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 VOLUME PRESERVING EMBEDDINGS

 OF OPEN SUBSETS OF Rn INTO MANIFOLDS

 FELIX SCHLENK

 (Communicated by Jozef Dodziuk)

 ABSTRACT. We consider a connected smooth n-dimensional manifold M en-

 dowed with a volume form Q, and we show that an open subset U of Rn of
 Lebesgue measure Vol (U) embeds into M by a smooth volume preserving

 embedding whenever the volume condition Vol (U) < Vol (M, Q) is met.

 1. INTRODUCTION

 Consider a connected smooth n-dimensional manifold M with or without bound-

 ary. A volume form on M is a smooth nowhere vanishing differential n-form Q. It

 follows that M is orientable. We orient M such that fM Q is positive, and we write
 Vol (M, Q) = fM Q. We endow each open (not necessarily connected) subset U of
 Rn with the Euclidean volume form

 Q0 = dxl A *** A dxn.

 A smooth embedding (p: U - M is called volume preserving if

 IR*Q = Q0.

 Then Vol (U, Qo) < Vol (M, Q). In this note we prove that this obvious condition
 for the existence of a volume preserving embedding is the only one.

 Theorem 1. Consider an open subset U of Rn and a smooth connected n-dimen-

 sional manifold M endowed with a volume form Q. Then there exists a volume

 preserving embedding p: U - M if and only if Vol(U, QO) < Vol (M, Q).

 If U is a bounded subset whose boundary has zero measure and if Vol (U, Qo) <
 Vol (M, Q), Theorem 1 is an easy consequence of Moser's deformation method.
 Moreover, if U is a ball and M is compact, Theorem 1 has been proved in [K].
 The main point of this note therefore is to show that Theorem 1 holds true for an

 arbitrary open subset of Rn and an arbitrary connected manifold even in the case
 that the volumes are equal.
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 1926 FELIX SCHLENK

 2. PROOF OF THEOREM 1

 Assume first that A: U - M is a smooth embedding such that IR*Q = Q0. Then

 Vol(UQo) = JQo = JusO*Q = LU) < A Q = Vol(MQ).
 U U f ~~~~(U) M

 Assume now that Vol (U, Qo) < Vol (M, Q). We are going to construct a smooth
 embedding p: U - M such that IR*Q = Q0.

 We orient R' in the natural way. The orientations of R' and M orient each

 open subset of R' and M. We abbreviate the Lebesgue measure Vol (V, Qo) of a

 measurable subset V of R' by JVJ, and we write V for the closure of V in RI.
 Moreover, we denote by Br the open ball in R' of radius r centered at the origin.

 Proposition 2. Assume that V is a non-empty open subset of Rn. Then there

 exists a smooth embedding a: V . R n such that IRn \ a(V)l = 0.

 Proof. We choose an increasing sequence

 V1 C V2 C ... C Vk C Vk+1 C ...

 of non-empty open subsets of V such that Vk C Vk+,v k = 1, 2,. ., and U`01 Vk =
 V. To fix the ideas, we assume that the sets Vk have smooth boundaries.

 Let a,: V2 , R n be a smooth embedding such that ai(V,) C B1 and

 B \a, (V,)I <2-1.

 Since V1 C V2 and a1(V,) C B1 C B2, we find a smooth embedding 92: V3 Rn
 such that c2 v1 = aIv1 and c2(V2) C B2 and

 1B2\cr2(V2)1 < 22.
 Arguing by induction we find smooth embeddings Sk: Vk+1 A+ Rn such that

 9kJVk-l = Uk-11Vkl and crk(Vk) C Bk and

 (1) |~~~~~Bk \ gk(Vk)l < 2

 k = 1,2, .... The map a: V >-* In defined by caIvUk= Ik Vk is a well defined smooth
 embedding of V into R . Moreover, the inclusions crk(Vk) C aX(V) and the estimates

 (1) imply that
 JBk \c(V)J < Bk \ ck(Vk)l < 2 ,

 and so

 JRn \ c(V)j = lim JBk \ c(V)I = 0.
 k-+oo

 This completes the proof of Proposition 2.

 Our next goal is to construct a smooth embedding of Rn into the connected n-
 dimensional manifold M such that the complement of the image has measure zero.

 If M is compact, such an embedding has been obtained by Ozols [0] and Katok
 [K, Proposition 1.3]. While Ozols combines an engulfing method with tools from
 Riemannian geometry, Katok successively exhausts a smooth triangulation of M.
 Both approaches can be generalized to the case of an arbitrary connected manifold
 M, and we shall follow Ozols.

 We abbreviate R>0 = {r E R I r > 0} and R>o = R>o U {oo}. We endow R>0
 with the topology whose base of open sets consists of the intervals ]a, b[ C R>o and
 the subsets of the form ]a, oc] = ]a, oo[ U {oo}. We denote the Euclidean norm on
 Rn by 11 * 11 and the unit sphere in Rn by S1.

This content downloaded from 70.187.211.104 on Sun, 17 Jul 2022 17:19:06 UTC
All use subject to https://about.jstor.org/terms



 VOLUME PRESERVING EMBEDDINGS OF OPEN SUBSETS OF Rn 1927

 Proposition 3. Endow Rn with its standard smooth structure, let ,u: S1 >*
 be a continuous function and let

 S = {XCEini l 0< X < XH )}

 be the starlike domain associated with At. Then S is diffeomorphic to Rn.

 Remark 4. The diffeomorphism guaranteed by Proposition 3 may be chosen such
 that the rays emanating from the origin are preserved.

 Proof of Proposition 3. If At(Sl) = {oo}, there is nothing to prove. In the case that
 At is bounded, Proposition 3 has been proved by Ozols [0]. In the case that neither
 At(Sl) = {oo} nor At is bounded, Ozols's proof readily extends to this situation.
 Using his notation, the only modifications needed are: Require in addition that
 ro < 1 and that E1 < 2, and define continuous functions fi: Si -> R>o by

 Ai = min ji, ,uEi + '2 }.

 With these minor adaptations the proof in [0] applies word-by-word. O

 In the following we shall use some basic Riemannian geometry. We refer to [KN]
 for basic notions and results in Riemannian geometry. Consider an n-dimensional
 complete Riemannian manifold (N, g). We denote the cut locus of a point p E N
 by C(p).

 Corollary 5. The maximal normal neighbourhood N \ C(p) of any point p in an n-
 dimensional complete Riemannian manifold (N, g) is diffeomorphic to Rn endowed
 with its standard smooth structure.

 Proof. Fix p E N. We identify the tangent space (TpN, g(p)) with Euclidean space
 Rn by a (linear) isometry. Let expp: Rn -* N be the exponential map at p with
 respect to g, and let Si be the unit sphere in R . We define the function A: Si
 R>o by

 (2) At(x) = inf{t > 0 l expp(tx) c C(p)}.

 Since the Riemannian metric g is complete, the function At is continuous [KN, VIII,
 Theorem 7.3]. Let S C Rn be the starlike domain associated with At. In view of
 Proposition 3 the set S is diffeomorphic to Rn, and in view of [KN, VIII, Theorem

 7.4 (3)] we have expp(S) = N \ C(p). Therefore, N \ C(p) is diffeomorphic to
 Rn. 0

 A main ingredient of our proof of Theorem 1 are the following two special cases
 of a theorem of Greene and Shiohama [GS].

 Proposition 6. (i) Assume that Q1 is a volume form on the connected open subset
 U of Rn such that Vol (U, Q1) = Ug < o. Then there exists a diffeomorphism 0 of
 U such that p*Ql = Q0.

 (ii) Assume that Q1 is a volume form on Rn such that Vol (Rn, Q1) = oc. Then
 there exists a diffeomorphism b of Rn such that O*Ql = Qo.
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 1928 FELIX SCHLENK

 End of the proof of Theorem 1. Let U C R' and (M, Q) be as in Theorem

 1. After enlarging U, if necessary, we can assume that IU = Vol (M, Q). We set
 N = M \ AM. Then

 (3) 1U = Vol (M, Q) = Vol (N, Q).

 Since N is a connected manifold without boundary, there exists a complete Rie-
 mannian metric g on N. Indeed, according to a theorem of Whitney [W], N can
 be embedded as a closed submanifold in some R'. We can then take the induced
 Riemannian metric. A direct and elementary proof of the existence of a complete
 Riemannian metric is given in [NO].

 Fix a point p E N. As in the proof of Corollary 5 we identify (TpN, g(p)) with
 R' and define the function ,u: S ->* R>o as in (2). Using polar coordinates on R'
 we see from Fubini's Theorem that the set

 C(p) = {,(x)x I x E C IicR'

 has measure zero, and so C(p) = expp (0(p)) also has measure zero (see [Bo, VI,
 Corollary 1.14]). It follows that

 (4) Vol (N \ C(p), Q) = Vol (N, Q).
 According to Corollary 5 there exists a diffeomorphism

 a R >-* N \ C(p).

 After composing 6 with a reflection of R], if necessary, we can assume that 6 is
 orientation preserving. In view of (3) and (4) we then have

 (5) |UI = Vol(Rn, 6*Q).

 Case 1. UI <oo.

 Let Uj, i = 1, 2, .. ., be the countably many components of U. Then 0 < IUiI < 00
 for each i. Given numbers a and b with -o0 < a < b < o0 we abbreviate the "open
 strip"

 Sa'b = {(x1,. . .Xn) c Rn I a < xi < b}.
 In view of the identity (5) we have

 E Uil = |UI = Vol(Rn, 6*Q).
 i>1

 We can therefore inductively define ao = -o0 and ai C] 001, o0] by

 Vol (Saiil,ai, 6*Q) = Ul -

 Abbreviating Si = Saj j~aj we then have Rn = Ui>1 Si,
 For each i > 1 we choose an orientation preserving diffeomorphism Ti: Rn >

 Si. In view of Proposition 2 we find a smooth embedding vj: Uj *, Rn such
 that Rn \ ci(Ui) has measure zero. After composing vi with a reflection of Rn, if
 necessary, we can assume that vi is orientation preserving. Using the definition of
 the volume, we can now conclude that

 Vol(Ui, vi o iT Q) = Vol(ai(Ui), Ti5 Q) = Vol(Rn , Ti * Q) = Vol(Si, *Q) = Ui|.

 In view of Proposition 6 (i) we therefore find a diffeomorphism Pi of Uj such that

 (6) Q04 (oiTi 5*Q) = o.
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 We define Soi: Uj > M to be the composition of diffeomorphisms and smooth
 embeddings

 Ui -i Uj R J Si C RW N \ C(p) C M.

 The identity (6) implies that (p*Q = Qo. The smooth embedding

 ~=U~z: U=JJU M
 therefore satisfies o*Q = Qo.

 Case 2. UI = oo.
 In view of (5) we have Vol (Rn, 5*Q) = 0o. Proposition 6 (ii) shows that there

 exists a diffeomorphism b of Rn such that

 (7) 0I*6*Q = QO.
 We define p: U - M to be the composition of inclusions and diffeomorphisms

 U C T n 0 TRn - N \ C(p) C M.

 The identity (7) implies that IR*Q = Qo. The proof of Theorem 1 is complete. Z
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