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ANNALS OF MATHEMATICS 
Vol. 63, No. 1, January, 1956 

Printed in U.S.A. 

THE IMBEDDING PROBLEM FOR RIEMANNIAN MANIFOLDS 

BY JOHN NASH 

(Received October 29, 1954) 

(Revised August 20, 1955) 

Introduction and remarks 

History. The abstract concept of a Riemannian manifold is the result of an 
evolution in mathematical attitudes [1, 2]. In an earlier period mathematicians 
thought more concretely of surfaces in 3-space, of algebraic varieties, and of the 
Lobatchevsky manifolds. As the more abstract view of manifolds came into 
favor a question naturally arose: To what extent are the abstract Riemannian 
manifolds a more general family than the sub-manifolds of euclidean spaces? 

This question has been considered in various specializations and with assorted 
side conditions. In 1873 Schlaefli [3] discussed the local form of this imbedding 
problem. He conjectured that a neighborhood in an n-manifold would generally 
require an imbedding space of (n/2) (n + 1) dimensions. In 1901 Hilbert [4] 
obtained a negative result, showing that the Lobatchevsky plane is not realizable 
as a smooth surface in E3. Some contemporary negative theorems are due to 
Tompkins [5] and to Chern and Kuiper [6]. For example, a flat n-torus is not 
realizable in less than 2n dimensions. 

Janet [7] solved the local problem for two-manifolds with analytic metric in 
1926, and Cartan [8] immediately extended the result to n-manifolds, treating it 
as an application of his theory of Pfaffian forms. The dimensionality requirement 
was (n/2) (n + 1), as conjectured by Schlaefli. This number is a plausible one, 
being the number of components of the metric tensor. The proof depended on 
power series development, so it was limited to local results and it required that 
the metric be analytic. 

There are some theorems on the existence of isometric imbeddings in infinite 
dimensional spaces. This is a much simpler problem. 

A recent discovery [9, 10] is that C' isometric imbeddings of Riemannian 
manifolds can be obtained in rather low dimensional spaces. At first glance some 
of these C' results seem inconsistent with the negative theorems, such as Hilbert's. 
Apparently C1 imbeddings are very different from the smoother ones. 

Until recently the only general results on imbeddings in the large were proved 
for the problem of Weyl. This problem is to realize in E3 all two-manifolds with 
everywhere positive Gaussian curvature. Alexandrov [13] and Pogorelov [14] 
have been successful with a geometrical approach based on polyhedral approxi- 
mations. H. Lewy [12] and L. Nirenberg [15] have treated the problem from the 
viewpoint of partial differential equations. These results can probably be sharp- 
ened with respect to differentiability, but dimension-wise they are clearly 
optimal. 

Rigidity theory concerns the metric preserving perturbations of an imbedding. 
20 
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IMBEDDING OF RIEMANNIAN MANIFOLDS 21 

A closed convex surface in E3 is rigid, because it admits only trivial perturbations. 
But it becomes flexible if there is a hole in it. Apparently rigidity disappears 
completely when the imbedding space has enough dimensions. 

Arrangement of this paper. There are four main divisions, called Parts A, B, C, 
and D. At the end of Part C the treatment of compact manifolds is complete 
and we state Theorem 2, which is essentially this: Every compact Riemannian 
n-manifold is realizable as a sub-manifold of Euclidean (n/2) (3n + 11)-space. 
In Part D this is made to apply to non-compact manifolds by means of a device 
which reduces the non-compact problem to the compact case. The device is 
extravagant with dimensions. Theorem 3 realizes non-compact n-manifolds in 
(n/2)(n + 1)(3n + 11) dimensions. 

The core of this paper is in Part B. There a perturbation process is developed 
and applied to construct a small finite perturbation of an imbedding such that 
the perturbed imbedding induces a metric that differs by a specified small amount 
from the metric induced by the original imbedding. This work is summarized at 
the end of Part B in Theorem 1. The interesting thing about the perturbation 
process is that it does not seem special to this imbedding problem. It may be an 
illustration of a general method applicable to a variety of problems involving 
partial differential equations. 

Part A is devoted to the fairly straight-forward construction of a smoothing 
operator of the type required by the method of Part B. The operator's main 
properties are stated in equations (A15, 16, 17). In general, the four Parts are 
relatively independent in notation. Each depends only on the main results of the 
preceding part, not on the details. 

Remarks. Some respects in which the results here should be improvable are 
these: The dimension bounds for the imbedding space should be lowered; the 
C2 case should be included; and it should be proved that the process gives an 
analytic imbedding when the metric is analytic. The treatment of the C2 and 
analytic cases would require new sets of estimates. A more unified approach to 
the problem which would not require the use of two separate sets of imbedding 
functions might reduce the dimension requirements substantially. 

The methods used here may prove more fruitful than the results. Time will 
tell how much can be done with smoothing and "feed-back" methods like those 
applied in Part B. The device of Part D suggests an alternative way to imbed 
general two-manifolds by exploiting the results on Weyl's problem. 

Acknowledgement. I am profoundly indebted to H. Federer, to whom may be 
Traced most of the improvement over the first chaotic formulation of this work. 
N. Levinson also gave very helpful advice and information; and through con- 
structive criticism, several others at M.I.T. helped me to improve the paper. 
This paper was supported in part by the Office of Naval Research. 

PART A: A GENERAL SMOOTHING OPERATOR 

This part develops an analytical tool, the smoothing operator, which is es- 
sential to the perturbation process developed in Part B. A smoothing operator is 

This content downloaded  on Tue, 1 Jan 2013 15:28:59 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


22 JOHN NASH 

first constructed to act on real functions of n-variables, that is functions on En. 
Then we define a smoothing operator for a manifold 2f by imbedding 2f in En 
and extending scalar functions on WN to functions on En, which can be smoothed 
by the En operator. Finally, we devise a canonical representation for tensors on 
WN in terms of sets of scalars and use this to smooth tensors. We also obtain three 
important general inequalities that describe the action of smoothing on functions. 

Smoothing functions on En 
Real functions of n-variables are smoothed by convolution with a certain 

kernel, K0, that we define below. Here 0 is a parameter controlling the degree of 
smoothing. Ko is defined by defining its Fourier transform K0 . 

Let Vt(u) be a C' function such that 

for u < 1: 4t'(u) = 1, 

for 1 < u < 2: 4/(u) is monotone decreasing, 

for u > 2: 6&(u) = 0. 

To illustrate, we could take st = e(e(l/1-u)/u-2) in the range 1 < u < 2. 
Suppose xl, X2, * * * nn are the coordinates of En and ti, 42, X - * *n are the 

corresponding coordinates of the Fourier transform space. We define the trans- 
form K0 of the kernel as 

K0 = I(/0), where 
(Al) (42 + 42 + 2 

Thus Ko is a spherically symmetric non-negative C' function which is 1 inside 
the sphere t = 0, zero outside the sphere t = 20, and smoothly decreasing with 
t in the annular region between the two spheres. 

K0 is the transform of Ko ; so Ko is spherically symmetric; it is real because R0 

is even; it is analytic because Ko vanishes, except for t < 20; and I K Ij de- 
creases as rapidly as any negative power of the distance because all derivatives 
of K0 are continuous. 

As 0 varies Ko will be more or less concentrated at the origin. But the integral 
over all of En of Ko will always be the same. Since variation of 0 changes Ko 
only in a way corresponding to a change of scale in the transform space, K0 will 
change in a similar way, with normalization being preserved. Specifically, we 
can relate Ko to K1 (where 0 = 1) by the equation 

(A2) Ko(xi , x2 X .* .. Xn) = onKi(0xi, Ox2 , * 0Ao). 

Effect of convolution on derivatives 

Convolution and differentiation commute under favorable conditions: 

(A3) (Ko *f) (dKo) *f. 
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IMBEDDING OF RIEMANNIAN MANIFOLDS 23 

In our applications of this f will vanish outside a compact region. Since Ke 
(and also its derivatives, as we see below) decreases rapidly away from the 
origin, the favorable conditions will be more than met. 

To consider a derivative of K0, observe that aKW/axi, which we abbreviate 
to KoE satisfies 

K0, i= W(-1) o 

Thus the transform of Koi is a C' function and vanishes outside the sphere 
t = 20. So i KoX I decreases rapidly in the same manner as I Ko 1, and the same 
is true for the higher derivatives of K. 

From (A2) we see that 

Ko ,(x1 , , Xn) = On+lKii(O0xi , * ox,), 

so (A3) can be written as 

(Ko * f) , = Ol+ lKi i(0X , , Oxn) * f 

= 0n1 ... K ij(0y i , y,) f(xOJ 1 X- Y1 , X- YS) dy1 * dy,, 

= f f K1,i(z, *.., Zn) f ((xi - z1 /0) , (Xn - zn/0)) dz. dz,, 

Here we considered the integral formula for convolution, letting the kernel carry 
the dummy variables y', Y2, **, Y. Then we made a change of variables: 
Oy, = zi. Now using the last equation we can say 

X(K * f),i i _ 0(max I f |) ...f KjK i dz1 ... dzn 

? C0maxIfj, 
where C is the integral of the absolute value of K, X . Similarly we could obtain a 
bound for the size of a higher derivative of K0 * f. Each such bound would involve 
a constant, analogous to C, and 0 to the power equal to the order of the deriva- 
tive. A higher order derivative can be considered a derivative of a lower order 
derivative and we can bound it in terms of the maximum size of that derivative, 
before convolution with Ko . To illustrate, 

(K0 * f),ji = (Ko * f j), i = (Ko, i *j), 

*-i(Ko * f),Hi I _ C 0 max I f~j I . 

If we are not concerned with the precise sizes of the constants, such as C, which 
appear in these estimates we can put them all in one comprehensive statement. 
Let max(8) f stand for the maximum of the values attained by the absolute values 
of all derivatives of f of order s at all points of En. 

Then we can say generally: 

(A4) max W (Ko * f) <_ Crsors max ( f), when r ? s. 
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24 JOHN NASH 

Here Cr. is to be a constant, independent of f, and in fact depending only on 
r - s. 

Effect of varying 0 

We need to know how rapidly Ko * f and its derivatives change as 0 varies. 
Of course we can say 

a (Ko * f) = aKof, 

since we do not think of f as varying with 0. aKo/a0 will also be a kernel with good 
properties, as we see below. 

We can begin by considering 

a a - a2 (A5) a K0 K0 = - [,(Q/0)] = IP'(Q/0) - 0 X(/0)) 

Here we introduce a new function, x, defined by x(u) = -u +t'(u). Observe that 
x(u) = O for u < 1 or u < 2, and that x(u) > O for 1 < u < 2. Also x is CO, 
so we see that aKo/aO has the same general properties of analyticity, smallness 
at infinity, etc., that K0 has. 

Let L stand for the value of aKo/aG at 0 = 1. We can express aKo/80 in terms 
of L in a manner analogous to the way we obtained in (A2) an expression for 
K0 as On Ki(Oxi, *... ). The only difference in the situations is the appearance of 
6-1 in (A5). So we obtain 

(A6) a Ko = on-' L(xOx2, * , Oxn). 

We want to express L(xi X X2 X , Xn) as the sum of n special functions Li . 
We do this via the transform of L, which is x(t). Thus we shall have 

(A7) L = x(t) = ZZLi. 
To define the Li we construct a non-negative C' function as for each transform 
variable (i 

a= 0, for |i I < (2n) 2, 

and 

for > (2n) . 
Observe that when t > (2)Y" then 2 + 2 + * + n >2 and some (i > (2n)- 
so that some ai > 0. Therefore al + a2 + *. + a,, is positive and CG in the 
region 1 < t < 2 where x(t) is non-vanishing. So we can define 

Li = - x(t), for t_ 1, and 
a, + a2 + ? + a 

Li=O, for t < 1. 
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IMBEDDING OF RIEMANNIAN MANIFOLDS 25 

These functions will be Cx everywhere and will satisfy (A7). Each Li has the 
important properties: 

(a) Li = O for _2 
(b) Li=O for | ?< (2n)4. 
The corresponding kernels Li will clearly have all the good behavior properties 

at infinity, etc., that Ko has. And we have 

the value at 0 = I 

of o {| 

Purpose of the Li kernels 

Each Li is so constructed that when one forms the indefinite integral f Li dxi 

the result is still a function that is small at infinity. We see this again via the 
transform Li. Let Hr stand for the rth member of a series of kernels developed 
from Li and defined by 

The properties of Li that were emphasized above assure that ftE will be a C? 
function of 4j, t2, X * *X which vanishes when ? (2n)1l or ? 2. There- 
fore the kernels Hr are analytic functions which decrease rapidly away from the 
origin. 

The important property of the H' is that 

a'rH = Li. Also Hri+ = 1 Hr dxi, because 

rax 
fH dxi = 0, since 1t = 0 when 0s = 0. 

00 

The Ht help us to estimate the size of aKo/lO * f from data on the size of 
derivatives of f. By (A6) we have 

aK *f = ton-1 i Li(Ox1, * on) *Xf(X1 X n) ao 
Changing variables, Oxi -- xi, as we did when estimating (Ko * f) ,i, we obtain 

aKo/aO * f = O' [{Ji Li(x1, * * , Xn) *f(X1/0, * , xn/O)] 

= 0' Ji {Li(x * , ... , Xn) *f(X/O, ** *, I 

= 0 i {i(X, ***,n) ar [f(X/X0 Xn1O)]} f 
= 0-' j likH(x, X 

, 
Xn) * 0r a( r 

Af(x1/0, X Xn/0)} 

= 6r1 ,Hi* a(x/o),r f(x,/0 ... * xn/X)}. 
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26 JOHN NASH 

By the series of equations above we have expressed (OKo/aG) * f entirely in 
terms of rth order derivatives of f. These equations are, of course, invalid unless 
the rth order derivatives of f are continuous, which we assume. They lead to an 
inequality: 

a Ko *f ? r af } maxi f... I dfi dxn ao ma Efd axr Hjx..x 
< cr o-r-mar1 (r) 

Since a derivative of (aKo/aO) * f is the same as (aKo/aO) convoluted with the 
corresponding derivative of f, we can also say 

( a K0 * f) < Cr 0-r- max(r)(f ,i) 

< Cr 0- 1 max (r+l) 

Extending this principle, we obtain 

(A8) 
max K0 *f C. 0-r- max , or 

? ct 0' as max(tf. 

This is valid only for t > s, so far as we have shown. 
Actually (A8) is also valid for t < s, if appropriate constants C. are used for 

the negative r values. We don't need the Li to see this. Beginning with (A6), 
we obtain 

( a ) L(Nx, * Oan) f (Xi * n), ao/ 

ar a r~ ar *.a[aKo * f = rn0 ao) L(Ox1, * ,Own) AfX1, ,Xn).- 

Making the change of variables Oxi -+ xi, the right hand term is 

rarI L(xi, Xn) * f(xI/, * n *Xx/0) < < C, J max if j. 

Again we can generalize by replacing f by (a8/&x8)f. And we could deal with mixed 
partial derivatives. The general result would be 

max (8) Ko * f] < C, Or- max(8-r) f. 

This corresponds to (A8) with - r in place of r. So we see that (A8) holds with 
positive or negative r or with s< t or s > t. 

Smoothing on a manifold 
Let the manifold 9N be compact and analytic in the strong sense, so that it has 

an analytic imbedding T in a euclidean space En. We can find a surrounding 
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IMBEDDING OF RIEMANNIAN MANIFOLDS 27 

neighborhood, 91, in En of T; and 91 can be such that for any point x in 9 there 
is a unique point y(x) on T which is the point of J that is nearest to x. Also 
y(x) can be an analytic function throughout .' 

Now let 

( I, (distance from x to y(x) 

where / is the C' function defined before above (Al) and E is a small constant. 
If we assume E is sufficiently small, sp(x) will be a C' function throughout 9 and 
will vanish at all points near the boundary of 9. Assume also that the definition 
of sP(x) is extended by making it vanish identically outside 9. Then sp(x) is C? 
everywhere. 

Now if f(y) is a function defined on T we define an extension f(x) to En by 
putting 

f(x) = (p(x) f(y(x)), for x e 9, and 

f(x) = 0, for x 4 S. 

This extends f(y) to a function f(x) which agrees with the original function on T 
and has the same degree of differentiability. 

The method of smoothing is simple. Beginning with f(y) on T one extends to 
f(x) in En. Then Ko * f(x) is the smoothed function. The final (a logical formality) 
step is to restrict the definition of Ko * f(x) to ? and again have a function de- 
fined only on TE. But we must do more than simply present this definition of 
smoothing on T; we need to know how it affects derivatives of the function 
smoothed, etc. To do this we need 

A standard size concept for derivatives 

T has an analytic metric induced by the imbedding in En. So at each point 
p of 9? we can set up an internal system of geodesic normal coordinates. This 
system is not unique, but is unique up to orthogonal transformations. At p we 
can measure the size of the derivatives of order r of a function by considering all 
the systems of geodesic normal coordinates at p. We define sizer) f as the max- 
imum over all these systems of the maximum of the absolute values of the var- 
ious rth order derivatives of f with respect to the coordinates of that system. 
Then we call size(r)f the maximum of size 2f over all points p of T. 

We need to know how the measure size(r)f(y) of the sizes of the derivatives of 
f as a function on J is related to the measure max(r)f(x) of the sizes of the de- 
rivatives of the function extended to En. And when f(y) is obtained by restricting 
the range of definition of a function defined throughout En we need to know how 
the sizes of the internal derivatives will be related to the sizes of the derivatives 
with respect to coordinates of En. In the first case it is fairly easy to see that there 
will be general inequalities of the form 

(A9) max (r)f(x) ? Eko Bk size(k)f(y) 

1 The existence of such a neighborhood % is shown in Lemma 1 of [161. 
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28 JOHN NASH 

where the coefficients are constants determined by the imbedding of 9? in E' 
and the function so which was used in the extension of the function f(y) defined 
only on 9? to the function f(x) defined on En. 

Similarly, when a function g(x) defined on En is specialized to a function, say 
g(y), defined only on 9Z there is a conversion from bounds on derivatives with 
respect to the En coordinates (max(r)) to the internal measure of the size of 
derivatives. This has the form 

(A10) size(r) g(y) < r D ~ max(k) X(x) 
Actually, Do = 0, except for the trivial case r = 0, where Do = 1. The con- 
stants D' depend only on the imbedding S?. 

Effect of smoothing on a manifold on derivatives 
We are now ready to see how smoothing of a function on a manifold acts on 

derivatives, etc., and relate this action to the size of the original function and its 
derivatives. Suppose f(y) was the original function. Then smoothing proceeds 
thus: 

(a) f(y) f(x) by extension to En, 

(b) f(x) g(x) = Ko * f(x), 
(c) g(x) - g(y) by restriction to W. 

We call g(y) = So f(y) so that here So stands for the total operation of smoothing. 
Corresponding to the two general inequalities, (A4) and (A8), for smoothing in 

we obtain two general inequalities for smoothing on 9?. For example, (A9) 
gives us bounds on max(r)f(x) from size(r) data on f(y). Then (A4) gives us max( 
data on g(x) from this data on f(x). Finally (A10) gives us size(r) data on g(y) 
from the max(r) g(x) data. The outcome is a bound on size W) g(y) in terms of 
size(8) f(y), size(81) f(y) * * size?) f(y). If we use Sof for g(y) and f for f(y), 
and if we weaken the form of the bound by using the maximum constant in- 
volved, we get a bound of the form 

(A1l) size(r)[Sof] ? Hr8Or3Z:0 size(t)f, for 0 > 1 r > s. 

Exactly analogously we obtain from (AS): 

(A12) size S [ sof] < Jrsr81 t size't' ffor ? 1. 

We use the restriction 0 _ 1 so that we can maj orize lower powers of 0 by or-8 
or 0r-,-l in the two inequalities. The Hrs and Jrs coefficients depend only on the 
imbedding 9Z and so. 

Smoothing of tensors 
Here the first step is to express each tensor in a normalized (non-tensorial) 

form in terms of a set of scalar functions defined over all of 9Z. This corresponds 
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IMBEDDING OF RIEMANNIAN MANIFOLDS 29 

to using a specific redundant coordinate system on T in order to have a co- 
ordinate system without singularities. Let xl, x2, *. , x be the coordinates of 
En and let u1, u2, ... , u be any local system of coordinates in 9J, such as one of 
the family of geodesic normal coordinate systems used in defining the size(r) 
concept. 

The imbedding defines a transformation 

(A13) (u', u2, x2), UD (x__o j2X1 .., xn) 

and the nearest point function y(x) defines a transformation x -* y(x) in the 
neighborhood 9J, which gives a transformation of coordinates 

(A14) (x 1 x2 ... ) n) _ (Ul) 21 .. u2 *, u^). 

Both transformations are analytic and their composition in either order is the 
identity on 9S. 

Now suppose Tag:: is a tensor on T referred to the coordinates 
1 2 w ui, u , ,u. Then we define 

ii- ... a3xt X' U7 8U6 
Tk 1* Tza .ua .u. .x'k OxT... 

with the summation convention operating, and with OXt/OUa, etc., taken from 
(A14). This definition has the correct invariance properties, so 2Zkl is defined 
globally on 9? and is completely independent of the coordinates u1, u2, , u 
through which it is obtained. 

Because the composition of (A13) and (A14) is the identity, it is easy to see 
that the reverse conversion 

ad-- - i j,. . 'at 9U ark ax 
I 

= d OuaOuz.i f Oi ak aO' 

yields the original tensor again from the normalized form Xkj 

The smoothing operation for a tensor consists of three steps: (a) conversion to 
normalized form, (b) smoothing of each component of the normalized form by 
Se, and (c) converting the result back to a tensor on T via the reverse con- 
version. 

Derivative size concept for tensors 

If T is a tensor we consider the standard local coordinate systems defined 
before and at the center of each system we consider all the derivatives of order r 
of each component of T. The maximum of the absolute values of these is then the 
local size(r) of T. Then the maximum of this over all the standard systems is 
size(r) T. 

Associated with the conversion of tensors to normalized form and with the 
reverse conversion there will be conversions from size(r) T measures to size(r) 
measures on the components of Z. These will give us inequalities quite anal- 
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30 JOHN NASH 

ogous to (A9) and (A10). By combining these inequalities (we shall not bother 
to write them out) with (All) and (A12) to estimate the effect of So on the 
components of Z, we can obtain the analogous bounds for smoothing of tensors 
via the process T -? -* Soe -* SoT (definition of SoT). These bounds are 

(A15) sizeW )(SoT) ' LOrsZ Eso size" 0T 

for r > si 0 ? 1 and 

(A16) size(') Lo So)TJ ' Mr, 0781 Zt=o size(') T for 6 > 1. 

Note that the process for smoothing tensors preserves certain simple properties 
that a tensor may have, such as symmetry or skew-symmetry, etc. 

Concluding remarks 

The size r) concept is suited to routine estimations concerning sums, dif- 
ferences, or products of functions or tensors. For example, 

size(l) (fg) < (size(?)f) (size(q)g) + (size(1)f) (size(0)g), 

size(O (TjSK) < v size~o (Tj) size~o (St). 

In the second estimate we invoke the summation convention and v should be the 
dimensionality of T. These remarks are made to prepare for the frequent use of 
such elementary estimations in Part B, where we shall not specifically mention 
these properties of size(r) in the instances where they are used. 

Another general bound referring to the action of So is derivable from (A15) 
and (A16). This is 

(A17) size(r) (T - ST) < NrsOr-8 EtZ size"t)T for s > r 0 > 1. 

In the case s = r this is derived trivially from (A15). When s > r we use 

T - S T = f o (d So) T dO 

and apply (A16). 
Our more or less elaborate development of So was undertaken to give us a 

smoothing operator for which (A15), (A16), and (A17) would hold. Without 
care in the definition one would obtain a weaker set of bounds. (A17) would 
probably have 0max(r-8-2) instead of 0r8. (A15) would probably not be weakened. 

There is a good heuristic interpretation for an operator such as So . It is a low- 
pass filter which passes undiminished all frequencies below 0. Above 20 it cuts 
off completely. Between 0 and 20 there is a variable attenuation, decreasing with 
increasing frequency so that the characteristic of the filter for all frequencies is 
a C' function of frequency. 
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PART B: THE METRIC PERTURBATION THEOREM 

The perturbation device 
The perturbation process developed in this part of the paper is based on a 

method for finding an infinitesimal change in the imbedding of a manifold that 
will effect a specified infinitesimal change in the metric induced by that imbed- 
ding. The smoothing operator So of Part A is used in connection with this method, 
the "perturbation device". 

Let 9) be a compact n-manifold smoothly imbedded in Em. Let the Cartesian 
coordinates of Em be zi, Z2 X. * * . Referred to a set xl, x2, * * n, xn of local 
coordinates in 9I, the metric tensor induced by the imbedding is 

(BI) gi = aa a 

We can consider perturbations of the imbedding as rates of change, measured 
with respect to the change of a parameter. The parameter is unspecified and we 
indicate the rate of change of any quantity by placing a dot over it. Thus we 
have 

(B2) az" = a za + L alaa 

which follows from (Bi). 
We want a method by which we can determine { i satisfying (B2) when 

{gij} is specified. We can make this problem simpler to solve by adding another 
condition to be satisfied by the rate { i } of change of the imbedding. This is 

(B3) . Za Za = 0, for all i, 

which requires the perturbation {z} to be normal to the imbedding. 
Consider the result of differentiating (B3) with respect to xj 

(B4) aza a (3 il 
Zax ax, axj ax . 

The left member occurs in (B2) and the right member is symmetric in i and j 
(since the imbedding is to be reasonably smooth). Consequently we can use 
(B4) to modify (B2) and obtain 

(B5) ii= 2 ZA Za. 
aXj axi 

This is the condition the perturbation { i } should satisfy to effect the metric 
perturbation {oij} when (B3) holds. 

Now we have a much simpler type of requirements relating {zap to {joi}. 
Together (B3) and (B5) form a system of linear equations to be satisfied by the 
Za , whereas before we had partial differential equations in the il . 
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How and when can we solve (B3)-(B5) for {I a after {ijI} has been specified? 
The number of variables ia , which is m, should be at least as large as the number 
of linear equations, which is 1n2 + 1 n, taking the i, j symmetry into account. 
Probably m will have to be larger than 1n2 + 11n to insure that the equations 
are not singular at some points of 9W. So the equations will probably be under- 
determined. 

In Part C we construct an imbedding of 91 such that (B3)-(B5) is everywhere 
non-singular. Here in Part B we assume that the imbedding has this property and 
simply make our results conditional upon this. 

We must find a way to select a particular solution { ia }, and do this in a smooth 
way, when the equations are underdetermined. A very simple requirement, 

(B6) 
E 
"h (a) 2 = minimum, 

subject to satisfaction of (B3-B5), 

selects a particular solution in a satisfactory manner. {lia will have the same 
degree of differentiability as { ij}. 

The geometrical interpretation of the effect of (B6) is that it selects the nearest 
point to the origin in the plane of solutions {I I of (B3)-(B5). We can also study 
the effect of (B6) from a more formal viewpoint. The system (B3)-(B5) is of 
the form: 

(a) az=1 CA ai a = (PA 

If we assume a solution in the form 

(b) = Z-2+1i Cya di, 

then the dV's must satisfy 

(c) Ha, CyaC;a d; = (yA 

Let 

(d) El,= Za CpaC;a, 

then (c) becomes 

(e) El E, . di =y 

This last equation (e), will be non-singular if det EJ JA is not zero. However this 
is Gram's determinant for the matrix JJ Ca 11 and it cannot vanish unless || CAr 11 
has less than maximal rank (4n2 + 1 1n). Because we are assuming that (a), 
which is (B3)-(B5) in a condensed notation, is non-singular, we know that 
rank JC IJ = 1n2 + 1 n. So (e) is non-singular. Because (e) is not under- 
determined it has a solution in the form 

(f) d, = 11 EAV 1. {,}. 

Now from (b) we can express a special solution {z*} of (a) (or of (B3)-(B5), 

This content downloaded  on Tue, 1 Jan 2013 15:28:59 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


IMBEDDING OF RIEMANNIAN MANIFOLDS 33 

which is the same thing) in the form 

(g) Za= 111 Ear JJ {s}1 
This special solution of (a) happens to be the one for which Zda (ia)2 is min- 

imized. Suppose {la} is any other solution of (a). Then 

(h) Ea.Ca(za - *) = 0. 
We can write 
(i) E ( )2 _ E. (i*)2 = La (ia - _*) + 2Ea i*(ia -*), 

and the last term vanishes because 

2Za i*(ia - i*) = 2ZaE. [4 , dvCpa] (ia- -*) 

= 2EZ dea Cpa (ia- 

(i ~~~~~~= 2E deco 

= 0. 

Here we employed the expression (b) for . 
Now that we know the last term of (i) is zero it follows that the right hand side 

is positive and Z.a (ia)2 > E., (a*). Thus the special solution of (B3)-(B5) that 
is given by (g) is the same as the one selected by (B6). This shows that (B6) 
determines a solution which is a well behaved function of {oi } and the deriva- 
tives of the imbedding functions, so long as (B3)-(B5) remains a non-singular 
system. 

The solution of (B3)-(B5) determined by (B6), or equivalently by (g), has 
the following form of linear dependence on { ij} and analytic dependence on the 
imbedding derivatives: }{2 
(B7) za = Zi_? Oij Faij ( aZ a Z 

\Jfixk 43Xk (XI: 

{oij} is represented in (g) by {<o,}, so this shows that {li} depends linearly 
on {gij}. The Faii are analytic functions of the first and second order derivatives 
of the imbedding functions, so long as these are such that (B3)-(B5) is non- 
singular. 

To recapitulate, (B7) indicates the form and behavior of the solution of the 
system: 

(B8a) Za a Za 0a = 0 

a3Za 
(B8b) 2Ea axi axj a =gi 

(B8c) Za (Za)2 = minimum, subject to (a) and (b). 

The solution is an imbedding perturbation rate {la} which leads to the rate 
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I}ij) of change of the metric induced by the imbedding. We call this method of 
determining a perturbation rate {Ii} the "perturbation device". 

Notational conventions 

The work below becomes almost entirely the treatment of a problem in 
analysis, so a different (condensed) notation is appropriate. We shall drop the 
coordinate indices generally. Thus 

tZa} becomes z, tia1 becomes z, - becomes z, becomes a,, etc. axi aiaj 
We now write (B7) as 

(B9) z = F(z', z") 1 g. 

N indicates the (contracting) tensor product acting between F and 9. (B9) is 
the solution of 

(a) z'o z = 0 

(B10) (b) -2zo o i = 0 

(c) I i I = minimum, subject to (a) and (b). 

Here o indicates the scalar product, summation over the index a of Em. We also 
have 

(Bi ) = 2z' 0 i' 

as a modified condensation of (B2). Here 0 is a symmetrizing tensor product 
accompanied by a summation (as with o). 

We shall deal with many inequalities on the sizes of functions and derivatives. 
Generally these will be tied to the parameter 0, which controls the smoothing 
operator (see Part A). 0 will play a dual role, being both the parameter of smooth- 
ing and the parameter of the process. Dot will denote a/aO. [e.g.: i = az/aG]. 
The process will begin with a specific value of 0, called 0o, and end with 0 = 00. 

Our canonical notation for bounds on the sizes of functions and their derivatives 
is explained by illustration: 

T -P< K[O 2' 4] 

indicates a whole system of bounds on the tensor T and its derivatives measured 
in terms of the size(r) concept of Part A (think of T as varying with 0), which are 

size(O) T , K06 
size(1) T ,Ko- 
size (2) T K0-' 
size(3) T -$ K 
size(4) T -< KG 
size(5) T ,< K02. 
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In general, if the symbol is [0 I ',' ], where r and s are integers and 0 < r < s, 
p < q, the exponent of 0 is p for size(0), size(l), ... , size(r). Then from size(r) to 
size(s) the exponent increases in arithmetic progression in such a way that we 
have As for size(8). Almost always this increase will be one unit for each increase of 
the order of differentiation, as in the illustration. In other words, we usually 
have q - p = s - r, and also q and p are usually integers. 

Most often we can abbreviate [0 I ',' ] to [',' I] and understand that 0 is 
involved. Also we shorten symbols such as [3' ?] to [?]. 

The perturbation process 

As was remarked above, this process uses the perturbation device and the 
smoothing operator. It also uses "feed-back". 

The equations defining the process are listed below: 

(B12) v = Soz 

(B113) z = F(t', c") 1z1 M 

(B14) E 
- 2( -z)' -0 Z' 

(equivalence shown below) 

(B115) u(p) = a special C' function, nondecreasing everywhere and monotone 
increasing for 0 < p < 1. Also, u(p) = 0 for p < 0 and u(p) = 1 for 
p > 1. To be specific think of u(p) = 41(2 - p), where 41 is the special 
function of Part A. 

(B16) L(0) = f E(0)u( - -0) do 

(B17) G = the desired total change of the metric tensor (a symmetric co- 
variant tensor). 

(a) MI(0) do = u(0 - Oo)So G + So L(O), or 

(B18) (b) M =?(6- O)Se G + u(O-oS G + So L + So L,or 

(c) M =?(6-6o)Se G + u(-o e G + e L 
r0 

+ Se L E:(0)u(- ) dA. 

Interpretation of the quantities and equations 

Each of the quantities has its interpretation, but our interpretation may seem 
unilluminating to many. v is a smooth approximation to the imbedding. M is the 
rate of metric change that is being "attempted." Since the actual rate, i, of 
perturbation of the imbedding is computed from a formula which is like (B9) 
but has v in place of z, we cannot expect that the actual rate, 0, of metric change 
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will be the same as M. If the imbedding function were v instead of z then g 
would be M. That is, (B13) gives the correct rate of imbedding perturbation to 
accomplish the metric change M, provided v is the imbedding. This implies that 

(B19) M = 2' 0 '. 

E is the error rate, or the excess of the attempted metric change rate over the 
actual rate, so E = M -g. Since we have (B11), 

g = 2z' 0 Z', 

we can subtract this from (B19) to obtain the alternate E formula: 

E = 2(D - z)' 0 if. 

This formula is the more useful one for estimating the size of E. 
L represents accumulated error. It is not the total accumulated error, but it 

includes all the error incurred up to 0 - 1. Between 0 - 1 and 0 it includes only 
part of the error. Effectively, there is a lag in the inclusion of error in L. This 
effect is accomplished by the weighting function u(O - 0) in (B16). It is not 
really necessary to define L so elaborately. It could be the total error. The 
advantage of the more elaborate definition is that it ultimately makes it easier 
to view the process as controlled by a set of very tame integral equations. L 
has the simple integral expression 

0 L = 10 E(O)'C(0 - ) dO. 

If L were the total error L would be E. Then it would seem that M was defined 
from E and E from M. We avoid this complication with the definition we use. 

The definition of M is based on the principle of "feeding in" the smoother 
parts of the desired metric correction first, saving the rougher parts for later. 

Referring to (B18a), we can consider f M the total "attempted" metric change 

from the beginning of the process at 00 to the current situation at 0. This is set 
equal to SoL + u(O - 0o)&SG. So it is the smooth part of L plus the smooth 
part of G weighted by the coefficient u(0 - 0O). The reason for attaching u(O - 0O) 
to SoG in this formula is the simple one that for 0 = 0o both sides of the equation 
(B18a) should be zero. At the beginning of the process a finite portion of G, 
specifically SoOG, is considered smooth enough to be "fed in." But it must be 
fed in gradually, so we use u(0 - 0) to make the process start gradually. For 
0 ? Oo + 1 this factor u(0 - 0) is just +1 and is irrelevant. 

We can see how these definitions should work out if the process is convergent. 
The total metric change accomplished by the process from its start at 0o to the 

limit as 0 -* o will be f g dO. From (B14), 

(B20) g = M - E, therefore 
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(B21) dO = M- E 

=u(0)S G + Soo L(oo)-f E 
0 

= G + L(oo) -L(oo) 
= G. 

To put L(oo) for L E requires the assumption that E -k 0 as 0 oo. (B21) 

verifies the general design of our "feed-back" process, but of course the main task 
is the proof of convergence. These remarks on interpretation should not be 
regarded as if presented as proofs. However, we shall use the equivalence of 
the two formulas of (B14). 

To prove that the process works we first derive a set of appropriate a priori 
bounds on the quantities involved which would be satisfied if the equations 
defining the process have a solution up to some value 01 of 0. Second we prove 
a local continuation theorem about solutions of the equation system. The com- 
bination of the bounds and the local continuation theorem gives us the existence 
and uniqueness of the solution for all values of 0, but we assume that G is suffi- 
ciently small and that 0o is properly chosen in obtaining this result. 

The estimates 

These estimates, or bounds, form a self-interacting system because the size 
of each function tends to depend on the sizes of the others. We assume the 
system (B12) through (B18) has a solution for 0o < 0 ? 01 and assume that the 
quantities E, M, ?, z, L, etc., satisfy certain bounds in this range. Then we 
compute new bounds on the quantities from the defining equations. Finally we 
show that when G is sufficiently small and 0o properly chosen there exists a set 
of bounds which is satisfied by the initial values of the quantities and is such 
that the rederived bounds computed from the defining equations are all smaller 
than this original set of bounds. 

The first bound is 

(B22) v-Zo - ? [o2]. 

zo stands for z(0o), the initial value of the imbedding function. We assume that zo 
is analytic and such that (B8a, b) is non-singular. F(z', z") will be well behaved 
when z, z', z" are near zo, , zI ' . So (B22) is designed to insure the good behavior 
of F(t', c"). 8 must be a sufficiently small constant so that F(t', i") will be well 
behaved when (B22) holds. 

There will be some value Oa (assume 0a ? 1) such that for 0 ? 0a we have 
Sozo - zo < P/2[?]. So we make a requirement: 

(B23) 00 ? Oa. 
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With this requirement we can satisfy (B22) by keeping z - z0 small enough. 
Let 

(B24) zo a3:4] 

This is for notational convenience only. zo is of course independent of 0. The 
bound a should be chosen so that (B24) holds for all 0 ? 1. For z - zo we as- 
sume a bound 

(B25) z - Zo 0 /[3:4]. 

Note that if (B23) holds and d is small enough then (B22) holds. Adding (B24) 
and (B25), 

(B26) z ](a + 03)['] 

t is employed for notational advantages. 
Other bounds used are: 

(B27) L X [?]3 

(B28) Al 48[o] 

(B29) 0 T[4' 

(B30) E 0[ 0 3] 

(B31) G 5 [?3] 

The bound on G is a handle by which we can refer to the size of G, which we shall 
assume to be as small as necessary to make the process converge. This smallness 
includes derivatives up to the third order. 

The rederived bounds 

Now we assume that (B22) through (B31) hold for a solution of the equations 
of the process for 0o < 0 < 01 and use the defining equations to compute new 
"rederived" bounds on the same quantities in terms of the original bounds. The 
new bounds hold in the same 0 range and are distinguished by starred Greek 
letters. 

First consider L. From (B16) 

L(0) ? | I 1]u(o - 6) dA 

When k > 2 
d - 1-k 1-k ? 0 k (0) h dO 0? 

?k 00_ 
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Since I u i < 1 and 0o > I we can put 

L_< [ -4:-I] L 0~f[Oo I0 31 
(B32) 00-1[01 

X*[03] 

To estimate M we use (B18c) and have 

M < '(0 - 00)c16[g3;4] + C26[0:4] 

(B33) + C2x* [ro:?] + sof n[0Il '( 3] U - ) d@. 

The first term is obtained from (A15) applied to (B31). The constant C, is simply 
the largest of the coefficients that would come in from (A15). In general, when 
we have unspecified constants appearing in estimates we shall simply number 
them C1, C2, *** in order of occurrence. We shall not be concerned with the 
actual sizes of these constants. The second term comes from applying (A16) 
to (B31), remembering that I u I < 1, and the third comes from (A16) and (B32). 

For the first term we say 

1X,(- o_)Ca6[0:1] [07(0o- oO)]C16[404] 

j maxo0?eoe0?l {04} maxe -4O)}C18[ 0:] 
, C3(00 + 1)46[o40]. 

This brings the first term into the [j 4?] form, leaving only the fourth term of 
(B33) to be treated. 

We want the fourth term of (B33) majorized by a [-40?] term. Let 0* 
max (G, 0- 1), then since u'(0 -) = O when O < 0- 1, we can say 

0 

the fourth term < So f n [0 1 - (0- 3) do 

$ So {t max 17 [z(p)] [0* | 

because the interval of integration is not more than one unit long, i.e., 0 - 0* < 1. 
Continuing, 

the fourth term , C4?i[0* 1 50 1] 

where C4 is to take care of max. ui(p) and the constant coefficients arising from 
(A15) (which tells us how So acts). Then, since Oo < 0* ? 0, we can say 

the fourth term < C470- (0*/0) [0 I 0 4 

< C4100 (2) -[0 4 

(because 1 ? 0* < 0, and 0* > 0 - 1) 

c, (7n 1n[-4 '0i. 
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Combining these results we obtain 

M C3 {C3(o + i)40 + C26 + C2X* + C o0 } F7 0] 
(B34) 

To estimate i we need (B34) and an estimate on ?. For ? we write 

(B35) C64[03:6], 

by applying (A15) to (B26). The reason for extending this estimate to sixth 
derivatives is that i depends on ?", so that the fourth derivatives of i depend 
on the sixth derivatives of t. 

A derivative of i will depend on derivatives of various orders of M and s. 
For example, we can write symbolically 

Z' = F(t') a") 0 M' + (Fr,)v" N M + (Fr,,)v'1 M M. 

The function F and its partial derivatives Ft, and Ft., will be bounded when 
(B22) holds so we can say 

size Z < const. I*03 + const. C641* 04 + const. C84*04 

by applying (B34) and (B35). Notice that the highest (least negative) power 
of 0 comes from the term where M is differentiated. For a higher derivative of i 
there would be many terms and the highest power of 0 would appear in the term 
with the maximum differentiation of M. If we majorize the lower powers of 0 by 
the highest and observe that ji* would appear once in each term we can put the 
general estimate for i in this form: 

(B36) 4< *[-4 o 

where P1(e) is simply some fourth degree polynomial in i, the first of a series of 
such polynomials that we shall use, analogous to the series of numbered con- 
stants. Note that i has the same 0 dependence as M. 

We can use (B36) and an estimate 

-z < C7[ 0,4] 

obtained via (A17) and (B26), to estimate E. Using E = 2(- z)' 0 Z' we ob- 
tain 

E , 21C74[ o']}' 0 ,*4 0 4]}, or 
E , 2C74[ 0'] 0 3 *[ 03], or 

(B37) E < Csty*F 1] 
E C*[ o:632] 

This illustrates the pattern of the bound corresponding to the product of two 
bounds expressed in our notation. 
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The estimate of z is the most laborious. The simple estimate obtainable 
0 

through z = zo + i is not good enough for the third derivatives of z. We 
2 

need an estimate on integrals of M as an intermediate step. Here also the direct 
estimation is inadequate, but we can use (B18a) to say 

93 I M(0) dO = u(03 - o)So3 G + So3 L(03) - u(02 - So2G - S02 L(02). 
2 

Applying (A15) to the G and L bounds, assuming 02 ? 03, and using u ? 1, 
we can say 

M(0) dO -< C9(6 + X*) [03 1 0 '41. 
2 

The straightforward integration of the M estimate, (B34), yields 
J 3 .3 

J M(8) doAj M * [-4,] dO 
82 82 

< C1o/u* [02 i 01. 

This estimate is stated for differentiation only up to the second order because 

for the third order J0-' dO would lead to a logarithmic term; and for the fourth 
order 0+' would maj orize 0+' rather than the 02 term maj orizing the 03 term 
(which occurs up through the second order derivatives). 

Now we have two estimates, one good for lower derivatives, and one good 
for higher ones. If we add the two estimates we can safely extend the range of 
the second and modify the first in the range covered by the second. This gives us 

3 
(B38) J M(0) do < Cjl(M* + a + X*) {[02 1 0'4] + [03 0 4]} 

2 

We also need an F estimate in obtaining our z estimate. Symbolically written, 

F = F,' + Fr w". 

To use this we must estimate t, which is (S'z) = Soz + Seo. So from (A16) 
and (B26) and from (A15) and (B29) we derive 

P ? C12[ 0'6] + C137[ 0 6] 

,~C4~+ y)F[42] r< C14( +)[o6] 

Using this t estimate we can now estimate F in a manner exactly analogous to 
the manner in which we estimated i = F 1 M. The result has the form 

B9)Fzg P2(t)(t + y)]3 2, + P(t)(t + )[-22] 
(B39) 4)(+ )-4] 
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Finally, we need an estimate on F itself. Here the highest power of 0 will 
come from the maximum differentiation of c". So the estimate takes the form 

(B40) F Ps()[14] 
and has the same 0 dependence as D". 

The z estimate 

We actually estimate z - zO, then z is easily estimated from this result. First, 

Z(03)- = f i do 
0 
r 3 

= J F E M dO 

F [ Md] dO 
0 

(a J ) -- F dO dO. 
So aO2 02 

Now we apply integration by parts and have 
[- r 63 - 0203 /3p3 do) 

z(03) - z= F ] MdO K ] M dO 2 L 02 022-00 6 02 

The first term can be evaluated and we obtain 

z(Os) - 

(B41) = F(t'(0o), " (00)) 1 M dO + F (at 02) Z M dJl dO2 
80 0 82 j 

At this point we insert the estimates (B40) for F, (B39) for F, and (B38) for 

M dO. This yields 

(B42) z - zo 

, P5(t)[0 0'33]g CiiGA* + 6 + X*) { [0 04] + [03 | :]} 
0 a3 

+ ] P4(t)(t + X) [02 1;2I} 2 Cll(M* + 3 + X*){[02 
3 
0'4] + [03 1 034: d12. 

Call the two terms on the right T1 and T2. Using 03 ? o ? 1 we can weaken 
and simplify T1 and have 

T, < P6(t)(,* + 6 + X*)[0313 4] 

T2 must be handled with more care. Each derivative of T2 would correspond 
to the sum of several integrals involving various powers of 02 and 03 in the 
integrand. For the rth order derivatives of T2 there are terms of the form 

03 J constant . O . -S6 dO2, 
so 
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where r 0, 1, 2, 3, 4 and either s = r - 5 (which makes r - s - 5 ) o s 
satisfies -2 < s < r - 2. These two alternatives correspond to the two expres- 
sions [02 -04] and [03 04'] which are added in T2 . These integrals give 
varied terms and we can handle the situation most clearly by simply listing all 
eases. (This is done in Figure 1.) 

r =0 r= 1 r = 2 r =3 r = 4 

.3 = r - 15 46o ] 380-3 280 2 - log(03/0o) 

's = -2 0 o03 0a 03 0101 031 a-1 0 

- 1 I 1og(803/0003 1og(03/10)632 log(03/0o)031 log(03/0o) 

0 4 
l0-2 0- 1 

1 1~~~~~~~~~~~~~~~~1- 
9 I .1 _I 

maj orizer o0 4 a-32 a- 0 l03 

FIG. 1 

By using the majorizing terms listed at the bottom of the chart we can say 

T2 < P7(t)( + ?Y) (* +? + X*)00 1[03 10A 

Because the pattern of powers of 0o does not fit into our notation scheme we 
have simply used the highest power (0owl) which occurs. 

Now if we add the T1 and T2 estimates we get an estimate for Z(03)- ZO 

Z(03) - ZO ,< P8(t)(1 + t + Y)(A* + 6 + X*)[03 1 03:41, or 
(B43) 

r I 

Since z = zo + (z - zo) we can say 
z g (a + 3*)[4] 

(B44) 

To conclude the rederivation of bounds we must consider the requirement 
(B22). We have stipulated 00 ? 0a so that 

Sozo - zo ? e/2[0]. 

Applying (A15) to (B43) we see that 

- Sozo = So(z - zo) < C150*[ 074]. 

Adding inequalities, 

- o - Sozo) + (Sozo - zo) ? (Cl5f* + e/2) [2] 
(B45) < E*[21 

we hope, of course, that ?* < ?. 
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Strong consistency of the bounds 

We verify here that if a is sufficiently small we can choose 0o so that Oo ? 0a 
as required and so that all the rederived bounds are smaller than the originals: 
X* < X, A* < Iu, -* < c, etc. For clarity the formulas for all the rederived bounds 
are assembled here: 

7 70-1 (B32) 

= C3(00 + 1)45 + C25 + C2X* + C5o01 (B34) 

A (B34) 
IY* = Pi W/u* (B36) 

(B46) n* = C47* (B37) 
(* = P8(t)(1 + + Y)Q* + ( + X*) (B43) 

* = 3 + * (=a +i3) (B44) 
= e/2 + Cmf3* (B45). 

Consider any set X, /u, y, aq, 02, 2, - (with t > a) of positive original bounds and 
consider the behavior of the rederived bounds as 0o -+ oo and as a -+ 0 for each 
00 value. That is, consider 

limin.g limb.o 

of each rederived bound. 
First we see that 

limo0s, [limao X*] = 0, 

or A* 0> . Since X* -> 0 we can see that 4* - 0. Therefore y* -> 0, whence 
-* 0. Because ,i*, a, A* -+ 0 we see that d* O 0. Therefore * - a and -* ?/2. 

These observations make it clear that, regardless of the sizes of the bounds X, 
, ... assumed originally, if 0O is taken large enough and a is sufficiently small 

the rederived bounds X*, * ... will all be smaller than the original bounds. 

Existence of the solution 
To use the results above we need a general understanding of the equation 

system defining our perturbation process. We must know there will be a local 
continuation whenever we have a well-behaved solution of the system in an 
interval 0O < 0 < 01 . Actually, the equation system is a very innocuous one. The 
smoothing makes the solutions analytic functions and makes them very well 
behaved, at least over small ranges of 0. 

The form which the system takes above, as (B12) through (B18), does not 
reveal its true character very directly. The extent of the taming effect of So 
is not fully apparent. Another formulation, given below, makes this tameness 
apparent. 

A removable aspect of the system as presented above is the differentiation 
with respect to spatial coordinates, which is indicated by priming, as with ?' 
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or z'. This differentiation makes the system look like a partial differential equa- 
tion system, a type of system where local continuations of solutions often do not 
generally exist. 

If a quantity is defined by smoothing, such as ? = Soz, then its space derivative 
can be expressed as the result of an appropriate operator's action on the original 
quantity. So let us say 

'= oSz. 

For higher derivatives we have analogous operators Se', Se", etc.; and for 
Se there is a similar series Se, Se', . These derived operators also have 
smoothing properties. By using them we can recast the system as an innocuous 
functional-integral-equation system. 

Regard z, z', L and L as basic quantities. Then the others are expressible as 
functions or functionals of these four, either direct or indirect: 

= Soz, y 
' = Sz, z " = S/z, " - z 

M = So(?Ct(0- o)G + L) + & (u(0 -o)G + L) 

M' = S'(i%(0- o)G + L) + Se(u(0- o)G + L) 

= F(f', i") ) M 

f= (F?, ?" + F,,-"') 0 M + F 0 M' 

= 2z' X z' 

E= M g or E 2 z') z'. 

The basic quantities are to be equal to certain integrals: 
0 0 

z=zo +A z z if? 

L = u(0- )E(6) d(8), L = - u )E(6) doA 

Now, since all the functions, functionals, and operations involved are well- 
behaved, in fact, analytic, we have a well-behaved integral equation system. 
Indeed, the system is especially tame. Since i and z' are defined through smoothed 
quantities exclusively and since zo and zo are analytic, therefore z and z' are 
smooth and analytic (as functions of the space variables). Consequently g and E 
are smooth. So L and L are also smooth. Thus all the quantities are kept smooth 
by the presence of So in the equations. 

Continuation 

Suppose the system has a solution for 0o ? 0 < 01. We can show that this 
solution will satisfy the bounds X, /u, etc. The bounds will certainly hold at the 
beginning of the solution, so they will hold in an interval Oo _ 0 < so where 
00 < So < 01, if they do not hold up to 01. But now the smaller bounds 
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A* ,u* ... E* must hold in 0o < 0< ?o. Therefore the larger bounds (from con- 
tinuity) must hold in some interval past sp. This contradiction proves that the 
larger bounds, and therefore also the smaller rederived bounds, hold in the 
whole range 0o < 0 < 01 of the solution. 

Now suppose 01 is the limit of continuation of the solution. There will certainly 
be a solution in the closed interval 0o < 0 ? 01 because of the bounds and the 
tameness of the system. But a standard argument, such as the Picard method 
or the functional fixed point approach, will show that the system has a local 
continuation past 01 . Furthermore, the continuation of a solution will be unique. 
Therefore we have contradicted the hypothesis and we see that the solution 
will exist, will be unique, and will satisfy the bounds for all values 0 > 0o. 

Convergence to isometry 

We must show that the imbeddings z(0) occurring in the perturbation process 
tend to a limit imbedding which realizes the desired metric G + go, where go 
is the metric of the initial imbedding. 

The Cauchy criterion approach to the proof of convergence of the imbedding 
requires us to consider 

02 

Z(02) - Z(01), which -1 z(o) do, which 

02 

Ae-4 0,d o 'YV 0:4 do , or 
1Y[0i 

This estimate on Z(02) - z(01) and its derivatives is good enough to show that 
the imbedding z(0) and its first and second derivatives converge to a limit 
z(oo). The integration of the i bound is too crude an approach for the third 
derivatives. 

To check the convergence of the metric, g(0), induced by the imbedding to 
the desired limit, go + G, observe that 

g(01) = go + do 

01 

(B48) =go + j(M -E) do 

=q0+ Mdo- Edo. 

Now apply (Bl8a): 

g(Oi) -g0 + u(01 - Oo)So, G + So, L(o1) - ] E do. an 
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Assume 01 ? 0o + 1 so that u(01 - 00) = 1. Then we can say 
01 

g(01) = g0 + So1 G + Sol L(01) u(01 - O)]E(O) dO 
0 

0 

_-X u(01 - 0)E(0) do. 

The first integrand vanishes for 0 < 01- 1, and the second integral is L(01), so 

g(01) = g0 + G + (So- 1)[G + L(01)] 
(B49) 01 

+ 1 [u(01 a) - 1]E(0) dG. 

Let us call the last two terms remainders R1 and R2. Then by (A17) and (B27) 
and (B31) we see that 

R1 ,< C16(6 + )[ 0 3 

From (B30), 

R2 77 n[01- 0 1-3] 

The bound on R2 is good enough for third derivatives but the R1 bound is not. 
So we see that the metric g(O) converges to the desired limit metric and also 
see that the first and second derivatives converge to the corresponding deriva- 
tives of the limit metric. But we do not yet know that the third derivatives 
converge. The limit metric, go + G, is C3, of course. 

More refined results 

This section of Part B can be passed over without losing the continuity of the 
paper. Here we show that the limit imbedding is actually always C3 and we 
treat the cases where G is C4, C5, . .. , C0. 

The cases where G is Ck are treated by an inductive method. The Ck case is 
handled with the aid of the results of the Ck-1 case. We can illustrate all the 
essential features of the induction (with minimum notational difficulty) by con- 
sidering the step from C3 to C4. To begin, we can assume bounds 

G -< 3'[4] 

zo -< a'[4] 

that have the same form as (B24) and (B31), with 4 replacing 3. However,, we 
make a point of not requiring 5' to be small. 

Assume that the perturbation process is applied just as if G were only C3. 

We will have the bounds (B22) through -(B31) on the quantities involved. Our 
result will be that we can deduce a new set of bounds that are analogous to these 
except for the systematic replacement of 3 by 4, 4 by 5, etc., in the indices re- 
ferring to order of differentiation. 
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In the above work which computed the set of rederived bounds X*, /.I*, etc., 
wherever an estimate was derived for a quantity defined by smoothing the 
estimate could have been derived for any particular upper limit on the order of 
differentiation. Instead of (B34) we could have derived 

M jp : :]. 

This is not the kind of estimate we ultimately want for M. That would be an 
[1 5:] estimate. This is just a useful intermediate step. Similarly we can say 

, C64[3:7] and 

Z ,$ T[0 6] 

By integrating this and using (B50) to estimate fifth derivatives and by using 
(B26) for the lower derivatives we get a crude z bound: 

Z [3 5] 

From this we have 

-Z 
Q 
7[-0 2]. 

Since E = 2(- z)' ? Z, it can be estimated from our above results and we find 

E < -f [' 4']. 

A weaker E estimate, more conveniently manipulated, is 

E ,-4,r: I1].2 E 77 0o 4] 

This weakened estimate behaves nicely in an integrand and we get new L 
and L' estimates via the L and formulas. These are 

(B51) L 77 
Now reconsider the estimation of M and use the new L and L bounds and the 
new G bound, (B50). One gets 

From this we obtain 

Z < 0' 5], then 
E , 0 : 14]. 

This sharper E bound yields improved bounds for L and L: 

L g '4 

L 5 C7[-057-04] 
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Now from these and the new G bounds we can derive 

M , 1'[t0F5], then 
' 
'05F05?], then 

E [ 4 

The z estimate depends on estimating z - zo. This can be done exactly like 
it was done before in computing the rederived bounds. We can use a weak t 
estimate, improved only by extension to sixth derivatives. This gives us a weak 
F estimate, which is however adequate because it is used in combination with 

r 3 
an improved estimate on M dO. This improved estimate comes from the 

2 

strong M, L, and G bounds above (with g', X', s'). The result is of the form 

Z - Z < 0,/[0:5'] 
Z-Zo < 

:t4 5] 

and this completes the set of new C4 type estimates (indicated by primed greek 
letters). 

Our result concerning the inductive extension of appropriate bounds to the 
cases where G is Ck also gives us a result for the Cx case. The (typical) induction 
step from the C' case to the C4 case shown above, involved the use of a new G 
bound (B50). But we did not assume 5' was small. So our results on the Ck cases 
with k > 3 are really sharper than the exactly analogous results would be, 
because only G and its derivatives up to the third order need be small. 

If G is C' the result of each Ck case is valid, so the imbedding is Co. 

We can show that when G is Ck the kth derivatives of the imbedding converge 
so the limit imbedding is Ck. Also the kth derivatives of the metric converge. 
The argument is the same for any value of k, and since we have not shown this 
for k = 3, we treat that case. 

The basic fact is that the limits of the third derivatives of SoG as 0 -X c are 
the third derivatives of G, and that this convergence is uniform. This follows 
from the uniform continuity of the third derivatives of G, a consequence of 
compactness. The fact can be symbolized by saying 

(B52) G-S0G , A4[], 

where As is a constant for each 0 value and Ao -* 0 as 0 - co. Nothing can be 
said about the rapidity of the decrease of Ao ; the fact is purely qualitative. 

The estimate of (B51) on L, although derived after we assumed G to be C4, 

did not depend on this assumption. So we can use it here, where G is again only 
assumed to be C3. By applying (A17) to it one can obtain 

(1 - S01)L(0) -K 1C7X(O) [01 | 04I ] 

This content downloaded  on Tue, 1 Jan 2013 15:28:59 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


50 JOHN NASH 

Assuming 02 _ 01, it follows that 

(B53) S2L() - So1L(O) , 2C7X(b)i[01 0 4 

We shall need a bound on L(02) -L(01). Assume 02 _ 01 ?_ o + 1, then 
02 C1 

L(02) - L(01) = j U(02 -) )E(0) dO - u(01 - 0)E(0) dO I 02 
02 

{U(02 - 0) - u(01 - 0)IE(0) do, 
01 -1 

because u(02 - 0) = u(01 - 0) = 1 for 0 < 01 - 1 and because u(01 -0) = 0 
for 0 > 01. Using (B30), 

'02 

L(02) - L(01) 7 10-1 nV 1 d 
(B54) - 1 | 0 3] 

16-q[01 I ?. _3] 

02 

We must have a more refined estimate on j M. By (B18a), assuming 

02 > 01 ?> 00 1, 
02 I M dO = S0, G + S02 L(02) - Sol G - So, L(o1) 

(B55) = S02 G - S01 G + So1[L(02) - L(01)] + (So2 - S0)L(02) 

= Ta + Tb + T,. 

Our principal concern is the third derivatives, which our previous estimate, 
(B38), merely showed bounded, not decreasing. By (B52), 

Ta < (AO1 + A02)[3]. 

If 01, 02 -* c the third derivatives of Ta will approach zero, which is what we 
want. 

(B54) is strong enough to show that the third derivatives of Tb will approach 
zero as 01, 02 -> so. But T, requires a more elaborate treatment. We can write 

T" = (Se2 - Sol)L(02) = (SO2 - So1)[L(O) + {L(02) -L(0)] 

where 0 should be regarded as smaller than 01 . Then by (A15) applied to (B54) 
and by (B53) we obtain 

T, , C18- [ 1 413] + 2CA7X(0)'[01 |404] 

Observe now that T, and its derivatives up to order 3 can be forced to be arbi- 
trarily small if one first chooses 0 large enough to make the first term above small 
and then chooses 01 enough larger than 0 so that the second term is small. Effec- 
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tively then, as 01, 02 -* the term T, and its derivatives up to the third order 
approach zero. 

Since T"., Ti", and T"' all approach zero as 01 , 02 -* o, we have shown that 

L dof 0 as 01 ,02-* ). 

For the lower derivatives of this intergal the simple estimate obtained by inte- 
grating (B28) is adequate. We can combine the two approaches in a single esti- 
mate: 

0 
(B56) M dO , 1 ,4o - 

0 1 21 + 4oI[0, I 0'3]- 

Ho is to be a constant for each 0 which approaches zero as 0 - oo. 
We show that the third derivatives of the imbedding z(0) converge by a 

Cauchy criterion argument. The difference Z(03) - z(01) can be expressed in a 
form exactly analogous to (B41), where 01 appears in place of 0o 

03 
Z(03) - Z(01) = F(D'(01), A"(00)) Z j M dO (=:Ti) 

03 
(f 

0 

+ J {F(at 02) Z ] M do dO2 (=T2). 

The analogue of the estimate we obtained, below (B42), for T1 is not adequate 
for our needs here. But the analogous T2 estimate 

T2 < P7(t)(t + y)Gs* + 6 + X*)l[03 4 

is quite good because 011 becomes small as 01, 02 -- 0. 

The estimate (B56) was obtained so that we could handle T1. We use this 
with (B40) for F and obtain 

T1 ? P9(t)A401 l -3-] + Plo(t)4[01 l -4:-l] + Pnj(t)po1[01l -30I ] 

This shows that Ti" -* 0 as 01, 02 -s o and that is what we need to show that 

[Z(03) - z(01)]"' -- 0 as 01 , 02 -* 0. 

So we have verified that the third derivatives of the imbedding converge uni- 
formly to the third derivatives of the limit imbedding (which therefore must 
exist and be continuous). 

To see that the third derivatives of the metric converge consider 
C02 r 2 

9(02) - 9(01) = 2o do =j (M - E) dO 
J01 01 
0 2 r 82 

MdO- EdO 
41 01 

< 4[01 1 -3: 2] + p01 [01 1 -30'?] + X0 -'l 

This content downloaded  on Tue, 1 Jan 2013 15:28:59 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


52 JOHN NASH 

from (B56) and (B30). Since l -- 0 as 01 ->oo, this gives us the convergence 
of the metric and its derivatives up to the third order. 

Summary of results 
The main results of this part of the paper can be summarized in one theorem: 

THEOREM 1: 

HYPOTHESES: 

(1) 9 is a compact manifold analytically imbedded in a euclidean space. 
(2) The system (B8a, b) of linear equations in the zf is non-singular at all 

points of the imbedding. 
(3) G is a symmetric covariant tensor on 91 representing the change we want to 

make in the metric induced by the imbedding of 91. We want to accomplish this 
change by modifying the imbedding. 

(4) G is Ck where 3 < k < oo. 
(5) Oo is the parameter determining the initial amount of smoothing in our per- 

tubation process. 

CONCLUSIONS: 

If 0o is taken sufficiently large and if G and its derivatives up to the third order 
are sufficiently small, then the perturbation process will produce a perturbed im- 
bedding of T that is Ck and induces a metric tensor on 91 which differs by the amount 
G from the metric induced by the original imbedding. 

PART C: PREPARATORY METRIC APPROXIMATION 

In Theorem 1 of Part B we have the means for making small changes in the 
metric induced by an imbedding. Here in Part C we learn how to arrange that 
only a small change is needed. This solves the imbedding problem for compact 
Riemannian manifolds. 

The addition property 

Suppose a manifold )1 has two imbeddings, one by functions za into Em and 
the other by functions yo into Ep. Let 

gz Z = E. az" 0z4 and 

(Cl) axi Ox, 
9y = EO a o 

aye axi axj 
be the two metric tensors defined by the two imbeddings, both referred to a 
system x1, x2, *... x of local coordinates in W1. The total set of functions z1, 
Z2 * ... Zm y1 y2, * ... yp defines an imbedding of WI into the product space 
Em X Ep. The metric tensor induced on 91 by this product imbedding is 9Z + ay. 
This is the addition property of metric tensors. 
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This property enables us to separate into two parts the problem of con- 
structing an imbedding of 91 such that we can successfully apply Theorem 1 
and obtain an isometric imbedding. Suppose g is the intrinsic metric of 91 which 
we want to realize by an imbedding. We first find a z-imbedding which is "per- 
turbable", that is, one such that the equation system (B8a, b) is everywhere 
non-singular. Then we find a y-imbedding such that 98 + gy is close to g. The 
perturbation process is now applied only to the z-imbedding, directed towards 
effecting the change G = g - (gz + gy) in the metric induced by the z-imbedding. 

Actually, the form of Theorem 1 forces us to proceed somewhat like this. 
This theorem tells us that for any perturbable imbedding a sufficiently small 
change G in the metric can be accomplished. To use it we must be able to make 
G small without changing the imbedding which is to be perturbed. And deriva- 
tives of G up to the third order must be small. Thus it is rather important that 
we make G(= g - gz - g,) small by adjusting the y-imbedding, leaving the 
z-imbedding fixed. 

The metric g, must be a positive metric, so it is clear that it would be im- 
possible to use the approach we outlined above unless g - g, were a positive 
metric, which g, would approximate to. If we have a z-imbedding that is per- 
turbable (i.e. where (B8a, b) is everywhere a non-singular system) we can 
always simply make a change of scale, if necessary, to make gz as small as desired 
so that g - g, will be positive. This does not affect the quite qualitative question 
of the singularity or non-singularity of (B8a, b). 

A simplified approach 

The method we actually use here for constructing the z and y imbeddings has 
a certain intricacy occasioned by our desire to bound the number of dimensions 
needed for the final imbedding and to get a relatively good bound. But if one 
throws out all concern for the number of dimensions to be used the problem can 
be handled rather simply. Therefore we indicate here the simpler approach for 
the benefit of those who may not want to bother with the more complicated 
details of our method. 

One could get by with two lemmas: 
Li: Every compact differentiable manifold may be imbedded as an analytic sub- 

manifold of some euclidean space in such a way that (B8a, b) is everywhere non- 
singular. 

L2: Any compact Riemannian manifold with Ck positive metric, where 3 < k < so, 

can be represented as an analytic sub-manifold of euclidean space so that the induced 
metric and its derivatives up to the third order approximate the given metric as closely 
as desired. 

These lemmas would not give us any indication of the number of dimensions 
necessary. 

Li can be proved very easily by a direct construction. Take an analytic im- 
bedding of 9 in E2n, where n = dim 9. Let v1, v2, * , v2,n be the coordinates 

of E~n. Then the 2n2 + 3n functions v1, V2, * * *, V2 2 2 of E2'.Then the 2n2 ? 3n functions v1, v2, V~ V2v1, v2, * v2n ;v1v2, 
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v1v3, , v2v3, define an imbedding of 91 in (2n2 + 3n)-space if they are 
used as imbedding functions. This imbedding has the property we want, that 
(B8a, b) is everywhere non-singular. To verify this, consider n of the v's as 
local coordinates at a point of W. [See (C7).] 

L2 could be proved by considering finite dimensional approximations to a 
isometric imbedding of 91 in Hilbert space. Or one could use a result of J. 
Schwartz that implies L2 . It is relatively easy to patch up a good approximation 
to a metric when there is no limit on the number of imbedding functions to be 
used. Each function might vanish except on a small neighborhood of W. 

Outline of the method 
Our method for constructing y-imbeddings can use a minimum number of 

dimensions if the z-imbedding is chosen with some care. It turns out that if 
g - gz is close to a favorable metric y the y-imbedding can be made in n' + 3n 
dimensions. 

Our first step is to find a favorable metric -y. Then we construct a z-imbedding 
such that g - gz approximates y (derivatives are not involved here). Finally we 
construct the y-imbedding so that gy approximates g - gz and its derivatives. 

Determination of -y 
The special mechanism we use in constructing the y-imbedding requires a 

set {1,7} of functions on 9 such that the set of symmetric tensors 
(,Vr (,,r 

(C2) Ij = oxd 

has at every point of 9 a subset of n2 + 1n tensors that are linearly inde- 
pendent. The xi's are local coordinates in 9. The metric -y will be the sum 
over r of the M, 1, or in other words, it will be the metric induced by the im- 
bedding defined by using the 4r as imbedding functions. 

Our construction of the 4r is based on a dimensionality argument. If we ar- 
range to deal exclusively with algebraic functions and conditions we can think 
in terms of the precise dimensionality concepts of algebraic geometry (such as 
those based on transcendance degree). Therefore let ?I be an algebraic representa- 
tion' of 9in Ea. The mapping between 1 and I can be as differentiable as the 
differentiability structure on 9, and analytic if 9 has a global analytic structure 
(not mere overlapping local coordinates analytically related). Then a Ck metric 
on )1 becomes a Ck metric on W. 

Let us first see how we can find a set of functions which has the independence 
or "(C2) property" in the neighborhood of a point of W. Suppose x1, x2, X, 
are local coordinates. Then the -n2 + in functions 

(C3) fii = x + Xi, where i < j, 

2 Reference [161 proves that there is an algebraic representation of any closed differ- 
entiable manifold. 
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can easily be seen to suffice. At any point of 2f some n of the coordinates ui, 
U2, X q, of Ea will be suitable as local coordinates. Therefore the la2 + la 
functions 

(C4) f u0 + Us where d < 6, 

will have the "(C2) property" everywhere. But this is more functions than we 
want to use. 

A plausibility argument for the number of functions ,tr that should be neces- 
sary so that there are always 4n2 + 1n linearly independent Mlj at a point 
of af goes as follows: n2 + jn functions are good locally, so they would fail on 
a sub-manifold of n - 1 dimensions. Adding a total of n - 1 functions should 
reduce it step by step to a zero-dimensional set of singular points. Then one more 
function should eliminate these. Thus we should need 1n2 + I -n functions 
il all. 

-n2 + 1 n is the correct number, although that argument is not rigorous. 
Define 122 + 1 it functions 

(C5) /r Z u L 12 . n2 + 1P%] 

as linear combinations of the coordinates of Ea. We shall show that a generic 
choice of the coefficients C: automatically gives a set of ltr with the desired prop- 
erty. Let s = 2n2 + 4n. Then there are s + n of the li7 and (s + n)a of the 
coefficients C. 

Our dimensionality argument is based on analyzing the family of ways in 
which a set of the Vr can fail to define independent Mrj. If the Mij are not 
linearly independent at a point p of 21 they lie in some linear sub-space Hp 
of the space L, of all values of symmetric tensors (with two subscripts) at p. 
We can consider only sub-spaces Hp which have one less dimension than the 
whole linear space L, . Since dim L, = s, dim Hp = s - 1 and the dimension 
of the family of sub-spaces Hp of L, is s- 1. The dimension of the family of 
all Hp for all points p of af is n + s - 1. 

For any r the coefficients (Cl, Cr, - , Cr) can be chosen so that pr is any 
one of the functions fo' of (C4). Therefore for any particular Hp, one can select 
(Ci, C2, - , Cr) so that Mrj (which they determine, via fir) does not lie in 
III,. If this were not so the f 6 would not have the "(C2) property," but we saw 
that they did have this property. Since not all selections of the constants deter- 
mining Tr make Mrj lie in Hp, the dimension of the family of selections of 
(C(, Cr, , Cr) that do make M1j e iHp is not more than a- 1. 

The dimension of the family of selections of all the C: which make all the 
Alri lie in Hp is clearly not more than (s + n) (a - 1) since there are s + 'n 
sets of a coefficients determining the s + n functions o/ which determine the 
il>. Now since the family of all Hp has dimension n + s - 1, the dimension 
of the family of selections of the Cd for which there is some lip such that all the 
Mllj lie in Hp at p can be at most [(s + n)(a- 1)] + [n + s - 1]. But this 
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number is (s + n)a - 1, one less than the dimension of all selections of the CO. 
Consequently with a generic selection of the C' there will be no point p and 
tensor sub-space HP where all the Mrj lie in HP. In other terms, the 4t7 will 
have the "(C2)", or independence, property we want. 

One can be quite explicit about how the C: can be chosen. The n-dimensional 
variety associated with ?I (which is the smallest variety containing 2) can be 
defined by a set of polynomial equations in the coordinates of Ea. Adjoin all the 
coefficients involved in these equations to the field of rationals to produce an 
extension F. If the Ca are algebraically independent over F the 4-7 will have the 
desired property.3 Obviously this is a sufficient but not necessary condition 
for the proper selection of the C:. 

We have said that the "favorable metric" y would be the sum of the Mrj, 
so that 

(C6) IN 

We also said that our procedure was to make g-z - . This means g9 g - , 
so we must certainly have g - y a positive metric. To take care of this let us 
assume that a definite choice of the Cr is made in such a way that they are small 
enough to make g - y be a positive metric. 

The Z-imbedding 

There will be a C' imbedding of 9N in E2n which realizes the metric 9 - y 
exactly [9]. We can think of this as a mapping from ?I into E2n and approximate 
it in the C' sense by an algebraic imbedding E3. Let gb be the metric induced by 
this imbedding E3. The approximation between 9b and g - y can be as close 
as desired, but it does not extend to derivatives. 

Let v1, v2, . , v2n be the coordinates of E2n. At any point of e some n of 
these will be suitable as local coordinates; let x1 , X2, n, x be this subset. 

Now consider the functions 

Zi = Xi 
(C7) i < j. 

zij = xixj 

If these are the functions za of (B8a, b) that system takes a very simple form: 

3za Exa At za = zi = 0 

-2 Ea Z d a = -2iij = oij. 9xi a9xj 

3By using rational coefficients in the approximating polynomials used in [16] one would 
obtain an algebraic imbedding 2[ such that the equations defining the corresponding variety 
would have rational coefficients. Then it would suffice to simply select the Cal as independent 
transcendentals over the field of rationals, without reference to 21. 
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The solution is apparent for any Oij. The system is non-singular in the most 
obvious way. Each linear equation has just one variable (remember the Za 
are the variables) with non-vanishing coefficient and this is a different variable 
in each equation. 

The system (B8a, b) has the property that once one has a set of functions 
Za that makes the system non-singular then the introduction of new functions 
Za (whiich also introduces new variables ia) can only improve the situation. 
The coefficients of each variable ia in the equations can be regarded as a vector 
Va with 2n2 + -n + n or 'n2 + 11n components. The system is non-singular 
if there are 'n2 + 14n, which is s + n, linearly independent Va's. Additional 
functions zar simply introduce more Va's. 

Define s + 2n (or 2n2 + 2n) quadratic functions of the coordinates of E2n by 

(C8) Z - 1=l<P2n Ca V# + Z1<?<5?<2n Da avovX 

where 1 < a _ s + 2n. At any point of e3 we can make the za contain the func- 
tions defined by (C7) which are suitable at that point by an appropriate choice 
of the C's and the D's. An argument exactly analogous to the one we used 
above in finding the V/7 shows that a generic choice of the C's and D's gives 
functions Za that make (B8a, b) non-singular. If the C's and D's are algebraically 
independent over the field of definition for e3 they define satisfactory func- 
tions Za - 

Now how do we arrange that gz, g - y? We select all D#,' 0 and C#, 0 
unless (3 = a, when we select Ca. 1. This makes the z-imbedding, which is in 
Es+2n, be approximately the same as 3, because all the za are quite small, except 
for the first 2n, and these are approximately the coordinates v1, v2, V, , 

of E2n. Thus gz 9b and hence g9 g - y since 9b f 9 - -Y. 

The Y-imbedding 
This is constructed, with the aid of the Pr of (C2), by means of a special 

device. The device will produce an imbedding with metric gy approximating 
any metric of the form 

(C9) g(a, , a2, . * a,+n) = Er arMAIj 

where the Mij are those of (C2) and the ar are positive analytic functions on N. 
(Regard 9) as having an analytic structure corresponding to those of its im- 
beddings 2f and Q0.) This approximation will apply to derivatives also. 

Note that g(l, 1, - 1) = . Since the Mrj are linearly independent at each 
point and g - 92 7, we can certainly represent g - g9 in the form 

(CIO) 9 = zEr arMi j 
at any point of 9J, and we can have I - 1 1 < ? where ? is a small uniform 
bound that depends on the closeness of the approximation of g - gz to y. 

But can we do this in a uniform manner so that the ar become continuous 
functions on O? The solution for the ar of (CIO) will be non-unique at every 
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point because there are s + n of the ar and only s components of - g,, thus 
only s equations. This redundancy can be removed by the same device which 
removed the redundancy of (B8a, b) in Part B. Here we desire positive ar, 
so we specify: 

(Ci1) Air (a - 1)2 = minimum, subject to (CdO). 

This determines the ar uniquely and makes them have the same differentiability 
as g - g . Since (ClO) has a solution with I a, - 1 I < e, the solution of the 
modified system (CIO, 11) will have I a, - 1 ?5< e (s + n)i. Assume ? is small 
enough so that this makes the ar necessarily positive. 

We define g(a,, a2, * * *, an+8) by approximating the atr by positive analytic 
functions ar. The ar must also approximate the ar for derivatives up to the 
third order. Hence g - gz must be C3 so that the ar are C3. Since a, .3 ar we 
shall have g(a, , a2 , ... , an,+8) 3 g -z g 

The device 
This device is reminiscent of one used for constructing C1 imbeddings.4 

Suppose X is a large constant. We define 2(s + n), which is n2 + 3n, y-imbedding 
functions as 

(a.)i 
Yr = K sin (X47") 

(C12) 

Yr= co(X/) 

When these are used as imbedding functions they induce the metric 

gL a = Zr + Earq i) gy xi ax E taxi axj, 
When this is expanded by substituting the formulas for Yr and g, many terms 
cancel. All terms which contain A-1 occur as pairs which differ only by containing 
either [sin (Xt/')] . [cos (Xt7))] or [cos (XVt7)] [- sin (p47)] and cancel together. The 
remaining terms can be combined with the identity sin2 + cos2 = 1. This finally 
gives 

Gus Z LIZ dtr @{ Amp; + A 2r a (a) a(ar) ,or 
gy = E, r rx+, X axi axj ax ax,. 

= g(al, *I , a8+n) + X-2g. 

Now g is an analytic tensor independent of X. By choosing X very large the error 
XJ2g and any number of its derivatives. can be made as small as desired. So we 
have 

(C14) gy t3 g(al X a2X a,+n) t3 9- z 

4See equation (13) page 387 of reference [91. 
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where 3 indicates approximation up to third derivatives. Thus we have 
gy + gZ /3 g, which is what we need to apply Theorem 1. This requires, of 
course, that g be C'. 

Summary and applications 
We used s + 2n, which is 'n2 + 2ln, z-imbedding functions and 2(s + n), 

or n2 + 3n, y-imbedding functions. This is 3s + 4n or 1'n2 + 51n functions 
altogether. The z-imbedding was analytic and made (B8a, b) everywhere non- 
singular, so that Theorem 1 could be applied to it. The y-imbedding was also 
analytic and was adjustable so that gz + g, could approximate g as closely as 
desired (this approximation including derivatives up to the third order). For 
this, g had to be C3. 

The z- and y-imbeddings can be arranged to take up arbitrarily little space. 
The z-imbedding approximates a C1 imbedding of 9 which realizes the metric 
g - -y. Since a C' isometric imbedding can be made arbitrarily small (and highly 
twisted) so can the z-imbedding. If the parameter X is very large the y-imbedding 
is very small. 

The fact that the z-imbedding approximates a C' imbedding serves to prevent 
self-intersections in the final imbedding of the manifold in El I " Since the 
amount of perturbation needed can be made arbitrarily small by adjusting the 
y-imbedding, the application of the perturbation process to the z-imbedding 
need not produce self-intersections. 

Now we state the result obtained by combining the work of Part C with 
Theorem 1 of Part B. This is our "main theorem." 

Imbedding of compact manifolds 

THEOREM 2. A compact n-manifold with a Ck positive metric has a Ck isometric 
imbedding in any small volume of euclidean (n/2)(3n + 11)-space, provided 
3 < k ? oo. 

PART D: NON-COMPACT MANIFOLDS 

Our treatment here is not a direct attack. It exploits a device by which the 
imbedding problem for non-compact manifolds is reduced to the problem for 
compact manifolds. This approach gives a poor upper bound on the number 
of dimensions needed for the imbedding space; but that is the price of taking a 
shortcut to the non-compact case. 

A special mapping 

Our basic tool is a Cx mapping of En onto the n-sphere Sn. Most of En is mapped 
into the "north pole" of Sn. The interior of the unit disk of En covers the re- 
maining portion of Sn in a one-to-one manner. Any mapping of En on Sn with 
these properties will serve our purpose, but to illustrate we construct one. 

Take the case of the (x, y) plane, or E2. This can be mapped on the 2-sphere 
e + 72 + e = " as follows: 
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For x2 + y 2 1, let 

Q = exp (X2 + y2 )-I 

XQ 

Q2 + x2 + y2 

YQ 
17 Q2 + x2 + y2 

Q2 1 _ _ _ _ _ _ 

2 Q2 + x2 + y2 

for X2+ y2 1, =v=0 v 

It is easy to see that (, a, and r are CO functions because Q is a C' function if 
it is assigned the value zero for X2 + y2 > 1. A direct check verifies that 

e + 2 + 2 

The equations define a non-singular one-to-one mapping of the open disk 
X2 + y2 < 1 onto the sphere minus the "north pole" (t = =0, v = 2). This 
mapping is obtainable by taking a mapping of the open disk onto the whole 
plane, 

x= x/Q 

Y= y/Q 

and following this by the classical conformal mapping of the plane onto the 
sphere (minus the "north pole"). The effect is to give a mapping which has a 
C` extension to the rest of the plane where all points not interior to the disk map 
into the "north pole". 

Patch mappings 

Consider a Cx Riemannian n-manifold 91 (the metric need not be C', but 
9D has a C' structure). A local coordinate system or neighborhood N in 9 can 
be regarded as the image of the unit disk D of En under a Cx mapping of D 
into 9W. This mapping should be one-to-one, non-singular, and extensible to an 
open set of En containing D, as a C' non-singular mapping. Then an open set 
containing N is mapped on the open set containing D by the Cx inverse mapping. 

For brevity call S the n-sphere. Our special mapping will map any open set 
containing D onto S in a C' manner. This mapping, with the inverse mapping 
N D, gives a mapping 

'p 
N>S 

which is C' and has a C' extension to an open set containing N. 'p maps all 
points on the boundary of N or outside N into the "north pole" of S. Clearly we 
can extend the definition of 'p to all points of 9 by mapping all other points into 
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this "north pole". so will remain C'. This mapping so has non-vanishing Jacobian 
in the interior of N, so w-' is Cx there. so is called a patch mapping. 

Appropriate coverings for 9 

91 can be covered by a family of disk neighborhoods Ni in such a way that we 
can divide the Ni among n + 1 classes where: No two Ni of the same class over- 
lap. Each Ni overlaps only a finite number of other Ni. 

How is such a covering constructed? First obtain a regular star-finite cellular 
sub-division of 91. Then form a disk neighborhood corresponding to each vertex, 
edge, * * , face, or cell of the cellular sub-division. Each disk neighborhood that 
corresponds (for example) to an edge covers the middle section of the edge but 
not the end points. These are covered by the neighborhoods which correspond to 
them in their role of vertices. In this way no two edge neighborhoods are allowed 
to meet. The same principle applies up the series of dimensions. The n + 1 
dimensions from 0 through n give rise to the n + 1 classes of neighborhoods. 

Within each Ni we can select a slightly smaller disk neighborhood Ni such 
that the Ni also cover 91. These NS should correspond to sub-disks of D (through 
the mappings between D and the Ni). Then we can select a C' function ui for 
each Ni which is positive interior to NS and zero on the boundary and outside 
NS. Each ui can be regarded as defined and C' over all of 91. 

Now if we define 

Vi = Ui/Ei Ui 

the vs form a partition of unity by C' functions, each of which is positive interior 
to the corresponding sub-neighborhood NS and zero everywhere else. 

Assignment of metrics 

Each Ni has an associated patch mapping 

(Pi 
Ni --*Si . 

We write Si to distinguish different n-spheres for different Ni. The mapping 
(pi has a CG non-singular inverse (pi i- on Ni. 

Consider a metric -yio on Si. This gives a corresponding metric gio on Ni. 
Actually gio can be regarded as defined for all 9) because it will be zero at the 
boundary of Ni and can be extended by defining it as zero on the rest of 91. 
If it is Ck on Si it will be Ck on 91 also. If we select a metric tyio on each Si which 
is positive, CG, and sufficiently small the corresponding metrics gio will add on 
91) to a metric 

go = Es io 
which is C' and everywhere shorter than g, the metric we are given on 9C, and 
which we want to realize by an imbedding of 91. For example, each -yio could be 
the metric induced by an imbedding of Si in En+l as a small geometrical sphere. 
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Now, since g - go is a positive metric, 

gi = gio + vi(g - go) 

will be positive and will be as differentiable as g (say Ck). gi differs from gio only 
within N9 where the mapping .pi has a non-singular inverse so71. Therefore 
carries gi - gio over to Si as a Ck non-negative metric Tyi - tio . That is, there is 
a positive Ck metric TYi on Si which corresponds, via 'pi, to the metric gi on Ni. 

Consider the sum 

Es gi = EZ gio + (i v)(g - go) 
= go + (g - go) 

= g. 
Realization of metrics 

We have defined a Ck metric TYi on each Si. Assuming 3 _ k _ oo, -yi can be 
realized by a Ck imbedding of Si in E(n12)(3n+ll) by our Theorem 2. We can always 
let the "north pole" of Si be at the origin. 

Now consider all the Ni of one of the n + 1 classes, let us say class C. The Si 
corresponding to each has an imbedding in E(n/2)(3n+11) that realizes yi and maps 
the "north pole" into the origin. The corresponding patch mappings pi, to- 
gether with these imbeddings, define a mapping tic of 91 into E(n/2)(3n+1). 
This sPc is C' and maps all points of 9), except those interior to any neighborhood 
Ni of class C, into the origin. Each of these other points can be in only one Ni , 
so the mapping is unambiguously defined. 

This mapping VPc induces a metric on 9N which is the sum, 

Sc= EZgi 
Ni C 

of the metrics gi associated with neighborhoods Ni of class C. The product map- 
ping 

fP = 1P X 42 X ... X if n+l 

maps 9M into (n + 1) (n/2) (3n + 11) dimensional space and is also Ck. It induces 
the metric 

g= gC, 

as we desired. If the image of 9)1 under Vf has no self-intersections it is an isometric 
imbedding. In any case it is a Ck isometric immersion. 

Avoidance of self-intersections 

Self-intersections can be avoided by using the fact that the isometric imbedding 
of Si can be made as small as desired. Let as be the minimum distance of a point 
of Ni from the origin after it is mapped into Eljn2+5jn by (pi and the imbedding 
of Si. Let Oi be the maximum distance from the origin of points of Ni after 
being mapped into El'n2+5jn. Think of i as a serial index running 1, 2, 3 *- 
Now all we need do to avoid self-intersections is to arrange the imbeddings of 
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the Si in order of increasing i so that for all i 

fi < min aj. 
j<i 

Why is this sufficient? First, any two points of 9N that are interior to a com- 
mon Ni are distinguished through the imbedding of Si. So we need only consider 
pairs of points which lie in completely different sets of neighborhoods. In this 
case one of the points will be in a sub-neighborhood Ni with lower index than the 
other. Then this point will be further from the origin with respect to the set of 
1In2 + 5In coordinates associated with Ni than the other point can be. 

The result 
Our theorem is: 
THEOREM 3. Any Riemannian n-manifold with 0k positive metric, where 3 

? l ? oX has a Ck isometric imbedding in (1-n3 + 7n2 + 5-n)-space, in fact. 
in any small portion of this space. 

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 
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