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I S O M E T R I C  I M M E R S I O N S  O F  R I E M A N N I A N  S P A C E S  

I N  E U C L I D E A N  S P A C E S  

E .  G. P o z n y a k  a n d  D. D. S o k o i o v  UDC 514.77 

Questions of the theory of isometric immersions of Riemannian spaces in Euclidean spaces be- 
ginning with the very first results onthis topic and also results on immersions of pseudo-Rie- 
mannian spaces in pseudo-Euclidean spaces and applications of the theory of immersions in the 

general theory of relativity are considered. 

The paper is devoted to a survey of works on isometric immersions of Riemannian and pseudo-Rie- 

mannian spaces in Euclidean and pseudo-Euclidean spaces. 

The question of immersions of Riemannian spaces is connected with two distinct approaches to the prob- 
lem of studying Riemannian manifolds. The first of these consists in investigating an abstractly defined nomni- 
fold. The second consists in investigating a Riemannian manifold as a submanifold of Euclidean space. The 
following question arises naturally: Is every n-dimensional Riemannian manifold V n a submanifold of Euclidean 
space EN? In the most general formulation this question was solved positively in the fifties and sixties of our 
century by the American mathematician Nash [141, 142, 143]. The investigations of Kuiper [122, 123] are 
closely related to those of Nash. Although the results of Nash and Kuiper are of universal character, they 
cannot be considered definitive, since they do not give a complete answer to the very important question of 
the choice of the optimal dimension N of the Euclidean space EN in which a given V n or some class of Rie- 
mannian spaces is immersed. The corresponding problematics will be formulated in the paper, and a survey 

of results will be given. 

In the paper major coverage is given to papers on immersions of pseudo-Riemannian spaces in pseudo- 
Euclidean spaces. Interest in this theme is to considerable extent connected with various problems of theo- 
retical physics and theoretical astronomy. Clarifications of the physical character of corresponding results 
will be given along with a survey of papers on this topic. 

We shall not consider in detail the results of immersions of two-dimensional Riemannian metrics, since 
the surveys [21, 22] are devoted to this problem, while the fundamental papers of Aleksandrov [I] and Pogore- 
lova [18] deal with immersions of two-dimensional metrics of positive curvature. We shall consider these 
questions and also questions related to immersions in curved spaces only to the extent that they aid in under- 
standing the history of the development of the problem considered. 

The bibliography extends to the end of 1976. We shall use the following notation: E n is n-dimensional 
Euclidean space, E n (p,q) is n-dimensional pseudo-Euclidean space with signature (p, q). 

1. A S u r v e y  o f  P a p e r s  on  I s o m e t r i c  I m m e r s i o n s  up  to  1 9 5 0  

1. Formula t ion  of the P rob lem.  Basic Resul t s .  The p rob lem of i some t r i ca l l y  embedding of Riemannian  
space  V n in some Eucl idean space  E N w a s  f i r s t  fo rmula ted  by Schiaefli  [167] in 1873 and, so  it s eemed  to 
him, not only formula ted  but a lso  solved. Schlaefli  obtained the following equations (we shal l  hencefor th  cal l  
them the Schlaefli  equations): 

Translated from Itogi Nauld i Tekhniki, Algebra, Topologiya, Geometriya, Vol. 15, pp. 173-211, 1977. 
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r~rj =g~j, (1) 

in  w h i c h  gij  -- g i j  (xl, . . . .  x n) a r e  the c o o r d i n a t e s  of the m e t r i c  t e n s o r  of  the R i e m a n n i a n  s p a c e  vn;  x 1 . . . . .  
x n, i n t r i n s i c  c o o r d i n a t e s ;  and r i  = Or /Ox  i ,  w h e r e  r = r (x  1, . . . ,  xn), i s t h e  d e s i r e d  r a d i u s  v e c t o r  of the s u b -  
man i fo ld  M n in  E N on w h i c h  an  i n n e r  m e t r i c  is  i nduced  w h i c h  c o i n c i d e s  wi th  the m e t r i c  of V n. 

S ince  the n u m b e r  of  equa t ions  (1) is  equa l  to s n = n(n + 1 ) / 2 ,  S c h l a e f l i  was  conv inced  tha t  a t  l e a s t  l o -  
c a l l y *  V n c a n  be e m b e d d e d  in E sn.  In  o t h e r  w o r d s ,  the q u e s t i o n  of  the e x i s t e n c e  of so lu t i ons  of  the s y s t e m  (1) 
fo r  N = Sn did not  a r i s e  [in th is  c a s e  the n u m b e r  of equa t ions  and the n u m b e r  of unknown funct ions  - the c o -  
o r d i n a t e s  of the v e c t o r  r (x  1 . . . . .  xn) - co inc ide ] .  

F o r  a n a l y t i c  R i e m a n n i a n  m e t r i c s  V n the l o c a l  S c h l a e f l i  p r o b l e m  was  s o l v e d  in  the  w o r k  of J a n e t  [114] 
(1926), C a f t a n  [74] (1927), and B u r s t i n  [73] (1931). 

To s o l v e  the p r o b l e m  of the e m b e d d i n g  of a n a l y t i c  R i e m a n n i a n  man i fo ld s  V n in  E sn  C a f t a n  made  use  of 
the  tools  of the me thod  of o u t e r  f o r m s  w h i c h  he c r e a t e d .  I t  should  be noted tha t  s o  f a r  C a r t a n ' s  p roo f  has  not 
b e e n  s i m p l i f i e d  nor  have the b a s i c  i d e a s  of his  a r g u m e n t s  been  c l a r i f i e d .  

In  the w o r k  c i t ed  of J a n e t  for  the l i n e a r  e l e m e n t $  ds 2 = gn(dxl )  2 + gi jdxidxJ (i > 1, j > 1) the Sch lae f l i  
equa t ions  [see  (1)] w e r e  b rough t  to the f o r m  

rurk =O ,  k = l , 2  . . . . .  n, 

I O~glm 
rurtm:rlIr l~n 2 Ox1~ , l ~  l,  m > l  

(2) 

by d i f f e r e n t i a t i o n s  of the s i m p l e s t  a l g e b r a i c  o p e r a t i o n s .  I t  is  c l e a r  tha t  if  a l l  the v e c t o r s  rk ,  r l m  [the n u m b e r  
of t h e s e  v e c t o r s  is  equa l  to n(n + 1 ) /2 ]  a r e  l i n e a r l y  i nde pe nde n t ,  then  the s y s t e m  (2) can  be s o l v e d  for  the c o -  
o r d i n a t e s  of the v e c t o r  r n.  As  a r e s u l t ,  a s y s t e m  of C a u c h y - K o v a l e v s k a y a  type is  ob ta ined  for  which  a s o l u -  
t ion  e x i s t s .  J a n e t  did not  p r o v e  the p o s s i b i l i t y  of  a cho i ce  of i n i t i a l  da t a  fo r  wh ich  the l i n e a r  i ndependence  of 
the v e c t o r s  r k ,  r / m  is e n s u r e d .  This  p l an  was  r e a l i z e d  by B u r s t i n .  He c o n s t r u c t e d  an  induc t ive  p r o c e s s  for  the 
i s o m e t r i c  e m b e d d i n g  in E s n  of  s p e c i a l l y  c h o s e n  s u b m a n i f o l d s  in  V n of i n c r e a s i n g  d i m e n s i o n s  such  that  a t  the 
n - t h  s t e p  of  th is  p r o c e s s  the d e s i r e d  i s o m e t r i c  i m m e r s i o n  of V n in  E s n  is  ob t a ined ,  whi l e  fo r  th is  i m m e r s i o n  
a l l  the v e c t o r s  r k ,  r / m  a r e  l i n e a r l y  independen t .  This  type of i s o m e t r i c  i m m e r s i o n  of V n in  EN s u b s e q u e n t l y  
b e c a m e  known as  a f r ee  i m m e r s i o n .  

2. P r o b l e m  of the C l a s s  of a R i e m a n n i a n  M e t r i c .  The P r o b l e m  of N o n i m m e r s i b i l i t y .  In  1886 Schur  pub-  
l i s h e d  the w o r k  [169] in  wh ich  the p o s s i b i l i t y  is  e s t a b l i s h e d  of the l o c a l ,  a n a l y t i c ,  i s o m e t r i c  i m m e r s i o n  of 
L o b a c h e v s k i i  s p a c e  H n in  E N for  N = 2n - 1. This  r e s u l t  is  v e r y  i m p o r t a n t  in c l a r i f y i n g  the p r o b l e m a t i e s  of 
the t h e o r y  of i s o m e t r i c  i m m e r s i o n s .  

The r e l a t i o n  of d i m e n s i o n s  (n and N = 2 n -  1) of the i m m e r s e d  s p a c e  H n in the E u c l i d e a n  s p a c e  E N in 
S c h u r ' s  r e s u l t  d i f f e r s  s h a r p l y  f r o m  the r e l a t i o n  of the d i m e n s i o n s  in and N = Sn = n(n + 1 ) /2 ]  in  the g e n e r a l  
r e s u l t  (Schlaef l i ,  J a n e t ,  C a r t a n ,  and Bur s t i n ) .  I t  is  ' t h e r e f o r e  n a t u r a l  to f o r m u l a t e  the fo l lowing  two i m p o r t a n t  
p r o b l e m s  of the t h e o r y  of i s o m e t r i c  i m m e r s i o n s  - the p r o b l e m  of the c l a s s  of the R i e m a n n i a n  m e t r i c  and the 
p r o b l e m  of n o n i m m e r s i b i l i t y .  

The p r o b l e m  of  the c l a s s  of  the R i e m a n n i a n  m e t r i c  of V n c o n s i s t s  in  r e s o l v i n g  the q u e s t i o n  of the m i n i -  
ma l  d i m e n s i o n  N of  the E u c l i d e a n  s p a c e  E N i n w h i c h  V n c a n  be i s o m e t r i c a l l y  i m m e r s e d .  The  d i f f e r e n c e  N -  n 
is  c a l l e d  the c l a s s  of the R i e m a n n i a n  m e t r i c  of V n. 

In  i ts  o r i g i n a l  f o r m u l a t i o n  this  q u e s t i o n  p e r t a i n e d  to a n a l y t i c  i m m e r s i o n s  of a n a l y t i c  R i e m a n n i a n  m e t r i c s .  
I t  b e c a m e  c l e a r  only  in the f i f t i e s  that  the d i f f e r e n t i a b i l i t y  cond i t i ons  in  th is  p r o b l e m  a r e  v e r y  ba s i c ;  i t  fo l lowed 
f r o m  the r e m a r k a b l e  r e s u l t  of Nach [141] tha t  if the i m m e r s i o n  is only r e q u i r e d  to be of c l a s s  C 1, then  l o c a l l y  
the  c l a s s  of a l l  R i e m a n n i a n  m e t r i c s  is equa l  to 1, i . e . ,  l o c a l l y  a l l  R i e m a n n i a n  m e t r i c s  of d i m e n s i o n  n can  be 
i m m e r s e d  as  h y p e r s u r f a c e s  of c l a s s  C 1 in  E n+~. 

We s h a l l  s u b s e q u e n t l y  d i s c u s s  v a r i o u s  a s p e c t s  of th is  p r o b l e m  of the m e t r i c  c l a s s  in  s u r v e y i n g  o t h e r  

w o r k s  on the t h e o r y  of i m m e r s i o n s .  

The s e c o n d  i m p o r t a n t  p r o b l e m  - the p r o b l e m  of the i m m e r s i b i l i t y  of a g iven  R i e m a r m i a n  n - d i m e n s i o n a l  
m a n i f o l d  in  E u c l i d e a n  s p a c e  E N o f g i v e n  d i m e n s i o n  N - was  f i r s t  f o r m u l a t e d  by  H i l b e r t  in 1900 i n h i s  f a m o u s  P r o b -  
l e m s  [104]. In  Lhese P r o b l e m s  H i l b e r t  posed  the p r o b l e m  of  the e x i s t e n c e  in  E 3 of a c o m p l e t e  s u r f a c e  of 

*At the t i m e  of  S c h l a e f l i ' s  w o r k  l o c a l  and g loba l  e m b e d d i n g  of  a man i fo ld  w e r e  not d i s t i n g u i s h e d .  
t L o c a l l y  the l i n e a r  e l e m e n t  of V n c a n  a l w a y s  be b rough t  to the i n d i c a t e d  f o r m .  
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constant negative curvature. In 1901 in the work entitled "On surfaces of constant negative curvature" [105, 

106] Hilbert proved the impossibility of such a surface in E 3. In other words, a complete two-dimensional 

Riemannian manifold of constant negative curvature cannot be isometrically immersed in E 3 as a surface of 

class C 2.* 

The problem of nonimmersibility of Riemannian metrics is obviously related to the problem of the met- 

ric class - if the class of a given Riemannian metric is known, then the dimension of the Euclidean space in 

which this metric cannot be immersed is known. However, it is necessary to be more precise here. We have 

a l r e a d y  m e n t i o n e d  the i m p o r t a n c e  of the d i f f e r e n t i a b i l i t y  cond i t i ons  on the man i fo ld  in  E N on wh ich  a g iven  
R i e m a n n i a n  m e t r i c  is  induced .  

L o c a l  and g loba l  f o r m u l a t i o n s  of the p r o b l e m s  a l s o  p l ay  a b a s i c  r o l e  in t hese  two p r o b l e m s .  Thus ,  if  we 
c o n s i d e r  the q u e s t i o n  of the i m m e r s i o n  of a t w o - d i m e n s i o n a l  R i e m a n n t a n  man i fo ld  of  c o n s t a n t  n e g a t i v e  c u r v a -  
tu re  (the L o b a c h e v s k i i  piane)  in  E u c l i d e a n  s p a c e ,  then  h e r e  the l o c a l  and  g loba l  f o r m u l a t i o n s  of the q u e s t i o n  
a r e  d i s t i n c t -  l o c a l l y  the L o b a c h e v s k i i  p lane  can  be i m m e r s e d  in  E 3 and t h e r e f o r e  the c l a s s  of i t s  m e t r i c  is  
equa l  to 1; g l o b a l l y  i t  canno t  be i m m e r s e d  in  E 3 but  in  E 5 (see  B l a n u s a  [74], R o z e n d o r n  [23]). Thus ,  the q u e s -  
t ion of the g loba l  m e t r i c  c l a s s  of the L o b a c h e v s M i  p lane  has  so  f a r  not b e e n  s e t t l e d .  

B e f o r e  1950 the p r o b l e m  of the n o n i m m e r s i b i l i t y  of a R i e m a n n i a n  m e t r i c  was  i n v e s t i g a t e d  in  the w o r k  
of B ianeh i  [48], L i b e r  [12, 13], and T o m p k i n s  [191]. 

The i m p o s s i b i l i t y  of the l oca l  i m m e r s i o n  of a R i e m a n n i a n  s p a c e  H n of c o n s t a n t  nega t ive  c u r v a t u r e  a s  a 
h y p e r s u r f a c e  of E u c l i d e a n  s p a c e  was  p r o v e d  in  the w o r k  c i t ed  of B ianch i .  

The l o c a l  n o n i m m e r s i b i l i t y  of the s p a c e  H n was  i n v e s t i g a t e d  by L i b e r  in  the w o r k  c i t ed  above .  He e s t a b -  
l i s h e d  tha t  H n canno t  be l o c a l l y  i m m e r s e d  as  an  a n a l y t i c  s u r f a c e  in  E 2n-2. Since  a c c o r d i n g  to S c h u r ' s  r e s u l t  
H n can  be i s o m e t r i c a l l y  i m m e r s e d  in  E 2n-1, L i b e r  p r o v e d  that  the l o c a l  c l a s s  of the m e t r i c  of H n unde r  the 
c o n d i t i o n  of a n a l y t i c  i m m e r s i o n  is equa t  to n -  1. We note that  the q u e s t i o n  of the p o s s i b i l i t y  of g loba l  i m m e r -  
s i o n  of H n in E 2n-t has  not been  so lved .  

In  1939 T o m p k i n s  (see  the w o r k  c i t e d  above)  i n v e s t i g a t e d  the q u e s t i o n  of the g loba l  n o n i m m e r s i b i l i t y  of 
m u l t i d i m e n s i o n a l  R i e m a n n i a n  m e t r i c s .  He p r o v e d  tha t  a c o m p a c t ,  l o c a l l y  E u c l i d e a n ,  n - d i m e n s i o n a l  R i e m a n n -  
Jan m a n i f o l d  V n (e .g . ,  the n - d i m e n s i o n a l  to rus )  cannot  be r e g u l a r l y  (in c l a s s  C 2) i m m e r s e d  g loba l ly  in E 2n-1. 
We note that  the n - d i m e n s i o n a l  t o r u s  w i th  a f ia t  m e t r i c  has  an  i m m e r s i o n  in  E 2n. In  the w o r k  of T o m p k i n s  [191] 
the c o n n e c t i o n  of the l o c a l  o u t e r  and i n n e r  g e o m e t r y  of an  i m m e r s e d  man i fo ld  is  u sed  in  the p roo f  of n o n i m -  
m e r s i b i l i t y .  F o r  e x a m p l e ,  in E 3 e a c h  r e g u l a r  (of c l a s s  C 2) d e v e l o p a b l e  s u r f a c e  is  r u l e d  and if  i t  is c o m p l e t e ,  
then  any r e c t i l i n e a r  g e n e r a t o r  of i t  is  c o m p l e t e .  This  i m p l i e s  the n o n i m m e r s i b i l i t y  in the c l a s s  of s u r f a c e s  
C 2 of the t w o - d i m e n s i o n a l  t o r u s  wi th  the E u c l i d e a n  m e t r i c  in  E 3. T o m p k i n s  p r o v e d  tha t  l o c a l l y  any n - d i m e n -  
s i o n a l  c o m p a c t  man i fo ld  w i th  E u c l i d e a n  m e t r i c  r e g u l a r l y  i m m e r s e d  in  E u c l i d e a n  s p a c e  of d i m e n s i o n  2 n -  1 
has  a r u l e d  s t r u c t u r e  in a p a r t i e u i a r  s e n s e ,  and t h e r e f o r e  g l o b a l l y  such  a man i fo ld  canno t  be i m m e r s e d  in 
E 2n-~. T o m p k i n s '  r e s u l t s  w e r e  g e n e r a l i z e d  in  the w o r k  of C h e r n  and K u i p e r  [76], Otsuki  [154] and O 'Ne i l  [150]. 
M o r e  w i l l  be s a i d  about  th is  below.  

We note one f u r t h e r  r e s u l t  of T o m p k i n s  [192]. In  th is  w o r k  he c o n s t r u c t e d  an  i m m e r s i o n  (with s e l f - i n t e r -  
sections) of the Klein bottle with Euclidean metric in E 4. Another immersion of the Klein bottle in E l (also 

with self-intersections) was suggested by Ivanov [9]. 

Above we spoke of the problem of the class of a Riemannian metric, of the natural distinction of the con- 

cepts of local and global class of such a metric, and also of the relation of the value of the class of the metric 

to the differentiability requirements of the immersion. Until 1950 mainly the question of the local metric class 
under the condition of analyticity of the immersion was investigated. As a rule, it was determined which met- 

rics have a given local class. To this end a system of immersion equations was considered which turned out 

to be overdetermined, and conditions were found for its compatibility, if these conditions were expressed in 

terms of the inner metric of the immersed manifold, then as a result the desired characterization of metrics 
of a given local class was obtained. 

The first work on the class problem was that of Schouten and Struik [168] in 1921 in which it was proved 
that if the Ricci tensor of the space is indentically zero, then the local class of this space is different from 
one. In other words, either the space is fiat and the local class is equal to zero or the space cannot be a hyper- 
surface. 

*Kuiper [122] proved the possibility of the isometric immersion of such a manifold in E 3 as a surface of class 
C I" 
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In 1940-43 R o z e n s o n  in the  w o r k  [26-28] ob ta ined  a c r i t e r i o n  fo r  s p a c e s  of l o c a l  c l a s s  1. 

E a r l i e r  r e s u l t s  of W e i s e  [196] and T h o m a s  [190] w e r e  u sed  in  the w o r k  of Rozenson .  R e s u l t s  on m e t r i c s  
of c l a s s  1 a r e  s y s t e m a t i c a l l y  s u r v e y e d  in  the a r t i c l e  of  Yanenko  [42]. 

The p r o b l e m  of the l o c a l  c l a s s  of R i e m a n n i a n  m e t r i c s  was  d i s c u s s e d  in  the w o r k  of  A l l e n d o r f e r  [46] 
and i n v e s t i g a t e d  in  d e t a i l  in  the w o r k  of Yanenko  [43-45].  The r e s u l t s  of Yanenko  w i l l  be d i s c u s s e d  in  m o r e  
d e t a i l  in  the next  s e c t i o n .  

2 .  W o r k  o n  t h e  T h e o r y  o f  I m m e r s i o n s  a f t e r  1 9 5 0  

1. C S - I s o m e t r i c  I m m e r s i o n s  of Nash  and Ku ipe r .  A n u m b e r  of f u n d a m e n t a l  r e s u l t s  in  the t heo ry  of i m -  
m e r s i o n s  w e r e  ob ta ined  a f t e r  1950. 

In  1954 Nash  pub l i shed  the w o r k  [141] on s o - c a l l e d  g l o b a l  C S - i s o m e t r i c  i m m e r s i o n s  of R i e m a n n i a n  m a n i -  
fo lds  in  E u c l i d e a n  s p a c e s .  T h e  r e s u l t  Nash  ob ta ined  c o n s i s t s  in  the fo l lowing.  Suppose  tha t  on a c l o s e d  d i f -  
f e r e n t i a b l e  man i fo ld  M n t h e r e  is  g iven  a R i e m a n n i a n  m e t r i c ,  and a R i e m a n n i a n  m a n i f o l d  V n is  thus ob ta ined .  
I f  M n can  be t o p o l o g i c a l l y  i m m e r s e d  in  E u c l i d e a n  s p a c e  E N (N -> n + 2) as  a C ~ - m a n i f o l d ,  then V n c a n  be i s o -  
m e t r i c a l l y  i m m e r s e d  in  E N a s  an  n - d i m e n s i o n a l  s u r f a c e  of c l a s s  C1. * 

I t  was  noted in  the w o r k  of Nash  tha t  the cond i t i on  N -> n + 2 c a n  be r e p l a c e d  by the cond i t i on  N'-> n + 1. 
K u i p e r  [122] j u s t i f i e d  p r e c i s e l y  the r e s u l t  f o r m u l a t e d  above  for  N -> n + 1. 

The method  p r o p o s e d  by Nash  is a s  fo l lows .  Le t  M n be t o p o l o g i c a l l y  i m m e r s e d  in  E N  (N -> n + 2) as  a 
C ~ - s u b m a n i f o l d .  By s u i t a b l e  t r a n s f o r m a t i o n  of th is  t o p o l o g i c a l  i m m e r s i o n  in  E N a s o - c a l l e d  s h o r t  i m m e r s i o n  
of the R i e m a n n i a n  man i fo ld  V n c a n  be ob t a ined ,  i . e . ,  an  n - d i m e n s i o n a l  s u b m a n i f o l d  V~ in E N  o n w h i c h  the i n -  
duced  R i e m a n n i a n  m e t r i c  ds s i s  r e l a t e d  to the R i e m a n n i a n  m e t r i c  ds g i v e n  on V n a t  c o r r e s p o n d i n g  poin ts  and 
d i r e c t i o n s  by the r e l a t i o n  d s l / d s  _< a s < 1. By m e a n s  of the  " tw i s t i ng"  o p e r a t i o n  p r o p o s e d  by Nash  the s h o r t  
i m m e r s i o n  V n is  t r a n s f o r m e d  into  a s h o r t  i m m e r s i o n  V n fo r  w h i c h  the quan t i t y  ds  z / d s  ___ a z < 1 s a t i s f i e s  the  
c o n d i t i o n  a s < a 2. 

The b a s i c  i d e a  of the t w i s t i n g  o p e r a t i o n  c o n s i s t s  in  the fo l lowing.  Le t  z ~  = z~  (xi) be the p a r a m e t r i c  
equa t ions  of  V~.$ S ince  N _> n + 2, i t  is  p o s s i b l e  to c o n s t r u c t  on V n two mu tua l ly  o r t h o g o n a l  v e c t o r  f i e lds  ~a 
and 77 a .  The e m b e d d i n g  V~ is  def ined  by the p a r a m e t r i c  equa t ions  

w h e r e  a(x i) and '~(xi) a r e  func t ions  de f ined  on V n, and ~ is  an  a r b i t r a r y  c o n s t a n t  wh ich  is s u f f i c i e n t l y  l a r g e . $  
It  is  e a s y  to s e e  tha t  the m e t r i c  t e n s o r  of the m e t r i c  ds  2 induced  on V n d i f f e r s  f r o m  the m e t r i c  t e n s o r  of the 
m e t r i c  ds 1 by the quan t i t y  

ag~,:a, axta~ axya~' +0(~). 
F r o m  this  r e l a t i o n  i t  i s  e v i d e n t  tha t  by cho i ce  of the func t ions  a,  ~ and the c o n s t a n t  ~ the r e q u i r e d  r e l a t i o n  
a 1 < a 2 < 1 c a n  be a c h i e v e d .  

By applying the "twisting" operation to then to V2, e t c  a sequence of C -manifolds is con-  
n s t r u c t e d  in  E N w i t h  induced  m e t r i c s  {dSk} w h i c h  c o n v e r g e  to d s ,  and the V k t h e m s e l v e s  c o n v e r g e  to a C 1- 

m a n i f o l d  wi th  induced  m e t r i c  w h i c h  c o i n c i d e s  w i th  the g i v e n  m e t r i c .  

S u r p r i s i n g  c o r o l l a r i e s  a r e  ob ta ined  f r o m  the r e s u l t s  of  Nash  and Ku ipe r  j u s t  p r e s e n t e d .  F o r  e x a m p l e ,  
a c c o r d i n g  to Whi tney  [198] e a c h  c o m p a c t  n - d i m e n s i o n a l  d i f f e r e n t i a b l e  man i fo ld  M n can  be t o p o l o g i c a l l y  i m -  
m e r s e d  in  E 2n-1 as  a C a - m a n i f o l d ,  and t h e r e f o r e  any c o m p a c t  R i e m a n n i a n  man i fo ld  V n can  be C l - i s o m e t r i c a l l y  
i m m e r s e d  in  E 2n-l.  I f  we  c o n s i d e r  any R i e m a n n i a n  man i fo ld  h o m e o m o r p h i c  to the n - d i m e n s i o n a l  s p h e r e ,  then,  
a c c o r d i n g  to K u i p e r ' s  r e s u l t ,  th is  man i fo ld  can  be C S - i s o m e t r i c a l l y  e m b e d d e d  in E n+s. We note tha t  any R i e -  
m a n n i a n  m a n i f o l d  c a n  be C S - i s o m e t r i c a l l y  i m m e r s e d  in  E 2n-1. 

*Nash  e s t a b l i s h e d  that  i f  the t o p o l o g i c a l  i m m e r s i o n  of M n in E N is  a n  e m b e d d i n g  ( there  a r e  no s e l f - i n t e r s e c -  
t ions ) ,  then  V n c a n  be i s o m e t r i c a l l y  e m b e d d e d  in  E N. 
?V~ c a n  be c o v e r e d  by a s y s t e m  of n e i g h b o r h o o d s  in  each  of w h i c h  t h e r e  i s  a s y s t e m  of c u r v i l i n e a r  c o o r d i -  
na tes  x i .  
SThis f o r m u l a  e x p l a i n s  the t e r m  " tw i s t i ng" :  fo r  l a r g e  ~ the i m m e r s i o n  of V n b e c o m e s  s t r o n g l y  tw i s t ed  due to 
the t e r m s  cos  ~r and s i n ~ r  
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In the preceding section while discussing the immersion equations obtained by Scblaefli, it was found 

that the number of equations of this system is equal to N = s n = n(n + i)/2, and at first glance it therefore 

seems natural that at least locally n-dimensional Riemannian spaces can be isometrically immersed in E N 

for N = n(n + 1)/2. The analytic treatment of the results of Nash and Kuiper is thus the more surprising - 

in the class of Cl-isometric immersions of n-dimensional Riemannian manifolds in E N for N _> n + 2 (or 

even for N >- n + i) the very overdetermined system of immersion equations always has a solution belonging 

to the c l a s s  C I. 

A number of substantial refinements to the results of Nash and Kuiper formulated above were obtained 
in the work [30] of Rokhlin and colleagues. 

The Ci-isometric immersions of Riemannian metrics in Euclidean spaces obtained by means of the meth- 

od proposed by Nash and perfected by Kuiper have precisely the indicated regularity class C I (second deriva- 

tives are discontinuous at each point). These embeddings do not have the connection between inner and outer 

properties which are usual in differential geometry; for this the requirement that the immersions belong to 

the class C 2 is essential.* There naturally arises the question of for which c~ in the class of C1,~-immer - 

sfons does this connection "arise" or "disappear." This question was investigated in a cycle of papers of 

Borisov [3]. He established that for the values 0 -< ~ < 1/7 the corresponding immersions do not have the con- 

nection between the outer and inner geometry, while for the values 2/3 < c~ _< 1 this connection is present. 

It is also natural to pose the question of nonsmooth isometric immersions. Such immersions of two- 

dimensional metrics in E 3 were considered by Burago [4, 5]. 

Shefel' [36-38] posed the question of refining the concept of a regular immersion. According to Shefel', 

regularity of an immersion depends on the immersed metric belonging to a certain class K and on particular 

stability properties of the immersion with respect to a group of transformations acting in E N. For example, 

if we consider so-called convex~ immersions in E N of two-dimensional metrics of nonnegative curvature de- 

fined on the sphere and if we require further that the convexity property be preserved under affine transfor- 
mations, then it is found that the immersion constructed belongs to E 3 ~ E N. 

Shefel' calls such immersions of two-dimensional metrics of nonnegative curvature completely regular. 

This term is also used in other instances. 

2. Nash Theory of Regular Immersions. In 1956 Nash [142] proposed a method of regular isometric 

immersions of regular Riemannian manifolds in Euclidean spaces. The central feature in Nash's constructions 

is the generalization to the nonanalytic case of the Cauchy-Kovalevskaya theorem for the immersion equa- 

tions. He cons ide r ed  the p rob lem of i m m e r s i o n  of a m e t r i c  suff ic ient ly  c lose  to a m e t r i c  of a submanifold S 
of Euc l idean  space  E N. F o r  this p rob l em he formed equations for the de fo rma t ion  of the su r f ace  n e c e s s a r y  to 
r e a l i z e  the c lose  me t r i c .  These equations can be r e p r e s e n t e d  as a C a u c h y - K o v a l e v s k a y a  s y s t e m  if the sub-  
manifold S in ques t ion  is a f ree  i m m e r s i o n  (the f i r s t  and second de r iva t ives  of the rad ius  vec tor  of S a r e  
l i nea r ly  independent  a t  each point). Fo r  this i t  is  n e c e s s a r y  that the d imens ion  N be n(n + 1) /2  + n (for man i -  
folds of compl i ca t ed  topologica l  s t r u c t u r e  the d imens ion  N mus t  be r a i sed ) .  

By means of fine a rguments  Nash was able to prove the ex is tence  of solut ions to the s y s t e m  he formed.  
In other  words ,  the poss ib i l i ty  of i m m e r s i o n  of m e t r i c s  suff ic ient ly  d o s e  to a m e t r i c  of a submanifold 8 was 
proved,  and the degree  of c lo senes s  of the i m m e r s e d  m e t r i c s  was es tab l i shed .  

It is impor t an t  to emphas ize  that the a rguments  of Nash a re  not r e l a t ed  to the spec i f i c  fo rm of the im-  
m e r s i o n  equations;  he obtained a gene ra l  t heo r e m  for the sol-v-ability of the Cauchy p rob lem for nonanalytic 
equations of C a u c h y - K o v a l e v s k a y a  type (under p a r t i c u l a r  addi t ional  condit ions).  The impor tance  of this theo-  
r e m  goes far  beyond the f r a m e w o r k  of the theory of i m m e r s i o n s ,  s ince  it is apparen t ly  the f i r s t  gene ra l i za t i on  
of this type. 

Many authors (Schwartz [170], Moser [139, 140], Rokhlin [37]) attempted to give the Nash result a clear 

formulation. In the opinion of the authors of this survey, this problem has still not been finally resolved, and, 

in any case, the analytic theorem of J. Nash has not yet been introduced to sufficient extent into the working 
machinery of mathematics. 

*If, for example, in E 3 there is a surface S of class C i for which all second derivatives of the functions defin- 
ing it are discontinuous, then it is not possible to introduce the concept of the usual outer curvature. 

J'This means that a segment joining any two points of the immersion has no further common points with the 
immersion. 
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The possibili ty of a regular  immers ion  of an a rb i t r a ry  Riemannian manifold V n Nash proves by means 
of his analytic theorem. To this end the line element ds 2 of the manifold V n is represented  as a sum of two 
line elements ds~ + ds~ the f i rs t  of which is the line element of some freely immersed  submanifold. Next, a 
C l - i somet r i c  immers ion  of the metr ic  with line element ds~ is constructed,  and this immers ion  is approxi-  
mated analytically so closely that the e r r o r  does not exceed the quantity required by the analytic theorem of 
Nash. Fur ther ,  the required immers ion  of the original metr ic  is obtained by cor rec t ing  the immers ion  of the 
f i rs t  metr ic .  

By means of the method given by Nash it is possible to immerse  an a rb i t r a ry  n-dimensional  Riemannian 
manifold in E N, where N = [(3n 2 + l l n ) / 2 ] ( n  + 1) [for compact  manifolds N = (3n 2 + l l n ) / 2 ] .  

Embeddings of regular  (C r ,  3 -< r < oo) Riemannian metr ics  were considered in the work of Nash in- 
dicated; the immers ion  also had class  C r. In the work [143] Nash showed that in applying his analytic tool to 
an analytic Riemannian manifold the solution is also analytic. By means of this resul t ,  Greene and Jacobowitz 
[97] proved a theorem on the immers ib i l i ty  of an analytic n-dimensional  Riemannian manifold in E( 3n2+lln}/2. 

Attempts to lower the dimension N w e r e  made in the work of Greene [96] and Clarke [78]. Rokhlin and 
colleagues [30] indicated a geometr ic  method corresponding to the analytic theorem of Nash. It was found that 
the methods presented in the work of Janet  and Burst in can be used also for a global immers ion  theorem. It 
was proved in [30] that each Riemannian manifold V n can be regular ly  immersed  i sometr ica l ly  in EN, where 
N= n(n+ 1)/2 + 3 n +  5. 

3. P rob lem of the Class of Riemannian Manifolds. During this period the work of Yanenko [43-45] was 
the principal work on the problem of the class  of Riemannian manifolds. 

Yanenko [45] reduced the question of investigating metr ics  of c lass  2 to the question of investigating 
met r ics  of class 1. As in previous work  on the theory of c lass ,  the question of flexibility of the immers ions  
obtained is investigated in the work of Yanenko. We also note the work of O'Neil [149] and Takahashi [185] who 
investigated immers ions  of class  one in noaflat spaces of constant  curvature  and the work of Sen [173] who 
classif ied conformal ly  fiat spaces of c lass  1. 

It appears  that the problematics  of the theory of class  were to considerable  extent completed in the work 
of Yanenko. It is likely to be a very tough problem to obtain further effective c r i te r ia  that a given metr ic  have 
a given class .  After  the middle of the fifties only scat tered  papers were  devoted to the problem of the class of 
proper  Riemannian met r ics .  However,  the question of immers ion  of various c lasses  of metr ics  (metrics of 
constant  curvature ,  met r ics  of negative curvature ,  etc.) is developing rapidly; we proceed to consider this 
work in the next sections.  The theory of the class  of pseudo-Riemannian metr ics  is also developing; for this 
see the next section. 

4. Immers ions  of Metr ics  of Constant Curvature.  Papers  in which the immers ion  of special  c lasses  of 
met r ics  is considered are  of considerable interest .  The problem of immers ions  of metr ics  of constant curva-  
ture defined on various manifolds has been investigated the most  thoroughly. Local immers ions  of such met-  
r ics  are  well known, and the basic problem ar is ing here consists  in obtaining global immers ions  having a given 
topological s t ructure .  The main resul ts  in this a rea  have been obtained by the Yugoslavian mathematician D. 
Btanusa. 

Generalizing the resul t  of Bieberbaeh on the immers ion  of the Lobachevskii  plane in Hilbert space,  
Blanusa constructed a real izat ion in Hilbert  space of an infinite MSbius s tr ip with a hyperbolic metr ic .* 

Blanusa [52] a lso constructed an immers ion  of n-dimensional  Lobaehevskii  space in Hilbert space. Still 
another immers ion  of multidimensional Lobachevskii  space in Hilbert space was constructed by Blanusa in [611. 
Pursuing these investigations,  in [66] Blanusa considered a number of infinite-dimensional spaces which are  
natural general izat ions  of f ini te-dimensional  spacesof  constant curvature  and proved a large number of a s s e r -  
tions regarding  their mutual immers ib i l i ty  (the presence of such mutual immers ib i l i ty  is a charac te r i s t i c  fea- 
ture of infinite-dimensional  spaces).  

In the papers [51, 50, 63] Blanusa turned to the investigation of immers ions  of an elliptic space. We note 
that Kuiper showed [125] that the projective plane cannot be topologically immersed  in three-dimensional  
Euclidean space as a convex surface;  in any case there thus does not exist a regular  real izat ion in th ree-d i -  
mensional Euclidean space of an elliptic plane. Blanusa established that n-dimensional  elliptic space has a 

*An infinite MSbius s tr ip with hyperbolic metr ic  is obtained by identifying by reflecting the boundaries of the 
par t  of the Lobachevskii  plane contained between two diverging lines with respec t  to their common perpen- 
dicular.  
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regu la r  immers ion  in E n(n+3)/2. Here the multidimensional surface ,  just as the sphere ,  has geodesics which 
are  sections of the immers ion  by cer ta in  multidimensional planes. It is found that on accounting with this 
proper ty  the indicated dimension of the enveloping space cannot be improved. This resul t  implies the existence 
of an imbedding of the elliptic plane in E5. * In [55, 57] Blanusa investigated the question of the immers ib i l i ty  
of n-dimensional  elliptic space in spher ica l ,  hyperbolic,  and flat spaces of dimension n(n * 3) /2  - 1 (i.e., 
one less than in the previous estimate).  It was found that such immers ions  actually exist  under cer ta in  condi- 
tions on the parity of the number n and provided that cer ta in  inequalities connecting the curvatures  of the im- 
mersed  and enveloping spaces are  satisfied. Blanusa returned to this problem in the more recent  work [68] 
where he constructed an immers ion  of n-dimensional  elliptic space in E ( n+02 and E n(n+3)/2+~. 

We note that the projective plane with a metric of positive curvature, in particular, the elliptic 

plane, does not admit a regular imbedding in E 4 (Rokhlin et al. [30]). Moreover, if n = 2 k and n > i, then n- 

dimensional projective space with a metric of everywhere positive scalar curvature, for example, n-dimen- 

sional elliptic space, does not admit isometric imbedding in E 2n [30]. We note also the work of Boy [71] of 

1903 in which a realization was constructed of the elliptic plane in E 3 as a surface with a singularity. 

In constructing these immersions of elliptic space Blanusa proceeded from a certain realization of the 

group of motions of elliptic space as a subgroup of the group of motions of the enveloping space in a way simi- 

lar to the manner in which the unit sphere may be considered a realization of the orthogonal group in the group 

of motions of three-dimensional Euclidean space. Subsequently, Kobayashi [120], apparently independently, 

arrived at a similar idea for the immersion of arbitrary homogeneous spaces in Euclidean spaces. On the 

basis of this idea he obtained immersions of homogeneous spaces isomorphic to the unitary U(n) and spin Sp(n) 

groups and also some other more complicated groups of homogeneity in Euclidean spaces. 

We note also the recent work of Seidel [171] inwhich a method is indicated for constructing immersions 

of elliptic space in Euclidean space if n + 3 points of this immersion are known beforehand. 

Blanusa also considered the question of the immersion of locally Euclidean spaces in spaces of constant 

curvature. He considered [54, 56] the question of the immersion of the plane and the flat cylinder in spherical 

space. This question is of interest, in particular, in connection with the fact that Clifford indicated a t~-o- 

dimensional torus with Euclidean metric (a so-called fiat torus) in the three-dimensional sphere S ~. In [56] 

Blanusa showed that the ~wo-dimensional cylinder with Euclidean metric (the so-called fiat cylinder) can be 

immersed in the four-dimensional sphere. In [54], by investigating in detail the surface of Clifford, he also 

constructed an immersion of the fiat torus in three-dimensional elliptic space. Further, in [62] Blanusa estab- 
lished that the flat cylinder can be immersed in the three-dimensional sphere, while the Klein bottle with 

Euclidean metric can be immersed in four-dimensional Euclidean and hyperbolic spaces. We recall that the 

first immersions of the Klein bottle with a flat metric in four-dimensional Euclidean space were found by 

Tompkins [192]. 

In the next cycle of work Blanusa turned to the construction of immersions of n-dimensional Lobachevskii 

space. In [641 he constructed by very fine analytic methods an immersion of the Lobachevskii plane in E 6 and 

n-dimensional Lobaehevskii space in E Gn-5. This was the first regular imbedding of the Lobaehevskii plane and 

space in a finite-dimensional Euclidean space. Modifying somewhat the method of Blanusa, Rozendorn con- 

strueted an immersion (with self-intersection) of the Lobachevskii plane in E 5 [23]. In [69] Blanusa constructed 

an immersion of the hyperbolic plane and of cylinders with a hyperbolic metric in the eight-dimensional sphere, 
and in [70] he constructed an immersion of n-dimensional Lobachevskii space in the spherical space S 6n-4. 

Finally, in [65] an imbedding of two-dimensional cylinders with a hyperbolic metric in E 7 is constructed. 

We mention also the work of Dolbeault-Lemoire [81] who showed that for n > 2 there does not exist a 

regular immersion of E n in (n + l)-dimensional Lobaehevskii space. 

In [6, 7] Volkov and Vladimirov established that the full Euclidean plane can be immersed in three-di- 
mensional Lobachevsldi space only as a horosphere or an equidistant body. 

Still another cycle of Blanusa's papers is devoted to immersions of the MSbius strip with various met- 

rics. In connection with the formulation of this problem we recall that according to Kuiper's result [125] there 

do not exist convex immersions of an infinite MSbius strip in three-dimensional Euclidean space. We note that 

there do not exist immersions in E 3 of an infinite flat IV~Sbius strip. Blanusa [59] constructed an immersion of 

an infinite MSbius strip with flat metric in E s, and in [60] - in four-dimensional Euclidean space and in four- 

dimensional spherical and hyperbolic spaces. In [67] an immersion of the MSbius strip with hyperbolic metric 

*This work was summarized by Blanusa in the survey [58]. 
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in E i~ was cons t ruc ted ,  and in [69] - in E 8 and in the t en -d imens iona l  sphere .  

In the work  of the Yugoslavian  g e o m e t e r  S. Mincic a number  of r e s u l t s  extending those of Blanusa were  
obtained. I m m e r s i o n s  of the Euc l idean  space  E 2m in S 5m-1 and of E 2m+l in (5m + 2 ) -d imens iona l  e l l ip t ic  space  
we re  cons t ruc ted .  M o r e o v e r ,  an obvious i m m e r s i o n  of the f lat  n -d imens iona l  torus in S 2n-1 was indicated.  

5. I m m e r s i o n s  of Me t r i c s  of Nonposit ive Curva ture .  In 1952 Chern and Kuiper  [76] showed that a c losed  
n -d imens iona l  Riemannian  space  with cu rva tu re  in two d i rec t ions  which is nonposit ive at  al l  points cannot be 
C 4 - i m m e r s e d  in E 2n-1. This r e s u l t  is a natura l  gene ra l i z a t i on  of the r e s u l t  of Tompkins [191] on the nonim- 
m e r s i b i l i t y  of the n -d imens iona l  torus  with f lat  m e t r i c  in E 2n-1 which was mentioned in the previous  sect ion.  
In this work  Chern  and Kuiper  appl ied  the following impor t an t  technique. Let  F be a c losed  su r face  in E 3 lying 
ins ide  some convex su r face  ~p. We d i sp lace  the su r face  4~ until it  is tangent to F. The cu rva tu re  of the su r face  
F at  the point of tangency is not l e s s  than the cu rva tu r e  of the su r face  4. This technique was developed in de -  
ta i l  by Pogore lov  [18] in inves t iga t ing  convex su r f aces  in t h r e e - d i m e n s i o n a l  Euc l idean  space .  Chern  and Kuiper  
showed that  a s i m i l a r  technique of "squeezing" a convex su r face  can  be appl ied a l so  to su r f aces  with cod imen-  
s ion  which is not too l a rge  (up to n -  1), w h i c h m a k e s  i t  poss ib le  to prove the t h e o r e m  mentioned on the non- 
i m m e r s i b i l i t y  of m e t r i c s  of nonposi t ive cu rva tu re .  We note that  the "squeezing"  technique was appl ied by Soko- 
lov [33] to prove the n o n i m m e r s i b i l i t y  of two-d imens iona l ,  posi t ive  defini te  m e t r i c s  of posi t ive  cu rva tu re  in 
t h r e e - d i m e n s i o n a l  p seudo-Euc l idean  space  (see See. 3). 

In the same work  Chern and Kuiper  con jec tu red  that if M is a compact ,  n -d imens iona l  manifold at each 
point of which there  ex is t s  a q - d i m e n s i o n a l  space  along flat  e lements  of which the cu rva tu re  is nonposi t ive,  
then M cannot be embedded in E n+q-1. This was proved by Otsuki in [154, 156, 157]. 

Many va r ious  gene ra l i za t ions  of the r e s u l t s  of Chern,  Kuiper ,  and Otsuki were  subsequent ly  obtained. 
Kuiper  [121] obtained the following re su l t .  Let  U 2 and U 3 be, r e s p e c t i v e l y ,  two- and t h r e e - d i m e n s i o n a l  com-  
pact  mani fo lds ,  whi le  a l l  the sec t iona l  cu rva t u r e s  of the manifold U 3 a r e  negative.  Then the manifold V 5 = U 3 • 
U 2 cannot be i s o m e t r i c a l l y  imbedded  in E 8 and S 7. Tachibana [184] extended the r e s u l t s  of Chern  and Kuiper  to 
i m m e r s i o n s  of spaces  of cons tant  c u r v a t u r e  in nonflat spaces  of cons tan t  cu rva tu re .  H a r t m a n  and Nie renberg  
[103] proved that  if a comple te  d -d imens iona l  manifold M d with f lat  m e t r i c  has an i m m e r s i o n  in E d+l, then M d 
is i s o m e t r i c  e i the r  to E d or  to the cy l inde r  S 1 • E d-1. F u r t h e r  r e s u l t s  in this d i r ec t i on  we re  obtained by H a r t -  
man [101, 102], Takahashi  [186], and Vranceanu [195]. 

O 'Nei l  [150] proved that  if M n is a compac t  n -d imens iona l  manifold and Mm is a comple te ,  m - d i m e n -  
s iona l ,  s imply  connected manifold having sec t iona l  c u r va t u r e s  connected by the inequal i ty  K(M n) _< K(M m) _< 0, 
then M n cannot be i m m e r s e d  in M m for m < 2n. O'Nei l  fu r the r  proved [152] the following resu l t .  Let  M d be a 
comple te  d -d imens iona l  Riemannian  space  with negative sec t iona l  cu rva tu re s  not exceeding  the number  e < 0. 
If M d can be i m m e r s e d  in a (d + D - d i m e n s i o n a l  Lobachevsk i i  space  of cu rva tu re  c, then the i - th  (i _> 2) Cech 
cohomology of the space  M d is equal to ze ro .  St ie l  [180] proved that if M d is a d -d imens iona l  compact  manifold 
with nonposi t ive sec t iona l  c u r v a t u r e s ,  then M d cannot be imbedded  in a (d + k ) -d imens iona l  manifold of con- 
s tunt  nonposi t ive cu rva tu r e  for  k < d. F u r t h e r  r e s u l t s  in this d i r ec t i on  we re  obtained by O'Neil  and Stiel  [153], 
O'Neil  [152], St iel  [178, 179], Maltz [132], F e t u s  [83], and Nomizu [148]. 

We c o n s i d e r ,  f inal ly ,  the work  of Bor i senko  [2] who proved the following a s s e r t i o n s .  Let  F l be a com-  
pact ,  / - d imens iona l  su r f ace  of c l a s s  C 3 in a ( 2 / -  1 ) -d imens iona l  R iemannian  space  R 2/-1. If the outer  sec t iona l  
c u r v a t u r e s  of F l a r e  negat ive,  then the Eu le r  c h a r a c t e r i s t i c  of the su r face  F l is equal to zero .  If F l is  homeo-  
morphic  to the sphe re  and the sec t iona l  cu rva t u r e s  of F l a r e  l e s s  than one, then for l ~ 3 and l ~ 7 i t  is  i m -  
poss ib le  to imbed F l in  R 2/-i. We a l so  note the work  of Moore  [138] who obtained s e v e r a l  r e s u l t s  in this a rea .  

The r e s u l t s  d e s c r i b e d  above r e s t  in final  ana lys i s  on the fact  that imbeddings  of manifolds with non- 
posi t ive  sec t iona l  cu rva tu r e s  sa t i s fy  a c e r t a i n  condi t ion of s a d d l e - s h a p e  type. It is found that i m m e r s i o n s  of 
spaces  with nonnegative sec t iona l  cu rva tu r e s  and not too l a rge  cod imens ion  sa t i s fy  a c e r t a i n  condit ion of con-  
vexi ty  type.  Using this condit ion,  Jacobowitz  [113] proved that  i f  V l is a compac t ,  / -d imens iona l  manifold with 
sec t iona l  c u r v a t u r e s  not exceeding h2, then V 2 cannot be i m m e r s e d  in  E 2l-1 ins ide a bal l  of rad ius  h. With the 
help of these  condit ions of convexity type it is a l so  poss ib le  to prove var ious  theorems  on the convexity of 
h y p e r s u r f a c e s .  There  is a broad l i t e r a t u r e  on this ques t ion  going back to the work  of Hadamard  [101] in 1897 
who proved the convexity of a comple te  su r face  of posi t ive  cu rva tu r e  in t h r e e - d i m e n s i o n a l  Euc l idean  space.  
We mention a lso  the work  of Sacks t ede r  [165] who proved that  if M d is a complete ,  n - d i m e ns i ona l  manifold all  
sec t iona l  cu rva tu r e s  of which a re  nonnegative and at  l e a s t  at  one point at  l e a s t  one sec t iona l  cu rva tu re  is pos i -  
t ive ,  then any cn+ i - imbedd ing  in E n+l is g lobal ly  convex. 
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A n o t h e r  a s p e c t  of the p r o b l e m  of the i m m e r s i o n  of  m e t r i c s  of nonpos i t i ve  c u r v a t u r e  is  r e l a t e d  to the 
q u e s t i o n  of the e x i s t e n c e  in  E 4 of a c o m p a c t  s u r f a c e  of  nega t ive  c u r v a t u r e .  This  q u e s t i o n  was  posed  by C h e r n  
in the r e p o r t  [75]. An  a n s w e r  to this  q u e s t i o n  was  ob ta ined  by R o z e n d o r n  [25] who c o n s t r u c t e d  an  e x a m p l e  of 
such  a s u r f a c e . *  In c o n s t r u c t i n g  this  e x a m p l e  e s s e n t i a l  use  is  made  of an  e x a m p l e  c o n s t r u c t e d  by R o z e n d o r n  
in  th is  s a m e  w o r k  of a s u r f a c e  bounded above  of nega t ive  c u r v a t u r e  in  E 3 w h i c h  is  r e g u l a r  e v e r y w h e r e  e x c e p t  
a t  a f in i te  n u m b e r  of po in t s .  We  m e n t i o n  a l s o  the w o r k  of R o z e n d o r n  [24] i n w h i c h  an e x a m p l e  is  c o n s t r u c t e d  
of a bounded ,  c o m p l e t e  s u r f a c e  of  nonpos i t i ve  c u r v a t u r e  in E 3. 

6. On the I m m e r s i o n  of n - D i m e n s i o n a l  Spaces  in E n(n+l)/2. We have a l r e a d y  o b s e r v e d  that  the " n a t u r a l "  
d i m e n s i o n  of the enve lop ing  s p a c e  for  w h i c h  the n u m b e r  of S c h l a e f l i  equa t ions  c o i n c i d e s  w i t h  the n u m b e r  of 
unknown func t ions  in  t h e s e  equa t ions  i s  s n = n(n + 1 ) / 2 .  R o k h l i n  and o t h e r s  [30] showed  tha t  in  a c e r t a i n  s e n s e  
only an  e v e r y w h e r e  nondense  s e t  of n - d i m e n s i o n a l  m e t r i c s  can  be i m m e r s e d  in E sn-1.  H o w e v e r ,  a t  p r e s e n t  not  
a s i ng l e  s p e c i f i c  e x a m p l e  of a m e t r i c  w h i c h  canno t  be i m m e r s e d  in  E sn-~ is known. T h e r e  is  no q u e s t i o n  tha t  
the  c o n s t r u c t i o n  of such  an e x a m p l e  would  b e  of c o n s i d e r a b l e  i n t e r e s t .  I t  i s  a l s o  not  c l e a r s  w h e t h e r  a l l  n - d i -  
m e n s i o n a l  spaces (including nonanalytic) can at least be locally immersed in ESn. There are only several 
results on the impossibility of immersing two-dimensional metrics in three-dimensional space, hl addition 
to the classical results of Hilbert and Efimov on the nonimmersibility of complete metrics of negative cur- 

vature, we mention the following work. 

Poznyak [20] constructed examples of metrics on the sphere and in the disk which have no C2-immer - 

sions globally in E 3. Other examples of this type were constructed by Rokhlin and others [30] and by Greene 
[93]. Pogorelov [19] constructed an example of a t~vo-dimensional Riemamuian metric of class C 2,~ which does 
not admit a local immersion of class C 2 in E 3. At present it seems likely that there actually are regular two- 

dimensional metrics which have no regular local immersions in three-dimensional space. However, this major 
question can be completely resolved only after constructing an example of an infinitely differentiable metric 
having no local C~-immersion in E 3. 

7. During the period in question many papers appeared in which the formulation of the local immersion 
problem was discussed and refined and which also considered its relation to other areas of geometry. These 
questions are discussed in [15, 16, 92, 109, 111, 119, 134-136, 166, 176, 182]. 

We also mention the short survey of Friedman of results on the theory of immersions [86] which has 
played a considerable role in acquainting physicists and mathematicians with this problem. 

3. Isometric Immersions of Spaces with Indefinite Metric 

i. Immersions in Pseudo-EuelideanSpaces of Large Dimensions. Riemannian spaces with indefinite 
metrics are of interest mainly in connection with applications in the theory of relativity. The problem of iso- 
metric immersions of such spaces in pseudo-Euclidean spaces is interestir.g both from a purely geometric 
point of view and in connection with certain questions of theoretical physics. Without going into details, we 
note that new approaches to the problem of the symmetry of elementary particles are connected with the pos- 
sibility of special isometric immersions of such spaces of physics. 

After the fundamental work of Nash [141-143] on the theory of immersions the idea naturally arose of 
carrying over his techniques to the pseudo-Riemannian case. 

The method developed by Nash and improved methods (see [30, 77, 96]) carry over without appreciable 
changes to the case of immersions of spaces with indefinite metric in pseudo-Euclidean spaces. The corre- 
sponding results have been obtained in the papers of Clarke [78], Rokhlin et al. [30], Greene [96], and Sokolov 
[32]. The best ratio of the dimensions of the immersed pseudo-Riemam~ian manifold M n(p,q) and enveloping 

m 
space E (p,,q,) is obtained in the work noted above of Rokhlin [30]. It is established that Mn of class C ~ 
be isometrically immersed m" E re(p, ,q') if ~'q) can 

n(n+l) rn>~sn-~3n-}-5, p'~n~-p, q ' ~ n - ] - q ,  s , ~  2 

*The me thod  u sed  by Otsuki  [155] to c o n s t r u c t  such  a s u r f a c e  in  E 4 is  s u i t a b l e  only for  the c a s e  in  w h i c h  the 
c u r v a t u r e  is  nonpos i t i ve .  
YvVe r e c a l l  tha t  in  the  t h e o r e m s  of J a n e t ,  B u r s t i n ,  and C a f t a n  (see  Sec .  1) on l o c a l  i m m e r s i o n  only  the c a s e  of  
a n a l y t i c  m e t r i c s  is  c o n s i d e r e d ,  and they g ive  no i n f o r m a t i o n  on i m m e r s i o n s  of  m e t r i c s  of c l a s s  C a .  
S R i e m a n n i a n  s p a c e s  w i t h  inde f in i t e  m e t r i c  (a p s e u d o - R i e m a n n i a n  manifo ld)  a r e  c h a r a c t e r i z e d  by the fac t  that  a t  
any  poin t  the l ine  e l e m e n t  ds ~ c a n  be b rough t  to the f o r m  ds 2 = dx I2 + . . . + dxP 2 - dyl  2 - . . .  - dyq 2. The num-  
b e r s  p and q a r e  m o r e o v e r  the  s a m e  a t  any point .  
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I m m e r s i o n  methods related to specific propert ies  of pseudo-Eucl idean spaces are  proposed in the work 
of Rokhlin et ai. [30] and Sokolov [33]. An interesting fact is that in the general  case  it is possible to indicate a 
par t icular  solution of the immers ion  equations (the Schlaefli equations for the indefinite case) by ra is ing the 

m dimension and special  choice of the space E(p,,q,). For example, in the work of Sokolov [33] an immers ion  of a 

Riemannian or pseudo-Riemalmian metr ic  given in the coordinate ball is sought in a pseudo-Euclidean space 

cnange 
E}q,q) 

The main idea of Sokolov is to reduce the nonlinear immers ion  equations to linear equations by special  
of the unknown functions. Namely, in the Schlaefli equations for indefinite metr ics  and immers ions  in 

q 2q 
~. 0~ 0~ y ,  0~ 0~ (4) 

Ox ~ Oxp " ~ Jx~ g~P i~ I  i~qq-1 Jr 

the following change of the unknown functions is made: 

z i= t i ,  Zq+z=/z~-@ti, i = l  . . . .  ,q. 

Ot~ Oti After  this change the te rms  nonlinear in the derivatives 0 t i /0x  k (this group of terms has the form ~=~'~"~3~xpJOx 

cancel due to the minus in front of the second sum in Eqs. (4). The equations (2) reduce to the following sys -  
tem of equations l inear in ti: 

q (0hi0r or, 0h~ 5 
i=I i=10xI~ OxP" 

If q = n(n + 1) /2 ,  then it is not hard to choose functions h i such that the sys tem (5) has a local solution; m o r e -  
over, it is possible to write out one such solution, and from its explicit form it follows that it gives an im- 
mersion of any ball of the original pseudo-Riemannian space. With the help of certain standard topological 
techniques (see, e.g., [30]) it is possible to generalize this method to construct immersions of any n-dimen- 

2S2n 
sional pseudo-Riemannian spaces in E(sfn,S2n ). 

We note that by means of the methods indicated it is possible to construct C2-isometric immersions of 
Cf-pseudo-Riemannian spaces (the analytic theorems o2 Nash are applicable for smoothness not less than C3). 

2. Immersions of Low Regularity. The method of Nash for constructing C1-immersions admits general- 
ization to the indefinite case. Rokhlin et al. [30] proved the following result: a compact, pseudo-Riemannian 
space M n m (p,q) admits a Ci-immersion in E (p,,q,) for 

P r > P + n ,  q~>q+n ,  m>3n.  

We note that for the indefinite case the Nash method of C l - immers ions  gives somewhat poo re r  resul ts  
than for the definite case.  This is re lated to the following c i rcumstance .  In construct ing immers ions  in a 

m pseudo-Eucl idean space E (p, q,) it is not sufficient to choose a large dimension m while subjecting the num- 

bers  p' and q' only to the obvious necessary  inequalities p' _> p, q' >_ q. Indeed, there is the following resul t  
of Sokolov [33]: Any closed pseudo-Riemannian space M~p,q) cannot be Cl - i somet r ica l ly  immersed  either in 

m m 
E (p,m-p) or E (m-q,q) for any a rb i t ra r i ly  large m [if there existed such an immers ion ,  then on this immers ion  

there would be points at which the tangent plane had signature different f rom (p, q)]. For example, the two- 
m E m dimensional torus with indefinite metr ic  cannot be Cl - i somet r iea l ly  immersed  either in E0 ,m_ 0 or in (m-1,1). 

It is not hard to indicate other res t r ic t ions  of this type. Thus, for example,  for the immers ion  of an n-dimen-  
sional Riemannian space, generally speaking, a pseudo-Euclidean space m p, _ E (p,,q,) with > 2 n -  i is needed. 

E m Indeed, if all Riemannian manifolds could be imbedded in some (2n-2,q'), then the corresponding differential 

manifolds on which the pseudo-Riemannian metrics are given could be topologically immersed in E 2n-2, which 
is, in general, impossible [199]. 

A 4 We note also the following result established by yes [47]. Let M(3,0 be a compact, pseudo-Riemannian 
manifold and suppose that detRij ~ 0 (Rij is the iRicci tensor). Then M~3,1 ) cannot be isometrically immersed 
in any five-dimensional pseudo-Euclidean space. The proof uses the connection of the topological structure of 
the manifold with the curvature. 

3. Local Isometric Immersions. Friedman [85] verified that the Janet-Burstin method of proving the 
existence of a local immersion carries over without appreciable changes to the indefinite case. Namely, each 
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n(n ,-}-I) 
n 

analytic pseudo-Riemannian space M(p;q) has a local isometric immersion as an analytic surface in E 2 (p'; q ' ) ,  

p' >_ p, q' _>q. 

Vogel [194] and Lense [129] generalized the Janet-Burstin method to the immersions of a space with 

degenerate metric, j Lense also considered immersions in complex Euclidean spaces. 

4. Immersions of Riemannian and Pseudo-Riemannian Metrics in Three-Dimensional Pseudo-Euclidean 
Space; Some Questions of the Theory of Surfaces in Three-Dimensional Pseudo-Euclidean Space. The sys- 
tematie study of the question of global immersion in three-dimensional pseudo-Euclidean spaee and of surfaces 
in this spaee has begun only very recently, and many important questions have so far not been investigated. 

3 We shall consider a surface in the pseudo-Euclidean space E (2;0 with metric ds 2 = dx 2 + dy 2 - dz 2. All the re- 
3 

suits admit reformulation for the other three-dimensional pseudo-Euclidean space E (I;2). 

A difference of pseudo-Euclidean space from Euclidean space which is important in the theory of immer- 
sions is that it contains planes with different metrics (definite, indefinite, and degenerate). Moreover, a dif- 
ferent relation between the sign of the curvature and convexity of the space is observed in E}2;I ) as eompared 

E3: Convex surfaces in E~t;2 ) have a metric of nonpositive curvatures while saddle surfaces have with the space 

a metric of nonnegative curvature (we recall that in E 3 convex surfaces have a metric of nonnegative curvature, 

while saddle surfaces have a metric of nonpositive curvature). In order to see this, we consider together with 
3 

the space E(2;I ) with the metric ds 2 = cLx 2 + dy 2 - dz 2 the so-called superposed Euclidean space E 3 with metric 

ds 2 = dx 2 + dy 2 + dz 2. Let K and A (K* and A*) be, respectively, the discriminant and curvature of the first 
3 

quadratic form induced on the surface 4) by the metric of the space E (2;0 (by the metric of the superposed space 

E3). There is then the relation 

t(h2 _}_ 7(, (A,)2 =0 ,  (6) 

Formula  (6) easi ly implies the connection formulated above between the convexity of the surface and the sign 
of its curvature ,  

It is convenient to i l lustrate this connection of convexity and the sign of the curvature  by the example of 
the sphere in the space E~2;0. This sphere is given by the equation 

I x 2 . g 2 - - z 2 I = l .  

It has three connected components L+, L_, L. t$  The surfaces  L+, L_ are  complete in the sense of the inner 
definite metr ic  of the surface of constant  negative curvature;  they constitute an imbedding of the complete 
Lobachevskii  plane in E~2;1 ) . .  The surfaces  L+ and L_ are  convex. The surface  L is a surface  of constant posi-  
tive curvature  and indefinite metr ic .  In the general  theory of relat ivi ty the metr ic  of the surface L induced by 

c the metr ie  o~ E(2;1 ) is usually called the two-dimensional  de Sitter s p a c e - t i m e  model. We note that the surface 
L is a saddle surface.  

Convex surfaces  with definite metr ic  in E}2;1 ) _  are  just as "natural" a c lass  of surfaces  as convex s u r -  

faces in Euclidean space. We shall present  some resul ts  concerning such surfaces .  Under specific assump-  
3 tions of teehnical cha rac te r  Sokolov [34] proved the following uniqueness theorem for a surface �9 in E (2;1)which 

is complete in the sense of the inner definite metr ic :  If the l imit cone of the surface ~; is separated f rom the 
isotropie cone, then the surface r is uniquely determined by the met r ic ,  the orientation, the l imit cone, and 
the limit genera tor ,  i .e. ,  by the same elements as a complete convex surface with curvature  less than 27r in 
E 3 (the theorem of Pogorelov [18]). The situation for surfaces  with isotropic  l imit cone is more complicated. 
To uniquely determine such su r faces ,  in addition to the elements enumerated,  it is necessa ry  to also fix some 
ruled surface which approximates the surface 4, at infinity more  precise ly  than the limit cone. In another work 
of Sokolov [85] it is proved that the s t ruc ture  of the l imit  cone of a surface @ is closely related to the p rope r -  
ties of its metr ic .  Thus, if the curvature  of the surface * is separated f rom ze ro  and the limit cone has a 
smooth di rec t r ix ,  then it necessar i ly  coincides with the isotropic cone. It is proved that if a smooth convex 

3 surface in E(2;0 has a regular  definite metr ic  of s t r ic t ly  negative curvature ,  then the surface i tself  is regular .  

tA space with degenerate metric is characterized by the fact that at any point the line element ds 2 can be re- 

duced to the form ds 2 = dx~ + . . . + dXp 2, where p is less than the dimension of the space. 
3 

SThe concept of convexity in E (2;0 is analogous to that in E 3. 

ttIt is easy to see that in the superposed space E 3 L+ and L_ are two sheets of the two-sheeted hyperboloid 

x 2 + y2 _ z 2 = _ I, while L is the single-sheeted hyperboloid x 2 + y2 _ z 2 = I. 
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The p r o o f  of th is  t h e o r e m  is b a s e d  on the fo l lowing a s s e r t i o n  wh ich  is of i ndependen t  i n t e r e s t :  Any su f f i c i en t l y  
s m a l l  ne ighborhood  of a t w o - d i m e n s i o n a l  de f in i t e  m e t r i c  of s t r i c t l y  nega t ive  c u r v a t u r e  c a n  be r e a l i z e d  in  E}2;1 ) 
a s  a convex  cap .  The  s tudy  of s u r f a c e s  r e l a t i v e  to the s u p e r p o s e d  s p a c e  and f o r m u l a  (6) r e l a t i n g  the c u r v a -  
t u r e s  in  the o r i g i n a l  and s u p e r p o s e d  s p a c e s  a r e  w i d e l y  u sed  in p roo f  of the a s s e r t i o n s  f o r m u l a t e d  above  a long  
wi th  o t h e r  m e t h o d s .  W i t h  the he lp  of this  f o r m u l a  i t  is  p o s s i b l e  to make  use  in  a n u m b e r  of c a s e s  of the c l a s -  
s i c a l  r e s u l t s  of  the t h e o r y  of convex  s u r f a c e s  in  E ~. 

We s h a l l  c o n s i d e r  the w o r k  of Rudyak  [31]. The Bonnet  t h e o r e m  that  a s u r f a c e  in  E 3 is  uniquely  d e t e r -  
m i n e d  by i ts  f i r s t  and s e c o n d  q u a d r a t i c  f o r m s  is w e l l  known. F o r  those  s u r f a c e s  in E}2;1 ) wh ich  have def in i t e  
o r  inde f in i t e  m e t r i c  i t  is  not h a r d  to p rove  tha t  they a r e  a l s o  un ique ly  d e t e r m i n e d  by t h e i r  f i r s t  and s econd  

3 q u a d r a t i c  f o r m s .  H o w e v e r ,  a t  those  poin ts  of  a s u r f a c e  in E (2;1) a t  w h i c h  the tangent  p lane  is a l s o  tangent  
to  the i s o t r o p i c  cone a d e g e n e r a t i o n  of the m e t r i c ,  i . e . ,  of the f i r s t  q u a d r a t i c  f o r m ,  o c c u r s ,  whi le  the s econd  
f o r m  is  not de f ined  a t  a l l .  Rudyak  e s t a b l i s h e d  that  unde r  c e r t a i n  cond i t ions  on the s e t  of po in ts  of d e g e n e r a c y  
a s u r f a c e  is  un ique ly  d e t e r m i n e d  by the s e c o n d  q u a d r a t i c  f o r m  def ined  e v e r y w h e r e  e x c e p t  a t  poin ts  of d e -  
g e n e r a c y  and by the f i r s t  q u a d r a t i c  f o r m  of the s u r f a c e .  The  b a s i s  fo r  this  p roo f  was  an  i n t e r e s t i n g  l e m m a  
on the m a x i m u m  p r i n c i p l e  fo r  s u r f a c e s  wi th  d e g e n e r a t e  m e t r i c .  

The q u e s t i o n  of w h e t h e r  i t  is  p o s s i b l e  to ob ta in  a g e n e r a l i z a t i o n  of  the Bonnet  t h e o r e m  to s u r f a c e s  in  
E}2;1 ) w i th  d o m a i n  of  d e g e n e r a c y  of a r b i t r a r y  type has  s o  f a r  not been  so lved .  One of the a p p r o a c h e s  c a n  be 
c o n n e c t e d  wi th  the i n v e s t i g a t i o n  of a c e r t a i n  ana logue  of the s e c o n d  q u a d r a t i c  f o r m ,  n a m e l y ,  the f o r m  t! r e -  
l a t e d  to l! by the f o r m u l a  

i n w h i c h / ~ = ~ $ - - F  2 is  the d e t e r m i n a n t  of the f i r s t  q u a d r a t i c  f o r m .  The f o r m  [I is def ined  a l s o  at  points  of 
d e g e n e r a c y  and p r e c i s e l y  c o i n c i d e s  wi th  the c o r r e s p o n d i n g  quan t i t y  for  the s u p e r p o s e d  s p a c e .  

F o r  s u r f a c e s  in  E}2;1 ) i t  is  a l s o  p o s s i b l e  to p r o v e  a n u m b e r  of t h e o r e m s  on n o n i m m e r s i b i l i t y  s i m i l a r  to 
the t h e o r e m s  on the n o n i m m e r s i b i l i t y  of  m e t r i c s  of nega t ive  c u r v a t u r e  in  E u c l i d e a n  s p a c e .  H o w e v e r ,  in the 
p r e s e n t  c a s e  they c a n  be p r o v e d  by much  s i m p l e r  me thods  a p p r o p r i a t e  to p s e u d o - E u c l i d e a n  s p a c e s .  

B e f o r e  p r o c e e d i n g  to t h e s e  t h e o r e m s ,  we note that  for  p s e u d o - R i e m a n n i a n  s p a c e s  and c o r r e s p o n d i n g l y  
fo r  s u r f a c e s  in p s e u d o - E u c l i d e a n  s p a c e s  a n u m b e r  of i n e q u i v a l e n t  de f in i t i ons  of c o m p l e t e n e s s  have been  p r o -  
p o s e d ,  and in  the de f in i t e  c a s e  ana logous  de f in i t i ons  a r e  found e qu iva l e n t  to the u s u a l  c o n c e p t  of c o m p l e t e n e s s .  
V a r i o u s  c o n c e p t s  of c o m p l e t e n e s s  a r e  u sed  depend ing  on the con ten t  of the p r o b l e m  to be s o l v e d  (for m o r e  
d e t a i l s ,  s e e  the s u r v e y  of G e r o e h  [93]). In  th is  s u r v e y  we s h a l l  use  the c o n c e p t s  of g e o d e s i c  and ou te r  c o m -  
p l e t e n e s s .  A p s e u d o - R i e m a n n i a n  s p a c e  is c a l l e d  g e o d e s i c a l l y  c o m p l e t e  if  on each  of i t s  g e o d e s i c s  the g e o d e s i c  
p a r a m e t e r  v a r i e s  f r o m - o o  to + ~ (he re ,  of c o u r s e ,  on s e g m e n t s  of a g e o d e s i c  the g e o d e s i c  p a r a m e t e r  may  
v a r y  w i t h i n  f in i te  l i m i t s ) .  The concep t  of g e o d e s i c  c o m p l e t e n e s s  was  i n t r o d u c e d  by Hopf  and Rinow [107]. A 
s u r f a c e  c n  of a p s e u d o - E u c l i d e a n  s p a c e  E m is  c a l l e d  o u t e r  c o m p l e t e  if any l i m i t  point  of the s u r f a c e  Cn b e -  

(P;q) 
longs  to th is  s u r f a c e .  If  �9 is  a t w o - d i m e n s i o n a l  s u r f a c e  w i th  pos i t i ve  de f in i t e  m e t r i c  in  E}2;1), then  the concep t  
of c o m p l e t e n e s s  as  a R i e m a n n i a n  s p a c e  ( inner  c o m p l e t e n e s s )  and o u t e r  c o m p l e t e n e s s  i s  me a n ing fu l  f o r  
it. I t  i s  found tha t  in th is  c a s e  i n n e r  c o m p l e t e n e s s  i m p l i e s  o u t e r  c o m p l e t e n e s s ,  but not  c o n v e r s e l y  (a c o u n t e r -  
e x a m p l e  was  g i v e n  by Z e l ' m a n o v  [8]). We r e c a l l  that  for  s u r f a c e s  in E 3 o u t e r  c o m p l e t e n e s s  i m p l i e s  i n n e r  c o m -  
p l e t e n e s s ,  but  not c o n v e r s e l y  (see  A l e k s a n d r o v  [1]). 

I t  is  obvious  that  a c o m p l e t e  s p a c e  in the s e n s e  of an  i n n e r  de f in i t e  m e t r i c  wi th  p o s i t i v e  c u r v a t u r e  s e p a -  
e 3 r a t e d  f r o m  z e r o  canno t  be i m m  r s e d  in  E (2;1). I ndeed ,  such  a s p a c e  is  h o m e o m o r p h i c  to the s p h e r e  and as  a 

1 3 c l o s e d  man i fo ld  has  not even  a C r e a l i z a t i o n  in E(2;1 ) (see Sec .  2). p r o b a b l e  that  a s p a c e  wi th  def in i t e  m e t r i c  
and c u r v a t u r e  s e p a r a t e d  f r o m  z e r o  has  no o u t e r  c o m p l e t e  r e a l i z a t i o n s  in  E}2;1 ) e i t h e r ,  but this  has  not been  
p roved .  

F o r  s p a c e s  w i th  inde f in i t e  m e t r i c  the fo l lowing  r e s u l t  is  known (Sokolov [35]). On a n  o u t e r  c o m p l e t e  C 2 
s u r f a c e  w i th  indef in i t e  m e t r i c  in E~2;1 } the s u p r e m u m  of the G a u s s i a n  c u r v a t u r e  is  nonnega t ive .  In o t h e r  w o r d s ,  
a p s e u d o - R i e m a n n i a n  s p a c e  of c u r v a t u r e  K -< - a  2 < 0 canno t  be i m m e r s e d  in  E}2;1 ) a s  an  o u t e r  c o m p l e t e  s u r f a c e .  

The s c h e m e  for  p rov ing  this  a s s e r t i o n  is a s  fo l lows .  I t  is  shown that  if r is  an  o u t e r  c o m p l e t e  s u r f a c e  
w i th  inde f in i t e  m e t r i c  and c u r v a t u r e  K -< - a  2 < 0, then  i t  c o n s t i t u t e s  a g l o b a l l y  s t r i c t l y  convex ,  c o m p l e t e  s u r -  
face .  I t  is  f u r t h e r  found tha t  the to ta l  c u r v a t u r e  of such  a s p a c e  c o m p u t e d  r e l a t i v e  to the s u p e r p o s e d  s p a c e  
m u s t  be in f in i t e  and in  any c a s e  e x c e e d s  4~r, which  cannot  be ,  as  is  w e l l  known. 

We r e m a r k  tha t  i t  is  not c l e a r  if  t h e r e  e x i s t  in E}2;1 ) g e o d e s i c a l l y  c o m p l e t e  s u r f a c e s  wi th  indef in i te  m e t -  
r i c  and c u r v a t u r e  K - - a  2 < 0; the e x i s t e n c e  of such  s u r f a c e s  is  i m p r o b a b l e .  
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We note also the work of Maeda and Otsuki [131] and Hou Cheng-Shi [108] who obtained cer ta in  genera l -  
izations of the resul ts  of Chern and Kuiper [76] and Otsuki [154] (see Sec. 2) to the case  of immers ions  in 
pseudo-Eucl idean spaces.  Some resul ts  on immers ions  in the space E)1;3 ) were obtained by hlihaileanu [134]. 

5. There a re  a number of general  resul ts  on the problem of the c lass  of pseudo-Riemannian spaces.  
Some general  c r i t e r i a  of class s imi lar  to those of Yanenko are  obtained in the work  of Matsumoto [132]. A 
number of important  resul ts  on determining pseudo-Riemannian spaces with immers ions  of f i rs t  and second 
class  are obtained by Yakupov [39-41]. In par t icular ,  he determined all Einstein spaces with an immers ion  of 
f i rs t  c lass  and found a number of interest ing families of Einstein spaces with an immers ion  of second class .  
(We recal l  that an Einstein space is a Riemannian or pseudo-Riemannian space for which the Ricci tensor 
sat isf ies  the identity Rij = ~'~gij, ~'~ = const.) Some resul ts  on the c lass i f icat ion of Einstein spaces with i m m e r -  
sions of f i rs t  and second class  are contained also in the work of Kachurina [10] and Lapkovskii [11]. Kachurina 
proved that any Einstein space with an immers ion  of f i rs t  class is either a space of constant curvature  or is 
symmet r i c  in a cer ta in  general ized sense.  

The work of Rund [164] is devoted to clar ifying the outer condition to which the condition Rij = ~gij co r -  
responds under immers ion ,  i.e., the condition that the space be an Einstein space. 

A number of works are  devoted to the question of how immers ions  of lower class  are  related to part icular  
features of the s t ruc ture  of the Rieci tensor.  Certain physical assumptions regarding the propert ies  of s p a c e -  
time with a mathematicaI  formalizat ion which constitutes the pseudo-Riemannian space in question frequently 
emerge  as such conditions. Thus, empty spaces ,  i.e., having zero  Ricci  tensor ,  of class II a re  considered in 
the work of CoHinson [79]. Lancas ter  [126] found conformally Euclidean spaces with immers ions  of f i rs t  class.  
Eguchi [82] found c r i t e r i a  that a space of GSdel type be a space of f i rs t  class.  PIebanskii  [158] investigated 
the problem of class  for stat ic,  spher ical ly  symmet r i c  models of s p a c e - t i m e .  

In the papers cited in this sect ion it is a question of local analytic immers ions  of analytic metr ics .  

A number of interest ing results  on the theory of immers ions  of spaces with indefinite met r ic  are  related 
to physical investigations in the general  theory of relativity.  These papers wi[1 be discussed in the c~ext sec -  
tion. 

4.  A p p l i c a t i o n s  o f  t h e  T h e o r y  of  I m m e r s i o n s  i n  t h e  

G e n e r a l  T h e o r y  o f  R e l a t i v i t y  

Prac t ica l ly  since the very creat ion of the general  theory of relativity physicists  have been interested in 
the question of whether it is possible to use a representa t ion  of s p a c e - t i m e  not as an abs t rac t  manifold but 
ra ther  as a surface in some pseudo-Euclidean space to clar i fy cer ta in  difficulties of the theory and also for 
its further  development. In this connection we mention the s ta tements  of Einste in  on the prospects  for using 
the theory of immers ions  in the theory of relat ivi ty [160]. Although at present  these works have not gone 
beyond the f ramework  of separa te ,  episodic investigations,  in this a rea  a ra ther  large volume of mater ia l  has 
accumulated which is of both physical and geometr ic  interest .  

The following idea unifies all the work on the use of the theory of immers ions  in the general  theory of 
relativity.* In passing f rom the special  to the general  theory of relat ivi ty in place of "privileged" Car tes ian  
(inertial) coordinate sys tems  in pseudo-Eucl idean space a rb i t r a ry  curvi l inear  coordinate sys tems in curved 
pseudo-RiemanpXan space are  used. It is found, however,  that in many concrete  questions it is very difficult 
to get by without some distinguished Car tes ian  coordinate sys tem.  In principle,  it is possible to at tempt to 
combine the curvature  of s p a c e - t i m e  and the use of Car tes ian  coordinates by using as the lat ter  the Car tes ian  
coordinates of an enveloping space.  Naturally, these coordinates are  already not independent but are related 
by the immers ion  equations. Moreover ,  it is possible to attempt to use the outer geometr ic  propert ies  of such 
muItidimensional surfaces  for the geometr iza t ion  of various physical  quantities (e.g., isotopic spin) which in 
the general  theory of relat ivi ty have no geometr ic  interpretat ion.  The organizat ion in Dallas (U. S.A.) in 1965 
of a special  seminar  on the theory of immers ions  in the general  theory of relativity under the supervis ion of 
Robinson, Ne'ernan, and Fr iedman [172] bears  witness to the popularity of such approaches.  We note also the 
work  of Goedecke [94], Goenner [95], and Szekeres  [183] inwhieh general  questions of using the theory of im-  
mersions  in the general  theory of relat ivi ty are  discussed.  In a number of purely mathematical  works (e.g., 
Clarke [78], Greene [96], and Sokolov [321) it is emphasized that the interes t  in the theory of immers ions  was 
st imulated by physical applications. 

*It is here not our task to analyze the problematics  of the foundations of the theory of general  relativity;  there-  
fore,  in a number of cases the physical argumentat ion is somewhat simplified. 
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The extent to which the theory of immers ions  is used in these papers is different. For  example, in the 
work  of Maldybaeva [14] the theory of immers ions  remains  a convenient tool which is altogether dispensable. 
More substantial use of the theory of immers ions  is made in other papers. 

We shall f i rs t  consider  the applications of the theory of immers ions  to the problem of the quantization 
of the general  theory of relativity.  Without going into a detailed analysis  of all the difficulties encountered in 
solving quantization problems,  we note that there is a ra ther  consistent  and extensively developed quantum 
theory within the f ramework  of the special  theory of relat ivi ty (so-called relat ivis t ic  quantum theory). Gener-  
al ization of this theory with respec t  to dimension causes no difficulties in principle. However, it is not c lear  
what the general izat ion of this theory to the curved spaces of the general  theory of relativity should be. It is 
supposed that within the f ramework  of this hypothetical theory s p a c e - t i m e  itself must be considered in some 
"quantized," s tat is t ical  sense.  It is possible to imagine severa l  ways of construct ing such a theory. One such 
way is related to the theory of immers ions  and apparently goes back to the work of Joseph [115]. In this work 
it is supposed that the c lass ica l  s p a c e - t i m e  of the general  theory of relat ivi ty is real ly  a multidimensional 
surface in some pseudo-Eucl idean space of a higher number of dimensions.  Par t ic les  adhere to this space by 
a cer ta in  potential U which allows the part icles to leave the surface a distance of an order  of magnitude not 
exceeding 1~ (for s implici ty we imagine this to be a 6-type potential). Fur ther ,  the quantization procedure is 
declared to coincide with the quantization procedure in the enveloping pseudo-Eucl idean space accounting with 
the effect of the potential U which descr ibes  the immers ion  functions. The introduction of so-cal led  second 
quantization in which the potential U must have a s ta t is t ical ,  "quantized" cha rac te r  would mean the quantiza-  
tion of s p a c e - t i m e .  

The (independent) work of Ne 'eman [146] complements  the idea of Joseph. In this work it is emphasized 
that a number of s y m m e t r y  groups of physical quantities are  known which are  isomorphic to the orthogonal 
groups of various Euclidean and pseudo-Eucl idean spaces ,  but these groups have no interpretat ions in terms of 
the Poincare  group (the group of motions of s p a c e - t i m e  of the special  theory of relativity). These groups are  
usually interpreted as rotat ion groups of cer ta in  auxiliary spaces .  An example of such symmet r ies  is isotopic 
invariance which consis ts  in the indistinguishability of the proton and neutron for nuclear forces.  As a conse-  
quence of this, f rom the point of view of the theory of s t rong interactions the proton and neutron constitute a 
single particle - the n u c l e o n -  in two states charac te r i zed  by different values of the so-cal led  isotopic spin. 
Isot ropic  spin, just  as ordinary spin, is connected with a cer ta in  group isomorphic to the group of rotations 
of some "auxil iary" space. Ne 'eman proposed interpret ing this and other s y m m e t r y  groups as subgroups of the 
group of motions of the orthogonal complement  to immersed  s p a c e - t i m e .  

It is significant that the symmetries, as a rule, are violated. For isotopic spin symmetry violation 

means the following. Although the strong (nuclear) interactions of the proton and neutron are the same, their 

considerably weaker electromagnetic interactions are distinct; this is treated as a removal of the degeneracy 

for different values of isotopic spin in the electromagnetic field. From the point of view of the theory of im- 

mersions symmetry violation means that these symmetries of the orthogonal complement are local, i.e., they 

are approximately satisfied only at distances much less than the radii of curvature of the surface in those di- 

rections in which rotat ion occurs .  In this connection it is important  to emphasize the following. F rom the uni- 
versa l  constants of quantum theory and the theory of relat ivi ty it is possible to construct  quantities with the 
dimensions of length and mass which are called, respect ively ,  the Planck length /P1 and the Planek mass raP1. 
According to cu r ren t  ideas, it would be natural to consider  these charac te r i s t i c  quantities as the cha rac te r -  
istic length and mass of the e lementary part icles.  It is actually found, however,  that the Planck length is many 
orders  of magnitude less than the charac te r i s t i c  dimensions of the e lementary  par t ic les ,  while the Planck 
mass is many orders  of magnitude g rea te r  than the charac te r i s t i c  mass of the e lementary  part icles (the dif- 
ferences  are  so great  that as compared with them the differences in masses  among the various part icles ,  for 
example,  between the proton and electron,  are  insignificant). It is present ly not c lear  how this large factor 
should theoret ical ly be obtained. However,  it follows f rom the results  of Nash [142] that the immers ion  of 
s p a c e - t i m e  can be chosen such that in a cer ta in  sense the average rat io of the grea tes t  and smal les t  value of 
the radii  of curvature  at a given point be an a rb i t ra r i ly  large prescr ibed  number. It is possible in principle 
to attempt to relate this additional pa ramete r  which ar i ses  naturally in the theory of immers ions  to the large 
ra t io  of the Planck mass and the mass of the e lementary part icles.  

The idea of Ne 'eman was developed in the work  of Ne 'eman and Rosen [147]. They attempted to deter -  
mine precise ly  the dimension and signature of the enveloping space and to concre te ly  in terpre t  the s y m m e -  
tr ies known at that time. However, the insufficient development in 1965 both of the theory of immers ions  and 
of the theory of symmet r i e s  did not allow them to ar r ive  at conclusions which were sufficiently specific and 
which admitted experimental  verification. Moreover ,  it was proposed to take as the enveloping space that 
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pseudo-Euclidean space which for minimal dimension admits the realization of all (or at least practically all) 
space-t imes of the general theory of relativity. Since at that time geometry gave a very excessive estimate 
for this dimension (~I00) as compared with the expected dimensions of the order of s 4 - 10 (the estimate cur- 
rently available s 4 + 3 x 4 + 5 = 27 is also probably very excessive), Rosen [161] attempted to find a lower 
bound for the desired dimension by investigating immersions of various metrics of the general theory of rela-  
tivity. He constructed immersions of several dozen classes of metrics. In this connection Rosen [162] and 
Ianus [110] inves t iga ted  in more  deta i l  m e t r i c s  which d e s c r i b e  i so la ted  s p h e r i c a l l y  s y m m e t r i c  bodies .  The 
ques t ion  of the i m m e r s i o n  of the Sehwarzseh i ld  and c e r t a i n  s i m i l a r  m e t r i c s  was fu r the r  inves t iga ted  in deta i l  
by Fuj i tani .  Fo r  s p a c e - t i m e  models  with a magnet ic  field a number  of i m m e r s i o n s  we re  found by Navez [145] 
and Samaranda  and Navez [175]. 

Other r e su l t s  in this d i r ec t ion  were  obtained by Takeno [187J and Ki t amura  [117, 118]. 

It shouId be ment ioned,  by the way,  that  s ince  m e t r i c s  have been inves t iga ted  which posses s  r e l a t i ve ly  
high s y m m e t r y ,  for  al l  m e t r i c s  cons idered ,  i m m e r s i o n s  have been found in spaces  of low d imens ion  (<10). No 
in t e r e s t i ng  lower  bounds on the d e s i r e d  su r f ace  have thus been found. On the other hand, there  a r e  a number 
of r e s u l t s  in these papers  on spaces  of c l a s s  g r e a t e r  than II. 

We shal l  mention another  c lose ly  r e l a t e d  group of works .  In seeking  new solut ions  of the E ins t e in  equa- 
t ions ,  to d i s t inguish  a spec i f ic  so lu t ion  one does not, as a ru le ,  r e s o r t  to the impos i t ion  of boundary conditions 
but r a t h e r  imposes  on the d e s i r e d  space  some condit ions of s y m m e t r y  type. The ex is tence  of an i m m e r s i o n  in 
some pseudo-Euc l idean  space  of fixed d imens ion  const i tu tes  such condit ions in a number  of papers .  One of the 
mos t  impor t an t  solut ions of the E ins t e in  equations - the Kasner  solut ion [116] - was found in this way. The 
work  of Kasner  was a l so  one of the f i r s t  to apply the theory of i m m e r s i o n s  in the gene ra l  theory of r e l a t iv i ty .  
Other work  in the same  d i r ec t ion  a r e  the papers  of Takeno [188] and Stephanl [177]. 

In the papers  cons ide red ,  curved  s p a c e - t i m e  is cons ide red  as a c e r t a i n  f lat ,  mul t id imens iona l  space  with 
given connect ions ( i m m e r s i o n  equations).  It is found that a s i m i l a r  s i tua t ion  s o m e t i m e s  a r i s e s  in the theory 
of mechanics .  The p rob lem of cons t ruc t ing  a p a r t i c u i a r  c l a s s  of motions can be i n t e r p r e t e d  as the ques t ion  
of the s t r u c t u r e  of su i tab ly  curved conf igura t ion  space  (8ynge [181]). In o r d e r  to define connect ions providing 
the n e c e s s a r y  me t r i c  i t  is s o m e t i m e s  convenient  to f i r s t  cons t ruc t  an i m m e r s i o n  of the given me t r i c  by means 
of which the connect ions a r e  cons t ruc ted  in some s t andard  fashion.  

Another  a r e a  of app l ica t ion  of the theory of i m m e r s i o n s  in the gene ra l  theory  of r e l a t i v i t y  concerns  
quest ions r e l a t ed  to comple te  pseudo-Riemann ian  spaces .  As we have a l r e a d y  noted, in the theory of pseudo-  
Riemannian  spaces  there  is no genera l  concept  of c o m p l e t e n e s s ,  and for each group of p rob lems  it is n e c e s -  
s a r y  to develop an app rop r i a t e  concept  of comple teness .  

The ques t ion  of comple t eness  of solut ions  in the gene ra l  theory  of r e l a t i v i t y  has two aspec t s .  F i r s t  of 
a l l ,  f requent ly  in solving the E i n s t e i n  equations we obtain a m e t r i c  which only d e s c r i b e s  ma t t e r  and the g r a v i -  
ta t ional  f ield in r e s t r i c t e d  s p a c e - t i m e  s ca l e s .  In other  words ,  the pseudo-Riemann ian  space  M obtained i s  a 
p rope r  subse t  of the d e s i r e d  pseudo-Riemann ian  space  N. It is a s s um e d  that the space  N i t s e l f  cannot be 
r e p r e s e n t e d  as a p rope r  subse t  of any fou r -d imens iona l  p seudo-Riemann ian  space  (it is sa id  to be nonextend- 
able).  Since analy t ic  p seudo-Riemann ian  spaces  a r e  usual ly  cons ide red ,  the p rocedure  for cons t ruc t ing  tl:,e 
space  N on the bas i s  of the known space  M is ca l led  analyt ic  ex tens ion  of the space  M, and N i t s e l f  is ca l led  
a max imal  analy t ic  ex tens ion  [90]. At p r e sen t  there  ex i s t  no suff ic ient ly  effect ive methods of cons t ruc t ing  a 
maximal  analy t ic  extension.  F r o n s d a l  [87] sugges ted  in place of the analyt ic  ex tens ion  of the p s e u d o - R i e -  
mannian manifold M to r e a l i z e  an analyt ic  ex tens ion  of i ts  i m m e r s i o n  in p seudo-Euc l idean  space ,  which is  often 
much s i m p l e r  (the concept  of the ana ly t ic  ex tens ion  of a su r f ace  is analogous to that of the analy t ic  extens ion 
of an a b s t r a c t  space) .  In the work  of F r o n s d a l  one of the f i r s t  ana ly t ic  extens ions  of the 8chwarzseh i ld  me t r i c  
was found. Other examples  of extensions  of solut ions  to the E ins t e in  equations by the method of i m m e r s i o n s  
w e r e  obtained by PtazowsM [159]. A bas ic  sho r t coming  of F r o n s d a l ' s  technique is that the max ima l  analyt ic  
ex tens ion  of the i m m e r s i o n  obtained by means of it  is not n e c e s s a r i l y  a max imal  analy t ic  ex tens ion  as an ab-  
s t r a c t  manifold.  For  example ,  a mul t id imens iona l  su r f ace  going out to infinity may admi t  ex tens ion  as an 
a b s t r a c t  manifold.  This effect  is e s sen t i a l l y  r e l a t e d  to the indef in i teness  of the m e t r i c  of the enveloping space;  
in Euc l idean  space  i t  is imposs ib le .  

Another  a spec t  of this ques t ion is the following. In the gene ra l  theory  of r e l a t i v i t y  incomple teness  (under- 
s tood in var ious  senses )  of nonextendable s p a c e - t i m e s  is r e l a t e d  to e x t r e m a l  p r o p e r t i e s  of ma t t e r  and s p a c e -  
t ime which make the s t anda rd  genera l  theory  of r e l a t i v i t y  inappl icab le  in c e r t a i n  s p a c e - t i m e  reg ions .  A con- 
cept  of comple t eness  which is phys ica l ly  and ma thema t i ca l l y  suff ic ient ly  jus t i f ied  has so far  not been de-  
veloped. Without  d i scuss ing  al l  the papers  r e l a t e d  to this quest ion,  we r e f e r  the r e a d e r  to the work  of Geroeh 
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[93]. In the work of Fronsdal  just mentioned it was proposed that those metr ics  of general  relativity be con- 
s idered complete ,  and hence having no singulari ty,  which have a proper immers ion  (i.e., an immers ion  as a 
surface  going out to infinity) in some fixed pseudo-Eucl idean space. This idea of s ingulari t ies  was further  
developed in the work of Dolan [80] and Hajicek [100]. However,  using the results  of Rokhlin and others [30] 
it is not hard to show that all pseudo-Riemannian spaces have proper immers ions  in a pseudo-Euclidean space 
of sufficiently high dimension. In pseudo-Euclidean spaces of lower dimensions it is not hard to construct ex- 
amples of outer complete surfaces with metrics which could not justifiably be considered complete from a 
physical point of view; for example, these metrics might be nonextendable as abstract manifolds. Thus, the 
concept of completeness proposed by Fronsdal is apparently inadequate to describe the corresponding physical 
concepts, which, of course, does not detract from its purely geometric interest. 

We mention, finally, the work of Tran-hu Phat [193] in which an attempt is made to use the concept of 
immersions to solve the question of the energy-momentum tensor of the gravitational field and to interpret 
the concepts of energy and momentum from an outer geometric point of view. In spite of the fact that the theory 
of immersions actually makes it possible to invariantly fix a particular coordinate system and thus alleviate 
the solution of the questions indicated, after the work of Isaacson [112] which threw light on this old and com- 
plicated question of the foundations of the general theory of relativity, invoking the concepts of the theory of 
immersions is unnecessary. 
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