·
q − p
‖q − p‖

∣
∣
∣
∣
= cosα ≥ cos

θ

2
≥
√

1− ‖q − p‖2/4τ2 ≥ 1− (DG(p, q)/2τ)
2.

Now, by applying the cosine rule, we have
∥
∥ v
‖v‖−

q−p
‖q−p‖

∥
∥2 = 2(1−cosα). The lemma follows.

Lemma 22 (approximating tangent space by nearby samples) Let 0 < δ ≤ 1. Pick
any point p0 ∈ M and let p1, . . . , pn ∈ M be n points distinct from p0 such that (for all
1 ≤ i ≤ n)

(i) DG(p0, pi) ≤ τδ/
√
n,

(ii)
∣
∣ pi−p0
‖pi−p0‖

· pj−p0
‖pj−p0‖

∣
∣ ≤ 1/2n (for i 6= j).

Let T̂ be the n dimensional subspace spanned by vectors {pi − p0}i∈[n]. For any unit vector

û ∈ T̂ , let u be the projection of û onto Tp0M . Then,
∣
∣û · u

‖u‖

∣
∣ ≥ 1− δ.

Proof Define the vectors v̂i :=
pi−p0

‖pi−p0‖
(for 1 ≤ i ≤ n). Observe that {v̂i}i∈[n] forms a basis

of T̂ . For 1 ≤ i ≤ n, define vi as the projection of vector v̂i onto Tp0M . Also note that by
applying Lemma 21, we have that for all 1 ≤ i ≤ n, ‖v̂i − vi‖2 ≤ δ2/2n.

Now consider any unit û ∈ T̂ , and its projection u in Tp0M . Let V = [v̂1, . . . , v̂n] be the
D × n matrix with columns v1, . . . , vn. We represent the unit vector û as V α =

∑

i αiv̂i.
Also, since u is the projection of û, we have u =

∑

i αivi. Then, ‖α‖2 ≤ 2. To see this,

we first identify T̂ with R
n via an isometry S (a linear map that preserves the lengths and

angles of all vectors in T̂ ). Note that S can be represented as an n×D matrix, and since the
columns of V form a basis for T̂ , SV is an n×n invertible matrix. Then, since Sû = SV α,
we have α = (SV )−1Sû. Thus, (recall ‖Sû‖ = 1)

‖α‖2 ≤ max
x∈Sn−1

‖(SV )−1x‖2 = λmax((SV )−T(SV )−1)

= λmax((SV )−1(SV )−T) = λmax((V
TV )−1) = 1/λmin(V

TV )

≤ 1/
(
1− ((n − 1)/2n)

)
≤ 2,

where i) λmax(A) and λmin(A) denote the largest and smallest eigenvalues of a square
symmetric matrix A respectively, and ii) the second inequality is by noting that V TV is an
n× n matrix with 1’s on the diagonal and at most 1/2n on the off-diagonal elements, and
applying the Gershgorin circle theorem.
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Now we can bound the quantity of interest. Note that
∣
∣
∣û · u

‖u‖
∣
∣
∣ ≥ |ûT(û− (û− u))| ≥ 1− ‖û− u‖ = 1−

∥
∥
∑

i

αi(v̂i − vi)
∥
∥

≥ 1−
∑

i

|αi|‖v̂i − vi‖ ≥ 1− (δ/
√
2n)

∑

i

|αi| ≥ 1− δ,

where the last inequality is by noting ‖α‖1 ≤
√
2n.

Appendix B. On Constructing a Bounded Manifold Cover

Given a compact n-manifold M ⊂ R
D with condition number 1/τ , and some 0 < δ ≤ 1.

We can construct an α-bounded (ρ, δ) cover X of M (with α ≤ 213n and ρ ≤ τδ/16n) as
follows.

Set ρ ≤ τδ/16n and pick a (ρ/2)-net C of M (that is C ⊂ M such that, i. for c, c′ ∈ C
such that c 6= c′, ‖c − c′‖ ≥ ρ/2, ii. for all p ∈ M , exists c ∈ C such that ‖c − p‖ < ρ/2).
WLOG we shall assume that all points of C are in the interior of M . Then, for each
c ∈ C, define Mc,ρ/2 := {p ∈ M : ‖p − c‖ ≤ ρ/2}, and the orthogonal projection map
fc : Mc,ρ/2 → TcM that projects Mc,ρ/2 onto TcM (note that, cf. Lemma 19(i), fc is one-
to-one). Note that TcM can be identified with R

n with the c as the origin. We will denote

the origin as x
(c)
0 , that is, x

(c)
0 = fc(c).

Now, let Bc be any n-dimensional closed ball centered at the origin x
(c)
0 ∈ TcM of radius

r > 0 that is completely contained in fc(Mc,ρ/2) (that is, Bc ⊂ fc(Mc,ρ/2)). Pick a set of n

points x
(c)
1 , . . . , x

(c)
n on the surface of the ball Bc such that (x

(c)
i −x

(c)
0 ) · (x(c)j −x

(c)
0 ) = 0 for

i 6= j.
Define the bounded manifold cover as

X :=
⋃

c∈C,i=0,...,n

f−1
c (x

(c)
i ). (6)

Lemma 23 Let 0 < δ ≤ 1 and ρ ≤ τδ/16n. Let C be a (ρ/2)-net of M as described above,
and X be as in Eq. (6). Then X forms a 213n-bounded (ρ, δ) cover of M .

Proof Pick any point p ∈M and define Xp := {x ∈ X : ‖x− p‖ < ρ}. Let c ∈ C be such
that ‖p− c‖ < ρ/2. Then Xp has the following properties.

Local spread criterion: For 0 ≤ i ≤ n, since ‖f−1
c (x

(c)
i ) − c‖ ≤ ρ/2 (by construction), we

have ‖f−1
c (x

(c)
i )− p‖ < ρ. Thus, f−1

c (x
(c)
i ) ∈ Xp (for 0 ≤ i ≤ n). Now, for 1 ≤ i ≤ n, noting

that DG(f
−1
c (x

(c)
i ), f−1

c (x
(c)
0 )) ≤ 2‖f−1

c (x
(c)
i )− f−1

c (x
(c)
0 )‖ ≤ ρ (cf. Lemma 18), we have that

for the vector v̂
(c)
i :=

f−1
c (x

(c)
i )−f−1

c (x
(c)
0 )

‖f−1
c (x

(c)
i )−f−1

c (x
(c)
0 )‖

and its (normalized) projection v
(c)
i :=

x
(c)
i −x

(c)
0

‖x
(c)
i −x

(c)
0 ‖

onto TcM ,
∥
∥v̂

(c)
i − v

(c)
i

∥
∥ ≤ ρ/

√
2τ (cf. Lemma 21). Thus, for i 6= j, we have (recall, by

construction, we have v
(c)
i · v

(c)
j = 0)

|v̂(c)i · v̂
(c)
j | = |(v̂(c)i − v

(c)
i + v

(c)
i ) · (v̂(c)j − v

(c)
j + v

(c)
j )|
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Figure 7: An example manifold M with various quantities of interest. T̂p is a sample-based
approximation to TpM (using the nearby samples x0, . . . , xn). The angle between
û and its projection up (into TpM) is bounded by bounding û and its projection
ux0 (into Tx0M) and relating ux0 with its transport to TpM .

= |(v̂(c)i − v
(c)
i ) · (v̂(c)j − v

(c)
j ) + v

(c)
i · (v̂

(c)
j − v

(c)
j ) + (v̂

(c)
i − v

(c)
i ) · v(c)j |

≤ ‖(v̂(c)i − v
(c)
i )‖‖(v̂(c)j − v

(c)
j )‖+ ‖v̂(c)i − v

(c)
i ‖+ ‖v̂

(c)
j − v

(c)
j ‖

≤ 3ρ/
√
2τ ≤ 1/2n.

Covering criterion: There exists x ∈ Xp, namely f−1
c (x

(c)
0 ) (= c), such that ‖p− x‖ ≤ ρ/2.

Local boundedness criterion: Define Mp,3ρ/2 := {q ∈ M : ‖q − p‖ < 3ρ/2}. Note that

Xp ⊂ {f−1
c (x

(c)
i ) : c ∈ C ∩Mp,3ρ/2, 0 ≤ i ≤ n}. Now, using Lemma 20 we have that there

exists a cover N ⊂ Mp,3ρ/2 of size at most 163n such that for any point q ∈ Mp,3ρ/2, there
exists n′ ∈ N such that ‖q − n′‖ < ρ/4. Note that, by construction of C, there cannot
be an n′ ∈ N such that it is within distance ρ/4 of two (or more) distinct c, c′ ∈ C (since
otherwise the distance ‖c− c′‖ will be less than ρ/2, contradicting the packing of C). Thus,
|C ∩Mp,3ρ/2| ≤ 163n. It follows that |Xp| ≤ (n+ 1)163n ≤ 213n.

Tangent space approximation criterion: Pick any n+1 (distinct) points inXp (viz. x0, . . . , xn)

that satisfy the local spread criterion, that is,
∣
∣ xi−x0
‖xi−x0‖

· xj−x0
‖xj−x0‖

∣
∣ ≤ 1/2n (i 6= j). Let T̂p be

the n-dimensional affine space passing through x0, . . . , xn (note that T̂p does not necessarily
pass through p). Then, for any unit vector û ∈ T̂p, we need to show that its projection up
onto TpM has the property |û · up

‖up‖
| ≥ 1 − δ. Let θ be the angle between vectors û and

up. Let ux0 be the projection of û onto Tx0M , and θ1 be the angle between vectors û and
ux0 , and let θ2 be the angle between vectors ux0 (at x0) and its parallel transport along the
geodesic path to p (see Figure 7). WLOG we can assume that θ1 and θ2 are at most π/2.
Then, θ ≤ θ1 + θ2 ≤ π. We get the bound on the individual angles as follows. By applying
Lemma 22, cos(θ1) ≥ 1 − δ/4, and by applying Lemma 17, cos(θ2) ≥ 1 − δ/4. Finally, by
using Lemma 24, we have

∣
∣û · up

‖up‖

∣
∣ = cos(θ) ≥ cos(θ1 + θ2) ≥ 1− δ.
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Lemma 24 Let 0 ≤ ǫ1, ǫ2 ≤ 1. If cosα ≥ 1 − ǫ1 and cosβ ≥ 1 − ǫ2, then cos(α + β) ≥
1− ǫ1 − ǫ2 − 2

√
ǫ1ǫ2.

Proof Applying the identity sin θ =
√
1− cos2 θ immediately yields sinα ≤ √2ǫ1 and

sin β ≤ √2ǫ2. Now, cos(α + β) = cosα cos β − sinα sinβ ≥ (1 − ǫ1)(1 − ǫ2) − 2
√
ǫ1ǫ2 ≥

1− ǫ1 − ǫ2 − 2
√
ǫ1ǫ2.

Remark 25 A dense enough sample from M constitutes as a tangent space approximating
cover. One can selectively prune the dense sampling to control the total number of points
in each neighborhood, while still maintaining the cover properties, forming a bounded cover
as per Definition 3.

Appendix C. Bounding the Number of Subsets K in Embedding I

By construction (see the preprocessing stage of Embedding I), K = maxx∈X |X ∩B(x, 2ρ)|
(where B(x, r) denotes a Euclidean ball centered at x of radius r). That is, K is the largest
number of x’s (∈ X) that are within a 2ρ ball of some x ∈ X.

Now, pick any x ∈ X and consider the set Mx := M ∩ B(x, 2ρ). Then, if ρ ≤ τ/8,
Mx can be covered by 2cn balls of radius ρ (see Lemma 20). By recalling that X forms an
α-bounded (ρ, δ)-cover, we have |X ∩B(x, 2ρ)| = |X ∩Mx| ≤ α2cn (where c ≤ 4).

Appendix D. Various Proofs

D.1 Proof of Lemma 12

Since R is a random orthoprojector from R
D to R

d, it follows that

Lemma 26 (random projection of n-manifolds – adapted from Theorem 1.5 of
Clarkson (2008)) LetM be a CM -regular n-manifold with condition number 1/τ . Let R̄ :=
√

D/dR be a scaling of R. Pick any 0 < ǫ ≤ 1 and 0 < δ ≤ 1. If d = Ω
(
ǫ−2n log(CM/τ) +

ǫ−2n log(1/ǫ) + log(1/δ)
)
, then with probability at least 1− δ, for all p, q ∈M

(1− ǫ)‖p− q‖ ≤ ‖R̄p− R̄q‖ ≤ (1 + ǫ)‖p − q‖.

We apply this result with ǫ = 1/4. Then, for d = Ω(n log(CM/τ)), with probability at least
1− 1/poly(n), (3/4)‖p− q‖ ≤ ‖R̄p− R̄q‖ ≤ (5/4)‖p− q‖. Now let Φ : RD → R

d be defined
as Φx := (2/3)R̄x = (2/3)(

√

D/d)x (as per the lemma statement). Then we immediately
get (1/2)‖p − q‖ ≤ ‖Φp− Φq‖ ≤ (5/6)‖p − q‖.

Also note that for any x ∈ R
D, we have ‖Φx‖ = (2/3)(

√

D/d)‖Rx‖ ≤ (2/3)(
√

D/d)‖x‖
(since R is an orthoprojector).

Finally, for any point p ∈ M , a unit vector u tangent to M at p can be approximated
arbitrarily well by considering a sequence {pi}i of points (inM) converging to p (inM) such
that (pi− p)/‖pi− p‖ converges to u. Since for all points pi, (1/2) ≤ ‖Φpi−Φp‖/‖pi− p‖ ≤
(5/6) (with high probability), it follows that (1/2) ≤ ‖(DΦ)p(u)‖ ≤ (5/6).
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D.2 Proof of Corollary 13

Let v1x and v
n
x (∈ R

n) be the right singular vectors corresponding to singular values σ1x and σ
n
x

respectively of the matrix ΦFx. Then, quickly note that σ1x = ‖ΦFxv1‖, and σnx = ‖ΦFxvn‖.
Note that since Fx is orthonormal, we have that ‖Fxv1‖ = ‖Fxvn‖ = 1. Now, since Fxv

n

is in the span of column vectors of Fx, by the sampling condition (cf. Definition 3), there
exists a unit length vector v̄nx tangent to M (at x) such that |Fxvnx · v̄nx | ≥ 1 − δ. Thus,
decomposing Fxv

n
x into two vectors anx and bnx such that anx⊥bnx and anx := (Fxv

n
x · v̄nx )v̄nx , we

have (by Lemma 12)

σnx = ‖Φ(Fxvn)‖ = ‖Φ((Fxvnx · v̄nx )v̄nx) + Φbnx‖
≥ (1− δ) ‖Φv̄nx‖ − ‖Φbnx‖
≥ (1− δ)(1/2) − (2/3)

√

2δD/d,

since ‖bnx‖2 = ‖Fxvnx‖2 − ‖anx‖2 ≤ 1 − (1 − δ)2 ≤ 2δ and ‖Φbnx‖ ≤ (2/3)(
√

D/d)‖bnx‖ ≤
(2/3)

√

2δD/d. Similarly decomposing Fxv
1
x into two vectors a1x and b

1
x such that a1x⊥b1x and

a1x := (Fxv
1
x · v̄1x)v̄1x (where v̄1x is a unit vector tangent toM at x such that |Fxv1x · v̄1x| ≤ 1−δ),

we have (by Lemma 12)

σ1x = ‖Φ(Fxv1x)‖ = ‖Φ((Fxv1x · v̄1x)v̄1x) + Φb1x‖
≤

∥
∥Φv̄1x

∥
∥+ ‖Φb1x‖

≤ (5/6) + (2/3)
√

2δD/d,

where the last inequality is by noting ‖Φb1x‖ ≤ (2/3)
√

2δD/d. Now, by our choice of δ
(≤ d/32D), and by noting that d ≤ D, the corollary follows.

D.3 Proof of Lemma 14

We can simplify Eq. (1) by recalling how the subsets X(j) were constructed (see prepro-
cessing stage of Embedding I). Note that for any fixed t, at most one term in the set
{ΛΦ(x)(t)}x∈X(j) is non-zero. Thus,

‖(DΨ)t(u)‖2 =

d∑

k=1

u2k +

n∑

k=1

∑

x∈X

ΛΦ(x)(t) cos
2(ω(Cxt)k)(C

xu)2k + ΛΦ(x)(t) sin
2(ω(Cxt)k)(C

xu)2k

+
1

ω

[ ((
Ak,xsin (t)

)2
+
(
Ak,xcos(t)

)2)
/ω

︸ ︷︷ ︸

ζ1

+2Ak,xsin (t)
√

ΛΦ(x)(t) cos(ω(C
xt)k)(C

xu)k
︸ ︷︷ ︸

ζ2

−2Ak,xcos(t)
√

ΛΦ(x)(t) sin(ω(C
xt)k)(C

xu)k
︸ ︷︷ ︸

ζ3

]

= ‖u‖2 +
∑

x∈X

ΛΦ(x)(t)

n∑

k=1

(Cxu)2k + ζ,

where ζ := (ζ1 + ζ2 + ζ3)/ω. Noting that i) the terms |Ak,xsin (t)| and |A
k,x
cos(t)| are at most

O(α16n
√
d/ρ) (see Lemma 27), ii) |(Cxu)k| ≤ 4, and iii)

√

ΛΦ(x)(t) ≤ 1, we can pick ω
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sufficiently large (say, ω ≥ Ω(nα216n
√
d/ρǫ) such that |ζ| ≤ ǫ/2 (where ǫ is the isometry

constant from our main theorem).

Lemma 27 For all k, x and t, the terms |Ak,xsin (t)| and |A
k,x
cos(t)| are at most O(α16n

√
d/ρ).

Proof We shall focus on bounding |Ak,xsin (t)| (the steps for bounding |Ak,xcos(t)| are similar).
Note that

|Ak,xsin (t)| =
∣
∣
∣

d∑

i=1

uisin(ω(C
xt)k)

dΛ
1/2
Φ(x)(t)

dti

∣
∣
∣ ≤

d∑

i=1

|ui| ·
∣
∣
∣

dΛ
1/2
Φ(x)(t)

dti

∣
∣
∣ ≤

√
√
√
√

d∑

i=1

∣
∣
∣

dΛ
1/2
Φ(x)(t)

dti

∣
∣
∣

2
,

since ‖u‖ ≤ 1. Thus, we can bound |Ak,xsin (t)| by O(α16n
√
d/ρ) by noting the following

lemma.

Lemma 28 For all i, x and t, |dΛ1/2
Φ(x)(t)/dt

i| ≤ O(α16n/ρ).

Proof Pick any t ∈ Φ(M), and let p0 ∈ M be (the unique element) such that Φ(p0) = t.
Define Np0 := {x ∈ X : ‖Φ(x) − Φ(p0)‖ < ρ} as the neighborhood around p0. Fix an

arbitrary x0 ∈ Np0 ⊂ X (since if x0 /∈ Np0 then dΛ
1/2
Φ(x0)

(t)/dti = 0), and consider the
function

Λ
1/2
Φ(x0)

(t) =

(

λΦ(x0)(t)
∑

x∈Np0
λΦ(x)(t)

)1/2

=

(

e−1/(1−(‖t−Φ(x0)‖2/ρ2))

∑

x∈Np0
e−1/(1−(‖t−Φ(x)‖2/ρ2))

)1/2

.

Define At(x) := 1/(1− (‖t−Φ(x)‖2/ρ2)). Now, pick an arbitrary coordinate i0 ∈ {1, . . . , d}
and consider the (directional) derivative of this function

dΛ
1/2
Φ(x0)

(t)

dti0
=

1

2

(
Λ
−1/2
Φ(x0)

(t)
)(dΛΦ(x0)(t)

dti0

)

=

( ∑

x∈Np0

e−At(x)
)1/2

2
(

e−At(x0)
)1/2









( ∑

x∈Np0

e−At(x)
)(−2(ti0 − Φ(x0)i0)

ρ2
(At(x0))

2
)(

e−At(x0)
)

( ∑

x∈Np0

e−At(x)
)2

−

(

e−At(x0)
)( ∑

x∈Np0

−2(ti0 −Φ(x)i0)

ρ2
(At(x))

2e−At(x)
)

( ∑

x∈Np0

e−At(x)
)2









=

( ∑

x∈Np0

e−At(x)
)(−2(ti0 −Φ(x0)i0)

ρ2
(At(x0))

2
)(

e−At(x0)
)1/2

2
( ∑

x∈Np0

e−At(x)
)1.5
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−

(

e−At(x0)
)1/2( ∑

x∈Np0

−2(ti0 − Φ(x)i0)

ρ2
(At(x))

2e−At(x)
)

2
( ∑

x∈Np0

e−At(x)
)1.5 .

Observe that the domain of the function At is {x ∈ X : ‖t − Φ(x)‖ < ρ} and the range
is [1,∞). Recalling that for any β ≥ 1, |β2e−β| ≤ 1 and |β2e−β/2| ≤ 3, we have that
|At(·)2e−At(·)| ≤ 1 and |At(·)2e−At(·)/2| ≤ 3. Thus,

∣
∣
∣

dΛ
1/2
Φ(x0)

(t)

dti0

∣
∣
∣ ≤

3 ·
∣
∣
∣

∑

x∈Np0

e−At(x)
∣
∣
∣ ·
∣
∣
∣
2(ti0 − Φ(x0)i0)

ρ2

∣
∣
∣+
∣
∣
∣e−At(x0)/2

∣
∣
∣ ·
∣
∣
∣

∑

x∈Np0

2(ti0 − Φ(x)i0)

ρ2

∣
∣
∣

2
( ∑

x∈Np0

e−At(x)
)1.5

≤

(3)(2/ρ)
∣
∣
∣

∑

x∈Np0

e−At(x)
∣
∣
∣+
∣
∣
∣e−At(x0)/2

∣
∣
∣

∑

x∈Np0

(2/ρ)

2
( ∑

x∈Np0

e−At(x)
)1.5

≤ O(α16n/ρ),

where the last inequality is by noting: i) |Np0 | ≤ α16n (since for all x ∈ Np0 , ‖x− p0‖ ≤ 2ρ
– cf. Lemma 12, X is an α-bounded cover, and by noting that for ρ ≤ τ/8, a ball of radius
2ρ can be covered by 16n balls of radius ρ on the given n-manifold – cf. Lemma 20), ii)
|e−At(x)| ≤ |e−At(x)/2| ≤ 1 (for all x), and iii)

∑

x∈Np0
e−At(x) ≥ Ω(1) (since our cover X

ensures that for any p0, there exists x ∈ Np0 ⊂ X such that ‖p0 − x‖ ≤ ρ/2 – see also
Remark 4, and hence e−At(x) is non-negligible for some x ∈ Np0).

D.4 Proof of Lemma 15

Note that by definition, ‖(DΨ)t(u)‖2 = ‖(DΨ|X|,n)t(u)‖2. Thus, using Eq. (3) and ex-
panding the recursion, we have

‖(DΨ)t(u)‖2 = ‖(DΨ|X|,n)t(u)‖2

= ‖(DΨ|X|,n−1)t(u)‖2 + ΛΦ(x|X|)(t)(C
x|X|u)2n + Z|X|,n

...

= ‖(DΨ0,n)t(u)‖2 +
[ |X|
∑

i=1

ΛΦ(xi)(t)

n∑

j=1

(Cxiu)2j

]

+
∑

i,j

Zi,j.

Note that (DΨi,0)t(u) := (DΨi−1,n)t(u). Now recalling that ‖(DΨ0,n)t(u)‖2 = ‖u‖2 (the
base case of the recursion), all we need to show is that |∑i,j Zi,j| ≤ ǫ/2. This follows
directly from the lemma below.
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Lemma 29 Let ǫ0 ≤ O
(
ǫ/
√
d(n|X|)2

)
, and for any i, j, let ωi,j ≥ Ω

(
(Ki,j+(α16n/ρ))(nd|X|)2/ǫ

)

(as per the statement of Lemma 15). Then, for any i, j, |Zi,j | ≤ ǫ/2n|X|.

Proof Recall that (cf. Eq. (3))

Zi,j =
1

ω2
i,j

∑

k

(
ζk,4i,j

)2

︸ ︷︷ ︸

(a)

+2
∑

k

ζk,4i,j

ωi,j

(
ζk,1i,j + ζk,2i,j + ζk,3i,j

)

︸ ︷︷ ︸

(b)

+2
∑

k

ζk,1i,j ζ
k,2
i,j

︸ ︷︷ ︸

(c)

+2
∑

k

ζk,1i,j ζ
k,3
i,j

︸ ︷︷ ︸

(d)

.

Term (a): Note that |
∑

k(ζ
k,4
i,j )

2| ≤ O
(
d3(Ki,j + (α16n/ρ))2

)
(cf. Lemma 30 (iv)). By our

choice of ωi,j, we have term (a) at most O(ǫ/n|X|).

Term (b): Note that
∣
∣ζk,1i,j +ζ

k,2
i,j +ζ

k,3
i,j

∣
∣ ≤ O(n|X|+(ǫ/dn|X|)) (by noting Lemma 30 (i)-(iii),

recalling the choice of ωi,j, and summing over all i′, j′). Thus,
∣
∣
∑

k ζ
k,4
i,j (ζ

k,1
i,j + ζk,2i,j + ζk,3i,j )

∣
∣ ≤

O
((
d2(Ki,j + (α16n/ρ))

)(
n|X| + (ǫ/dn|X|)

))
. Again, by our choice of ωi,j, term (b) is at

most O(ǫ/n|X|).

Terms (c) and (d): We focus on bounding term (c) (the steps for bounding term (d) are

same). Note that |∑k ζ
k,1
i,j ζ

k,2
i,j | ≤ 4|∑k ζ

k,1
i,j (ηi,j(t))k| (by combining the definition of ζ1i,j and

ζ2i,j from Eq. (3) with Lemma 32(b) and Corollary 13). Now, observe that
(
ζk,1i,j

)

k=1,...,2d+3

is a tangent vector with length at most O(
√
dn|X|) (cf. Lemma 30 (i)). Thus, by noting

that ηi,j is almost normal (with quality of approximation ǫ0), we have term (c) at most
O(ǫ/n|X|).

By choosing the constants in the order terms appropriately, we can get the lemma.

Lemma 30 Let ζk,1i,j , ζ
k,2
i,j , ζ

k,3
i,j , and ζ

k,4
i,j be as defined in Eq. (3). Then for all 1 ≤ i ≤ |X|

and 1 ≤ j ≤ n, we have

(i) |ζk,1i,j | ≤ 1 + 8n|X|+∑i
i′=1

∑j−1
j′=1O(d(Ki′,j′ + (α16n/ρ))/ωi′,j′),

(ii) |ζk,2i,j | ≤ 4,

(iii) |ζk,3i,j | ≤ 4,

(iv) |ζk,4i,j | ≤ O(d(Ki,j + (α16n/ρ))).

Proof First note for any ‖u‖ ≤ 1 and for any xi ∈ X, 1 ≤ j ≤ n and 1 ≤ l ≤ d, we have
|∑l C

xi
j,lul| = |(Cxiu)j | ≤ 4 (cf. Lemma 32 (b) and Corollary 13).

Noting that for all i and j, ‖ηi,j‖ = ‖νi,j‖ = 1, we have |ζk,2i,j | ≤ 4 and |ζk,3i,j | ≤ 4.

Observe that ζk,4i,j =
∑

l ulR
k,l
i,j . For all i, j, k and l, note that i) ‖dηi,j(t)/dtl‖ ≤ Ki,j and

‖dνi,j(t)/dtl‖ ≤ Ki,j and ii) |dλ1/2Φ(xi)
(t)/dtl| ≤ O(α16n/ρ) (cf. Lemma 28). Thus we have
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|ζk,4i,j | ≤ O(d(Ki,j + (α16n/ρ))).

Now for any i, j, note that ζk,1i,j =
∑

l uldΨi,j−1(t)/dt
l. Thus by recursively expanding,

|ζk,1i,j | ≤ 1 + 8n|X|+∑i
i′=1

∑j−1
j′=1O(d(Ki′,j′ + (α16n/ρ))/ωi′,j′).

D.5 Proof of Lemma 16

We start by stating the following useful observations:

Lemma 31 Let A be a linear operator such that max‖x‖=1 ‖Ax‖ ≤ δmax. Let u be a unit-
length vector. If ‖Au‖ ≥ δmin > 0, then for any unit-length vector v such that |u ·v| ≥ 1− ǫ,
we have

1− δmax

√
2ǫ

δmin
≤ ‖Av‖‖Au‖ ≤ 1 +

δmax

√
2ǫ

δmin
.

Proof Let v′ = v if u · v > 0, otherwise let v′ = −v. Quickly note that ‖u − v′‖2 =
‖u‖2 + ‖v′‖2 − 2u · v′ = 2(1− u · v′) ≤ 2ǫ. Thus, we have,

i. ‖Av‖ = ‖Av′‖ ≤ ‖Au‖+ ‖A(u− v′)‖ ≤ ‖Au‖+ δmax

√
2ǫ,

ii. ‖Av‖ = ‖Av′‖ ≥ ‖Au‖ − ‖A(u− v′)‖ ≥ ‖Au‖ − δmax

√
2ǫ.

Noting that ‖Au‖ ≥ δmin yields the result.

Lemma 32 Let x1, . . . , xn ∈ R
D be a set of orthonormal vectors, F := [x1, . . . , xn] be a

D × n matrix and let Φ be a linear map from R
D to R

d (n ≤ d ≤ D) such that for all
non-zero a ∈ span(F ) we have 0 < ‖Φa‖ ≤ ‖a‖. Let UΣV T be the thin SVD of ΦF . Define
C = (Σ−2 − I)1/2UT. Then,

(a) ‖C(Φa)‖2 = ‖a‖2 − ‖Φa‖2, for any a ∈ span(F ),

(b) ‖C‖2 ≤ (1/σn)2, where ‖ · ‖ denotes the spectral norm of a matrix and σn is the nth

largest singular value of ΦF .

Proof Note that the columns of FV form an orthonormal basis for the subspace spanned
by columns of F , such that Φ(FV ) = UΣ. Thus, since a ∈ span(F ), let y be such that
a = FV y. Note that i) ‖a‖2 = ‖y‖2, ii) ‖Φa‖2 = ‖UΣy‖2 = yTΣ2y. Now,

‖CΦa‖2 = ‖((Σ−2 − I)1/2UT)ΦFV y‖2

= ‖(Σ−2 − I)1/2UTUΣV TV y‖2

= ‖(Σ−2 − I)1/2Σy‖2

= yTy − yTΣ2y

= ‖a‖2 − ‖Φa‖2.
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Now, consider ‖C‖2.

‖C‖2 ≤ ‖(Σ−2 − I)1/2‖2‖UT‖2

≤ max
‖x‖=1

‖(Σ−2 − I)1/2x‖2

≤ max
‖x‖=1

xTΣ−2x

= max
‖x‖=1

∑

i

x2i /(σ
i)2

≤ (1/σn)2,

where σi are the (top n) singular values forming the diagonal matrix Σ.

Lemma 33 LetM ⊂ R
D be a compact Riemannian n-manifold with condition number 1/τ .

Pick any x ∈ M and let Fx be any n-dimensional affine space with the property: for any
unit vector vx tangent to M at x, and its projection vxF onto Fx,

∣
∣vx · vxF

‖vxF ‖

∣
∣ ≥ 1− δ. Then

for any p ∈ M such that ‖x − p‖ ≤ ρ ≤ τ/2, and any unit vector v tangent to M at p,
(ξ := (2ρ/τ) + δ + 2

√

2ρδ/τ )

i.
∣
∣
∣v · vF

‖vF ‖

∣
∣
∣ ≥ 1− ξ,

ii. ‖vF ‖2 ≥ 1− 2ξ,

iii. ‖vr‖2 ≤ 2ξ,

where vF is the projection of v onto Fx and vr is the residual (i.e. v = vF + vr and vF⊥vr).

Proof Let γ be the angle between vF and v. We will bound this angle.

Let vx (at x) be the parallel transport of v (at p) via the (shortest) geodesic path via
the manifold connection. Let the angle between vectors v and vx be α. Let vxF be the
projection of vx onto the subspace Fx, and let the angle between vx and vxF be β. WLOG,
we can assume that the angles α and β are acute. Then, since γ ≤ α+β ≤ π, we have that∣
∣
∣v · vF

‖vF ‖

∣
∣
∣ = cos γ ≥ cos(α+ β). We bound the individual terms cosα and cosβ as follows.

Now, since ‖p− x‖ ≤ ρ, using Lemmas 17 and 18, we have cos(α) = |v · vx| ≥ 1− 2ρ/τ .

We also have cos(β) =
∣
∣
∣vx · vxF

‖vxF ‖

∣
∣
∣ ≥ 1−δ. Then, using Lemma 24, we finally get

∣
∣
∣v · vF

‖vF ‖

∣
∣
∣ =

| cos(γ)| ≥ 1− 2ρ/τ − δ − 2
√

2ρδ/τ = 1− ξ.
Also note since 1 = ‖v‖2 = (v · vF‖vF ‖ )

2
∥
∥
∥

vF
‖vF ‖

∥
∥
∥

2
+‖vr‖2, we have ‖vr‖2 = 1−

(

v · vF
‖vF ‖

)2
≤

2ξ, and ‖vF ‖2 = 1− ‖vr‖2 ≥ 1− 2ξ.

Now we are in a position to prove Lemma 16. Let vF be the projection of the unit
vector v (at p) onto the subspace spanned by (the columns of) Fx and vr be the residual

31



Verma

(i.e. v = vF + vr and vF⊥vr). Then, noting that p, x, v and Fx satisfy the conditions of
Lemma 33 (with ρ in the Lemma 33 replaced with 2ρ from the statement of Lemma 16),
we have (ξ := (4ρ/τ) + δ + 4

√

ρδ/τ )

a)
∣
∣v · vF

‖vF ‖

∣
∣ ≥ 1− ξ,

b) ‖vF ‖2 ≥ 1− 2ξ,

c) ‖vr‖2 ≤ 2ξ.

We can now bound the required quantity ‖Cxu‖2. Note that

‖Cxu‖2 = ‖CxΦv‖2 = ‖CxΦ(vF + vr)‖2

= ‖CxΦvF‖2 + ‖CxΦvr‖2 + 2CxΦvF · CxΦvr
= ‖vF ‖2 − ‖ΦvF ‖2

︸ ︷︷ ︸

(a)

+ ‖CxΦvr‖2
︸ ︷︷ ︸

(b)

+2CxΦvF · CxΦvr
︸ ︷︷ ︸

(c)

where the last equality is by observing vF is in the span of Fx and applying Lemma 32 (a).
We now bound the terms (a),(b), and (c) individually.

Term (a): Note that 1 − 2ξ ≤ ‖vF ‖2 ≤ 1 and observing that Φ satisfies the conditions of
Lemma 31 with δmax = (2/3)

√

D/d, δmin = (1/2) ≤ ‖Φv‖ (cf. Lemma 12) and
∣
∣v · vF

‖vF ‖

∣
∣ ≥

1− ξ, we have (recall ‖Φv‖ = ‖u‖ ≤ 1)

‖vF ‖2 − ‖ΦvF ‖2 ≤ 1− ‖vF ‖2
∥
∥
∥
∥
Φ

vF
‖vF ‖

∥
∥
∥
∥

2

≤ 1− (1− 2ξ)

∥
∥
∥
∥
Φ

vF
‖vF‖

∥
∥
∥
∥

2

≤ 1 + 2ξ −
∥
∥
∥
∥
Φ

vF
‖vF ‖

∥
∥
∥
∥

2

≤ 1 + 2ξ −
(
1− (4/3)

√

2ξD/d
)2 ‖Φv‖2

≤ 1− ‖u‖2 +
(
2ξ + (8/3)

√

2ξD/d
)
, (7)

where the fourth inequality is by using Lemma 31. Similarly, in the other direction

‖vF ‖2 − ‖ΦvF ‖2 ≥ 1− 2ξ − ‖vF ‖2
∥
∥
∥
∥
Φ

vF
‖vF‖

∥
∥
∥
∥

2

≥ 1− 2ξ −
∥
∥
∥
∥
Φ

vF
‖vF ‖

∥
∥
∥
∥

2

≥ 1− 2ξ −
(
1 + (4/3)

√

2ξD/d
)2 ‖Φv‖2

≥ 1− ‖u‖2 −
(
2ξ + (32/9)ξ(D/d) + (8/3)

√

2ξD/d
)
. (8)
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Term (b): Note that for any x, ‖Φx‖ ≤ (2/3)(
√

D/d)‖x‖. We can apply Lemma 32 (b)
with σnx ≥ 1/4 (cf. Corollary 13) and noting that ‖vr‖2 ≤ 2ξ, we immediately get

0 ≤ ‖CxΦvr‖2 ≤ 42 · (4/9)(D/d)‖vr‖2 ≤ (128/9)(D/d)ξ. (9)

Term (c): Recall that for any x, ‖Φx‖ ≤ (2/3)(
√

D/d)‖x‖, and using Lemma 32 (b) we
have that ‖Cx‖2 ≤ 16 (since σnx ≥ 1/4 – cf. Corollary 13).

Now let a := CxΦvF and b := CxΦvr. Then ‖a‖ = ‖CxΦvF‖ ≤ ‖Cx‖‖ΦvF ‖ ≤ 4 (since
‖Cx‖ ≤ 4, and noting that vF is vector in the column-span of Fx such that ‖vF ‖ ≤ 1 and
the largest singular value of ΦFx is at most 1 by Corollary 13), and ‖b‖ = ‖CxΦvr‖ ≤
(8/3)

√

2ξD/d (see Eq. (9)).

Thus, |2a · b| ≤ 2‖a‖‖b‖ ≤ 2 · 4 · (8/3)
√

2ξD/d = (64/3)
√

2ξD/d. Equivalently,

− (64/3)
√

2ξD/d ≤ 2CxΦvF · CxΦvr ≤ (64/3)
√

2ξD/d. (10)

Combining (7)-(10), and noting d ≤ D, yields the lemma.

Appendix E. Computing the Normal Vectors

The success of the second embedding technique crucially depends upon finding (at each
iteration step) a pair of mutually orthogonal unit vectors that are normal to the embedding
of manifoldM (from the previous iteration step) at a given point p. At a first glance finding
such normal vectors seems infeasible since we only have access to a finite size sample X
from M . The saving grace comes from noting that the corrections are applied to the n-
dimensional manifold Φ(M) that is actually a submanifold of d-dimensional space Rd. Let’s
denote this space R

d as a flat d-manifold N (containing our manifold of interest Φ(M)).
Note that even though we only have partial information about Φ(M) (since we only have
samples from it), we have full information about N (since it is the entire space R

d). What
it means is that given some point of interest Φp ∈ Φ(M) ⊂ N , finding a vector normal to N
(at Φp) automatically is a vector normal to Φ(M) (at Φp). Of course, to find two mutually
orthogonal normals to a d-manifoldN , N itself needs to be embedded in a larger dimensional
Euclidean space (although embedding into d + 2 should suffice, for computational reasons
we will embed N into Euclidean space of dimension 2d+3). This is precisely the first thing
we do before applying any corrections (cf. Step 2 of Embedding II in Section 4). See Figure
8 for an illustration of the setup before finding any normals.

Now for every iteration of the algorithm, note that we have complete knowledge of N
and exactly what function (namely Ψi,j for iteration i, j) is being applied to N . Thus with
additional computation effort, one can compute the necessary normal vectors.

More specifically, We can estimate a pair of mutually orthogonal unit vectors that are
normal to Ψi,j(N) at Φp (for any step i, j) as follows.
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R
2d+3

N = R
d

ΦM

Φp

Φx1

Φx2

Φx3

Φx4

Figure 8: Basic setup for computing the normals to the underlying n-manifold ΦM at the point
of interest Φp. Observe that even though it is difficult to find vectors normal to ΦM at
Φp within the containing space R

d (because we only have a finite-size sample from ΦM ,
viz. Φx1, Φx2, etc.), we can treat the point Φp as part of the bigger ambient manifold N
(= R

d, that contains ΦM) and compute the desired normals in a space that contains N
itself. Now, for each i, j iteration of Algorithm II, Ψi,j acts on the entire N , and since
we have complete knowledge about N , we can compute the desired normals.

Algorithm 4 Compute Normal Vectors

Preprocessing Stage:

1: Let ηrandi,j and νrandi,j be vectors in R
2d+3 drawn independently at random from the surface

of the unit-sphere (for 1 ≤ i ≤ |X|, 1 ≤ j ≤ n).
Compute Normals: For any point of interest p ∈ M , let t := Φp denote its projection
into R

d. Now, for any iteration i, j (where 1 ≤ i ≤ |X|, and 1 ≤ j ≤ n), we shall
assume that Ψi,j−1 (cf. Step 3) from the previous iteration i, j − 1 is already given. Then
we can compute the (approximated) normals ηi,j(t) and νi,j(t) for the iteration i, j as
follows.

1: Let ∆ > 0 be the quality of approximation.
2: for k = 1, . . . , d do
3: Approximate the kth tangent vector as

T k :=
Ψi,j−1(t+∆ek)−Ψi,j−1(t)

∆
,

where Ψi,j−1 is as defined in Section 5.3, and ek is the kth standard vector.
4: end for
5: Let η = ηrandi,j , and ν = νrandi,j .
6: Use Gram-Schmidt orthogonalization process to extract η̂ (from η) that is orthogonal

to vectors {T 1, . . . , T d}.
7: Use Gram-Schmidt orthogonalization process to extract ν̂ (from ν) that is orthogonal

to vectors {T 1, . . . , T d, η̂}.
8: return η̂/‖η̂‖ and ν̂/‖ν̂‖ as mutually orthogonal unit vectors that are approximately

normal to Ψi,j−1(ΦM) at Ψi,j−1(t).

A few remarks are in order.
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Remark 34 The choice of target dimension of size 2d+3 (instead of d+2) ensures that a
pair of random unit-vectors η and ν are not parallel to any vector in the tangent bundle of
Ψi,j−1(N) with probability 1. This follows from Sard’s theorem (see e.g. Milnor, 1972), and
is the key observation in reducing the embedding size in Whitney’s embedding (Whitney,
1936). This also ensures that our orthogonalization process (Steps 6 and 7) will not result
in a null vector.

Remark 35 By picking ∆ sufficiently small, we can approximate the normals η and ν
arbitrarily well by approximating the tangents T 1, . . . , T d well.

Remark 36 For each iteration i, j, the vectors η̂/‖η̂‖ and ν̂/‖ν̂‖ that are returned (in Step
8) are a smooth modification to the starting vectors ηrandi,j and νrandi,j respectively. Now,

since we use the same starting vectors ηrandi,j and νrandi,j regardless of the point of application
(t = Φp), it follows that the respective directional derivatives of the returned vectors are
bounded as well.

By noting Remarks 35 and 36, the approximate normals we return satisfy the conditions
needed for Embedding II (see our discussion in Section 5.3).
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