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CR REGULAR EMBEDDINGS AND IMMERSIONS

OF 6-MANIFOLDS INTO COMPLEX 4-SPACE

RAFAEL TORRES

(Communicated by Franc Forstneric)

Abstract. We provide necessary and sufficient conditions in terms of charac-
teristic classes for a closed smooth orientable 6-manifold to admit a CR regular
immersion/embedding into C4.

1. Introduction and main results

Consider a closed smooth real 2n-manifold M of real dimension dimR(M) = 2n,
a complex manifold (X, J) of complex dimension dimC(X) = n+ 1, an immersion

(1) f : M → X,

and the bundle

(2) f∗TpM ∩ Jf∗TpM ⊂ TpM.

A point p ∈ M is said to be CR regular provided that

(3) dimC(f∗TpM ∩ Jf∗TpM) = n− 1.

The points of M whose complex tangent space has complex dimension equal to n
are called complex or CR singular (see Section 2.2, [S13, S15] and the references
there for further details).

Definition 1. An immersion (embedding) f : M → X for which every point p ∈ M
is CR regular is said to be a CR regular immersion (embedding). An embedding is
denoted by f : M ↪→ X.

Slapar [S15, Theorem 1.1] has shown that a closed real orientable 4-manifold
admits a CR regular immersion into C3 if and only if its first Pontrjagin class p1
and its Euler characteristic χ are zero. In particular, such a 4-manifold admits an
almost-complex structure and its Euler class equals its second Chern class c2. Slapar
also showed that the existence of a CR regular embedding requires the vanishing of
the second Stiefel-Whitney class ω2. The purpose of this note is to determine nec-
essary and sufficient conditions for the existence of such an immersion/embedding
of smooth closed 6-manifolds into C4. The precise statement of our main result is
as follows.
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3494 RAFAEL TORRES

Theorem 1. Let M be a closed smooth real orientable 6-manifold with torsion-free
homology and second Stiefel-Whitney class equal to zero.

(A) There is a CR regular immersion

(4) M → C
4

if and only if χ(M) = 0 = p1(M) +X2 for some X ∈ 2H2(M ;Z).
(B) There is a CR regular embedding

(5) M ↪→ C
4

if and only if χ(M) = 0 = p1(M).

A manifold as in the hypothesis of Theorem 1 admits an almost-complex struc-
ture and the identities χ(M) = 〈c3(M), [M ]〉 and 2c2(M) = p1(M) + X2 hold
[W66, Theorem 9] (cf. Section 3.1). Applications of our theorem are given in the
next result. The connected sum of two manifolds X and Y is denoted by X#Y and
the connected sum of k copies of X by k(X). The symbols Sm and Σg stand for
the m-dimensional sphere and a closed smooth orientable real 2-manifold of genus
g, respectively.

Corollary 1. (A) The real 6-manifolds

(6) (k − 1)(S4 × S2)#k(S3 × S3)

admit a CR regular embedding into C4 for every k ∈ N.
(B) Let N be a closed smooth orientable real 5-manifold with torsion-free homology.

The product manifold

(7) N × S1

admits a CR regular embedding into C4 if and only if ω2(N) = 0.
(C) Let G be a finitely presented torsion-free group. There exists a closed smooth

orientable real 6-manifold

(8) M(G× Z)

whose fundamental group is G× Z and which admits a CR regular embedding
into C4.

(D) Let N be a closed smooth real 4-manifold with torsion-free homology and zero
second Stiefel-Whitney class, and suppose g �= 1. The product manifold

(9) N × Σg

admits a CR regular embedding into C4 if and only if the tangent bundle TN
is trivial.

(E) There exists a finite set {Mi : i ∈ {1, . . . , k}} of cardinality k > 1 that consists
of closed smooth orientable real 6-manifolds that are homotopy equivalent and
admit CR regular embeddings

(10) fi : Mi ↪→ C
4

such that fi is not isotopic to fj for i �= j for j ∈ {1, . . . , k}.

Corollary 1 exhibits severe differences between the six dimensional scenario and
the four dimensional one that had been previously studied in [S15], and we mention
some of them now. While no closed real simply connected 4-manifold admits a CR
regular immersion into C3 [S15, Example 1.1], the real 6-manifolds with trivial
fundamental group in (6) can be CR regularly embedded into complex 4-space. A
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necessary and sufficient condition for a closed real orientable 4-manifold to admit
such an embedding is for its tangent bundle to be trivial [S15, Corollary 1.1], which
in turn restrains the possible choices of fundamental groups. Items (B) and (C)
of Corollary 1 display a myriad of choices of fundamental groups of 6-manifolds
that can be CR regularly embedded into C4. Moreover, Item (E) is a consequence
of inequivalent smooth structures up to diffeomorphism within a homeomorphism
class [W99].

The organization of the paper is as follows. Our proof of Theorem 1 consists
of two steps. The first step is establishing necessary and sufficient topological
conditions for a 6-manifold to be immersed or embedded into R8. This step relies on
results of C. T. C. Wall, which are stated and discussed in Section 2.1. The second
step consists of showing that, under our hypothesis, such an immersion/embedding
can be perturbed into a CR regular one. A sufficient and necessary condition for
the second step to be implemented is given by a result of M. Slapar, which we
present in Section 2.2 along with a discussion on its background. Corollary 1 is
proven in Section 3.2.

2. Background results

2.1. Immersing and embedding 6-manifolds into R8. Results of C. T. C. Wall
regarding immersions and embeddings of real 6-manifolds into Euclidean 8-space
are a fundamental ingredient in the proof of Theorem 1. We summarize them in
the following statement.

Theorem 2 ([W66, Theorems 10, 12 and 13]). Suppose M is a closed smooth real
oriented 6-manifold with torsion-free homology and ω2(M) = 0.

(i) There is an immersion

(11) M → R
8

if and only if p1(M) +X2 = 0 for some X ∈ 2H2(M ;Z).
(ii) There is an embedding

(12) M ↪→ R
8

if and only if p1(M) = 0.

We conclude the section by shedding some light on Theorem 2 given its role in
the proof of our main result. We follow the discussion in [W66]. The existence of
a codimension two embedding of a manifold into an Euclidean space implies the
vanishing of its second Stiefel-Whitney class [MS74, Corollary 11.4]. Hirsch-Smale
theory states in full generality that the existence of an immersion f : M → Rm+k

(where dimR(M) = m) is equivalent to the existence of a k-bundle V over M such
that TM⊕V is trivial. In particular, an immersion as in the hypothesis of Theorem
1 requires the existence of an SO2-bundle. The topological obstructions for such a
V to exist lie within the cohomology groups

H2(M ;π1(SO, SO2)) and H4(M ;π3(SO, SO2)).

The second cohomology group provides the obstruction W3(M) = 0. Fix a choice
of immersion and of a normal 2-plane γ over the 3-skeleton with Euler class X. In
the case of an embedding, γ is the normal bundle of M with structure group SO2,
and it has the structure of a vector bundle. The square X2 is the Pontrjagin class of
the extension of γ over the 4-skeleton. For this extension to be inverse to TM , it is
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3496 RAFAEL TORRES

required X2+p1(TM) = 0. Given that π3(SO, SO2) ∼= π3(SO) ∼= Z, this condition
is sufficient for the obstruction to vanish. An element X ∈ 2H2(M ;Z) defines a
normal 2-plane bundle γ that is inverse to TM on the 3-skeleton if and only if
ω2(M) + ω2(γ) = 0. The element X reduces modulo 2 to ω2(γ) = 0 = ω2(M).

2.2. Complex points. Slapar [S13] has studied topological obstructions to deform
a generic immersion/embedding that may have complex or CR singular points into
a CR regular immersion/embedding. Before quoting Slapar’s result, we describe the
context of the invariants following the exposition in [S13, Introduction]. We first
discern among complex points as follows. Let f,M , andX be as in the introduction,
and let p ∈ M be a complex point. A generic immersion/embedding will have
isolated complex points. We first discern among complex points as follows. Once
an orientation on M is pinned down, the orientation of TpM can be compared
with the induced orientation of TpM ⊂ TX as a complex subspace. If the two
orientations agree, we say that the complex point p is positive. Otherwise, we
say that p is negative. Next consider coordinates (z, ω) ∈ Cn × C, and n by n
matrices A,B with complex entries and such that B = BT . An appropriate choice
of coordinates (z, w) and Taylor expansion of f allows for a local expression of
p ∈ M as

(13) w = zTAz +Re(zTBz) + o(|z|2).

Complex points can be then classified in terms of the sign of the determinant of
the associated matrix (

A B
B A

)
.

The corresponding complex point is said to be elliptic if the determinant is pos-
itive. If the determinant is negative, the complex point is said to be hyperbolic.
The reader is directed toward [S13,S15] and the references there for details.

We now move into our discussion of the aforementioned topological obstruction.
Denote by e±(M) the number of positive/negative elliptic complex points and by
h±(M) the number of positive/negative hyperbolic complex points on M . The Lai
indices are defined as

(14) I±(M) := e±(M)− h±(M)

and they are invariant under regular homotopies of immersions/embeddings. Their
vanishing I±(M) = 0 is a necessary condition for the existence of a regular ho-
motopy between f and a CR regular immersion/embedding. These indices can be
computed using the following topological formula [L72]:

(15) 2I±(M) = χ(M) +
〈 n∑
k=0

(±1)k+1ek(ν(M)) ∪ cn−k(TX|M ), [M ]
〉
,

where ν(M) stands for the normal bundle of M → X, e and cn−k are the Euler
and (n− k)th Chern classes, respectively.

The result of Slapar that is needed in our proof of Theorem 1 can be stated
as follows. It is corollary of the Cancellation theorem (cf. [S13, Corollary 1.2],
[S15, Proposition 4]).
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Proposition 1 (Slapar [S13, S15]). Let M be a closed smooth real and oriented
6-manifold, and let X be a complex manifold of dimC(X) = 4 equipped with a
Riemannian metric h. Suppose f : M → X is a smooth generic immersion (em-
bedding), and ε > 0. If I±(M) = 0, then there is a regular homotopy (isotopy)

(16) ft : M × [0, 1] → X

that satisfies

(i) h(ft(p), f(p)) < ε for every t ∈ [0, 1] and every point p ∈ M , and
(ii) f1 : M → X is a CR regular immersion (embedding).

Without loss of generality, it is assumed in the statement of Proposition 1 that
f is a generic immersion for its complex points (if it has any) to be isolated. The
proof of the proposition is immediate from [S13, Theorem (Cancellation theorem)].

3. Proofs

3.1. Proof of Theorem 1. A closed smooth real orientable 6-manifold with
torsion-free homology M admits an almost-complex structure if and only if the
image of ω2 under the Bockstein homomorphism β : H2(M ;Z/2) → H3(M ;Z)
vanishes, i.e., βω2(M) = 0. The latter condition amounts for the second Stiefel-
Whitney class to be ω2(M) = c1(L) mod 2 for a complex line bundle L over
M . In particular, the manifold M has a SpinC(6)-structure and homotopy classes
of almost-complex structures are in one-to-one correspondence with integral lifts
W2 ∈ H2(M ;Z) of ω2 [W66, Theorem 9]. For any 6-manifoldM as in the hypothesis
of Theorem 1 its Euler characteristic is equal to χ(M) = 〈c3(M), [M ]〉 =

∫
M

c3, and

its first and second Chern classes satisfy c1(M) = W2 and 2c2(M) = p1(M)+c21(M).
We now show that the conditions are necessary (cf. [S15, Section 1]). Suppose

that f : M → C4 is a CR regular immersion so that

(17) V = f∗(f∗TM ∩ Jf∗TM) → M

is a complex bundle of rank two (see Section 3) over the 6-manifold M . Denote
by E → M the orthogonal complement of V in TM so that the tangent bundle is
expressed as E⊕V . In particular, E is an SO(2) ∼= U(1)-bundle. Theorem 2 states
that c2(TM) = c2(E ⊗ C⊕ V ) = 0 and since the bundle

(18) E ⊗ C⊕ V = f∗TC4

is trivial, straightforward computations of Chern classes [MS74, p. 104] show χ(M)
= c3(TM) = c3(E ⊗ C ⊕ V ) = 0. Thus, the existence of a CR regular immersion
M → C4 implies c3(M) = 0 and p1(M) + c21(M) = 0. Regarding the case of
a CR regular embedding, we proceed as follows. The normal bundle of a closed
oriented real manifold that embeds into an Euclidean space as a codimension two
submanifold is trivial and its Euler class is zero [MS74, Corollary 11.4]. For a CR
regular embedding f : M ↪→ C4 we conclude that c3(M) = 0 = p1(M) holds.

Regarding sufficiency of the conditions, we argue as follows. Theorem 2 implies
that there exists an immersion f ′ : M → C4. Proposition 1 will imply our main
result once we show that both Lai indices are zero. From (15) it follows that the
Lai indices I± are given by the sum of c3(M) and
(19)〈
(±)c3(TX|M )+e(ν(M))∪c2(TX|M )+(±1)3e2(ν(M))∪c1(TX|M )+e3(ν(M)), [M ]

〉
.
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3498 RAFAEL TORRES

Since TX|M = TM ⊕ ν(M) and γ = ν(M) as mentioned in Section 2.1, in the
case of X = C4, we conclude I±(M) = 0 from (19). Proposition 1 implies the
existence of a regular homotopy between f ′ and a CR regular immersion. The claim
regarding existence of a CR regular embedding follows from a verbatim argument.
This concludes the proof of our main result. �
3.2. Proof of Corollary 1. The claims in Item (A) and Item (B) follow from
Theorem 1 and straightforward calculations of the required characteristic classes.
We now prove the claim in Item (C). A classical result of M. Dehn states the
existence of a closed smooth orientable real 5-manifold N(G) whose fundamental
group is G. The manifold N(G) is constructed from a connected sum k(S4 × S1)
by applying surgery to the loops representing the generators of the free group
π1(k(S

4 × S1)), and in particular N(G) has zero second Stiefel-Whitney class.
Define M(G,Z) := Y (G) × S1, whose Euler characteristic and first Pontrjagin
class are zero. Its fundamental group is G × Z. The existence of the embedding
f : M(G× Z) ↪→ C4 follows from Item (B) of Theorem 1.

The proof of the claim in Item (D) is a direct consequence of the product for-
mulas for characteristic classes [MS74] for X × Σg and the fact that the invariants
{c2, p1, ω2} completely classify SO4-bundles over a 4-manifold.

Remark on the hypothesis g �= 1: Let T 2 := Σ1 be the real 2 dimensional torus.
The Euler characteristic, second Stiefel-Whitney class and first Pontrjagin classes
of the 6-manifold N × T 2 are zero for every closed smooth real orientable spin
4-manifold N .

Finally, we present an argument to prove the claim in Item (E). There are real
6-manifolds {Mi : i ∈ {1, . . . , k}} with k > 3 that are homotopy equivalent to
the 6-torus T 6 = S1 × S1 × S1 × S1 × S1 × S1; although they are homeomorphic
to T 6, they are pairwise non-diffeomorphic [W99, Chapter 15A]. The existence of
the CR regular embedding fi follows from Theorem 1. The corresponding normal
bundles are different for i �= j since Mi is not diffeomorphic to Mj , hence fi is not
(smoothly) isotopic to fj . �
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