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 RELATIVE ISOMETRIC EMBEDDINGS

 OF RIEMANNIAN MANIFOLDS

 MOHAMMAD GHOMI AND ROBERT E. GREENE

 Abstract. We prove the existence of C1 isometric embeddings, and C°°
 approximate isometric embeddings, of Riemannian manifolds into Euclidean
 space with prescribed values in a neighborhood of a point.

 1. Introduction

 Nash's celebrated theorems in differential geometry [14, 15] and their refinements
 [6, 2] show that any Riemannian manifold may be isometrically embedded in a
 Euclidean space. In this paper we obtain some relative versions of these results;
 i.e., we study the existence and regularity of isometric embeddings whose values
 have been prescribed in a neighborhood of a point. To state our main results
 precisely, let N = N(n, k) be the smallest integer such that every Ck Riemannian
 n-manifold admits a Ck isometric embedding into the Euclidean space HN .

 Theorem 1.1. Let (M,g) be a C1-^-00 Riemannian n-manifold, p 6 M, and U be
 a neighborhood of p. Suppose there exists a Cfc+1 isometric embedding f : U - >• Rm,
 m > n. Then there exists a C1 isometric embedding f:M-> HN+m, and a
 neighborhood V C U of p, with closure V diffeomorphic to a ball, such that

 7'v = f,

 and f is Ck on M - V.

 Although it can be shown that / in the above theorem is somewhat more regular
 on dV than just C1, see Proposition 4.1 below, we do not know if in general / can
 be Ck on dV and therefore Ck on all of M. Still, we can always achieve this degree
 of regularity after an arbitrarily small Ck perturbation of g near dV :

 Theorem 1.2. Let (M,g), p, U, and f:U -> Rm, be as in_ Theorem 1.1. Then
 there exists a neighborhood V C U of p and a Ck embedding f: M -* HN+m, such
 that

 for any given open neighborhood A of dV ; the pull-back metric f (, ) is as Ck close
 to g as desired; and, f (, ) = g on M - A.

 Received by the editors April 28, 2008.
 2010 Mathematics Subject Classification. Primary 53C42, 53A07.
 Key words and phrases. Relative isometric embedding, Riemannian manifold, short map.
 The first-named author was supported by NSF Grant DMS-0336455 and CAREER award

 DMS-0332333.

 ©2010 American Mathematical Society
 Reverts to public domain 28 years from publication

 63

This content downloaded from 70.187.211.104 on Sun, 17 Jul 2022 17:21:33 UTC
All use subject to https://about.jstor.org/terms



 64 MOHAMMAD GHOMI AND ROBERT E. GREENE

 In other words, we can construct an arbitrarily fine Ck approximate isometric
 embedding / : M - > HN which is an (exact) isometric embedding outside of any
 neighborhood of dV. Estimates for N in the above results may be obtained from
 Nash's theorems and their refinements:

 Note 1.3. If k = 1, or k > 3,5,oo, in Theorem 1.1, we may set N = 2n + l,n2 +
 lOn + 3, (n + 2)(n + 3)/2, and max{n(n + 5)/2, ra(ra + 3)/2 + 5}, respectively. The
 case k = 1 is given by Nash's theorem [14, Thm. 2]; see also [13, 3]. For the cases
 k > 3 and k > 5, see Gromov's book [6, p. 223]. The case k = oo is due to Günther
 [7, 8]. For low dimensional estimates and other references, see [9]. A nice survey of
 Nash's isometric theorems and related results is given in [2].

 We should point out that the above theorems are optimal in the following sense:

 Note 1.4. It is not possible in general to require that the extension / in Theorem 1.1
 coincide with the prescribed embedding / over the entire domain [/, or all compact
 subsets of it. The simplest counterexample is given by the circle S1: let U be a
 connected open subset of S x of length greater than ?r and / : U - > R be an isometric
 mapping. Then / cannot be extended isometrically to all of S1, because any such
 extension would have total length greater than 2n. Similarly, one can construct
 counterexamples of every dimension by using the flat tori T?n = S1x---xS1.
 Perturbing the metric of these tori will yield nonflat counterexamples as well.

 Furthermore, the dimension N + m in our main results is not extravagant:

 Note 1.5. If a Riemannian manifold M has a global isometric embedding in Rm,
 there may still exist a local isometric embedding / of a neighborhood U of M
 such that / restricted to no open subset V of U may be extended to a global
 isometric embedding of M in Rm. In particular, the occurrence in Theorem 1.1 of
 the higher dimensions m + N for the ambient space is not in general superfluous.
 Such examples arise from situations wherein the embedding of M is globally but
 not locally rigid. Consider for instance the well-known surfaces of revolution in R3
 which are of constant Gauss curvature 1 but which have mean curvature which is

 not constant on any open subset; see for instance [12] or [16] (these surfaces are of
 course not complete). The Gauss curvature being 1 implies that every point has a
 neighborhood isometric to an open subset of the standard unit sphere S2 in R3, but
 the mean curvature property indicated means that no open subset of these surfaces
 can be congruent to an open subset of S2; these surfaces are in this sense everywhere
 locally nonspherical. On the other hand, the well-known rigidity theorem of Cohn-
 Vossen, which applies to surfaces with as little regularity as C2 by the proof of
 Herglotz [10], shows that the only isometric embedding of S2 in R3 is S2 itself up
 to a rigid motion. Hence no open subset of a nonspherical surface of revolution of
 constant Gauss curvature 1 can be extended to a C2 global isometric embedding of
 S2 in R3 (this also follows from Hopfs maximum principle for elliptic equations; see
 [19] and [18, p. 211]). Indeed, the rigidity theorem of Pogorelov [17, p. 167], who
 generalized Cohn-Vossen's result, shows that such an extension is not possible as a
 convex embedding even when no additional regularity is required of the extension,
 i.e., when the surface is only required to be the boundary of a compact convex set.
 Furthermore, local nonrigidity of convex surfaces shows that these examples are a
 special case of a much more general process: any open subset of a closed convex
 surface, whose complement has nonempty interior, admits a nontrivial isometric

This content downloaded from 70.187.211.104 on Sun, 17 Jul 2022 17:21:33 UTC
All use subject to https://about.jstor.org/terms



 RELATIVE ISOMETRIC EMBEDDINGS 65

 deformation [17, p. 172]. This will yield a large class of examples of the type
 indicated above via Pogorelov's global rigidity theorem.

 A C2 immersion / : M -> KN is said to be free if the set of all its first and
 second derivatives is linearly independent.

 Note 1.6. When / in Theorem 1.1 is free, one might be able to show that / is Ck
 everywhere, since then Nash's implicit function theorem applies. In this case, it
 might also be possible to replace N + m by max{iV,ra}, and this may already be
 implicit in works of Nash [14] or Gromov [6]. But for / to be free we must have
 m > n + n(n + l)/2 (which may constitute a heavy price, or be unwarranted).

 For an application of Theorem 1.2 we refer the reader to [1] where it is proved
 that the standard sphere S2 C R3 C R18 bounds infinitely many distinct toplogical
 types of C°° positively curved compact submanifolds.
 While we are not aware of any previous work on the relative isometric problem

 considered here, it should be mentioned that there is a paper of Jacobowitz [11]
 where he studies the problem of locally extending the isometric embedding of a
 codimension-one submanifold to its ambient space. Gromov's book [6, §3.1.6] also
 contains a number of other local extension results.

 Our proofs of Theorems 1.1 and 1.2, which are presented in Section 3, employ
 a variation of a Cartesian product technique used in Nash's work [15, Part D],
 see also [5], to piece together the desired isometric embedding from certain other
 maps. One of these maps, which we construct in Section 2, is a short mapping
 /i : M -» Rm which sends most of M to the origin, preserves / on a neighborhood
 V of p, and is strictly short everywhere else. We then let g' := /*(, ) be the induced
 symmetric bilinear form on M (gì vanishes on most of M, but g' = g on V). Next
 we let g2 '-= 9 - 9' be the complementary form on M, and show that there exists
 a C1 mapping f2 : M ->► KN such that f2 maps V to the origin, and /| (, ) = g2.
 Then J: M -» RJV+m given by J := (/i, /2) is the desired embedding, for it induces
 the metric g' + #2 = 9 on M and coincides with /1 = / on V. Theorem 1.2 will
 be proved by a perturbation of g2, which will ensure that the corresponding map
 /2 is smooth. The precise details for these arguments are described in the next
 two sections. The regularity of the map f2i which determines the regularity of /, is
 further studied in Section 4, and the remaining questions are summarized in Section
 5.

 2. Relative short maps

 A metric in this paper always means a positive definite symmetric bilinear form.
 We say that (M, g) is a Ck Riemannian manifold provided that M is a C°° manifold
 with a Ck metric g. Recall that any C1 map /: M -» Rn induces a (possibly
 degenerate) symmetric bilinear form /*(, ) on M given by

 (r(,))p(x>y):=<4fpW>4fp(y)>,
 for all p e M and X, Y G TpM, where df denotes the differential map of /, and
 (, ) is the standard metric on Rn. We say that / is short provided that

 i.e., (/*( , >)p(X,y) < gp(X,Y) for all p e M and X, Y G TPM. If the inequality
 is strict at some point p, we say that / is strictly short at p, and if equality holds
 everywhere, then / is an isometric map.
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 66 MOHAMMAD GHOMI AND ROBERT E. GREENE

 As we mentioned earlier, the first step towards proving Theorems 1.1 and 1.2 is
 to show that there exists a (relative) short mapping of M into Rn which coincides
 with the prescribed values given by / near the point p. Further, we require that
 this mapping be strictly short everywhere else. This is the content of Proposition
 2.3 below, which is the main result of this section. First we need the following
 elementary fact:

 Lemma 2.1. For any e > 0 and 0 < c < 1, there exists an 0 < e' < e and a C°°
 concave function 0: [0, oo) - > [0, oo) such that

 (1) O(t) = t on [0,c;],
 (2) 0{t) <t on (e',oo),
 (3) 0(t) <ct on (e,oo),
 (4) 6'(t)>0 on [0,oo).

 Proof. We construct 0 by smoothing the piecewise linear concave function 0 deter-
 mined by the lines y - t and y = c(t + e)/2, i.e., set 0(t) := t on (- oo,a], and
 6(t) := c(t + e)/2 on [a, oo), where a = e/(2 - c); see Figure 1.

 ., y=t y=ct

 .s''''' _,-- y=C(t+e)/2

 ^-4-1

 Figure 1

 Then we define 6 as the moving average, or convolution 0*77, where rj : R - > [0, 00)

 is a C°° function with Jnr](t)dt = 1, rj(t) = r/(-t)5 and suppry C [-5,5], where
 0 < 5 < min{a, e - a}. Since 6 is concave, it follows that 0 is concave as well. It is
 also easy to check that 0(t) - t at all points t such that 0 is linear on [t - 5, t + 5];
 see [4]. In particular, 0(t) = t on [0,c;] where e' = a - 5. Further, 0(t) < t on
 (e', 00), since 0(£) < t, and for any í G (e', 00), 0(s) < s for some 5 G (t - ö,t + 5).
 Furthermore, 0(¿) = ö(£) = c/2 < c on (e, 00), since Ö is linear on (e-5, 00). Finally,
 since 0 is concave, 0" < 0, so 0' is nonincreasing, but 0' = c/2 on (c, 00); therefore,
 0' > c/2 > 0 everywhere. D

 For any set X, X denotes the closure of X, and Br(p) stands for an open ball
 of radius r > 0. The last lemma yields:

 Lemma 2.2. For any p G Rn, e > 0, and 0 < c < 1, there exist an 0 < e' < e and
 a C°° short embedding h: Rn - > Rn such that h is the identity on Be'(p) C Rn, h
 is strictly short on Rn - Be/(p), and ft*(, ) < c(, ) on Rn - Bc(p).
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 RELATIVE ISOMETRIC EMBEDDINGS 67

 Proof. After a rigid motion we may assume that p = 0. Let 0 be given by Lemma
 2.1, and set

 h(x) W'~ ._ £M x
 h(x) W'~ ._ ||x||

 We claim that this is the desired map. First note that, by part (1) of Lemma 2.2,
 h is the identity on Be'(Q). In particular h is C°° near the origin 0 of Rn. This
 together with the smoothness of 0 and the norm || || on Rn - {0} shows that h is
 C°° everywhere.

 Next we show that h is a C°° embedding. First note that 0 is one-to-one by
 item (4) of Lemma 2.2 above. This easily yields that h is one-to-one. It remains
 then to check that dh is nondegenerate: a routine computation shows that, for any
 qeRn- {0} and X G TgRn,

 (2.1) dhq{x) = 15rjr + (* (Mi) - 15jr J 15¡¡rí.
 So d/ig(X) = 0 only when X = Xq or dftg(X) = Xdhq(q). But d/ig(g) = 0'(||g||)g ^
 0, since 01 > 0, by part (4) of Lemma 2.2. Thus dhq is nondegenerate for all
 q G Rn - {0}. Hence, since dho is the identity, dh is nondegenerate everywhere.

 Now we verify that h is strictly short outside -Be'(0). For any q G Rn - {0},
 let Ei, i = 1, . . . , n be an orthonormal basis for Rn with Xn := q/''q''. Then (2.1)
 yields that

 So for any pair of vectors X = £"=1 X*^, K = E?=i yiEi in R">

 (2.2) <dfc,(x),dh,(r)>= (^]p) ExiFi + (0/(ll«ID)2xnyn-
 Further recall that since 0 is concave (i.e., 6" <0), 9' is nonincreasing; therefore,

 e'(t) = inf ff<- - I* 9'(s) ds = e-^-.
 [o,t] - 1 y0 *

 So (2.2) yields that

 (2.3) (/»*(,)),(x,y) < (ffli2)V,y>.
 This shows, via part (2) of Lemma 2.2, that h is strictly short on Rn - B€'(0).
 Finally, (2.3), together with part (3) of Lemma 2.2, also shows that /&*(, ) < c2(, ) <
 c(, ) on Rn - #e(0), which completes the proof. D

 Now we are ready to prove the main result of this section:

 Proposition 2.3. Let M, p, U , and f be as in Theorem 1.1. Then there exist
 open neighborhoods V, W of p with closures diffeomorphic to balls, V C W C U,
 and a Cfe+1 short map a: M -ï Rm such that a = f on V, a is strictly short on
 M - V , is an embedding on W ', and maps M - W to a point not on f(V).

 Proof. Since m > n, we may assume, after a rigid motion, that there exists an
 open neighborhood W of p, with closure W C U diffeomorphic to a ball, such that
 no line emanating from the origin intersects f(W) more than once (i.e., f(W) is a
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 68 MOHAMMAD GHOMI AND ROBERT E. GREENE

 radial graph). Let À: U - > R be a Ck+1 function such that 0 < A < 1, A > 0 on
 W , A = 0 on U - W, and À e 1 on an open neighborhood of p. Choose e > 0 small

 enough so that A := /"^(/(p))) C A"1^); for any 0 < c' < e, /"^'(/(p)))
 is diffeomorphic to a ball, and for any point q G VF - A~1(l), the line segment
 connecting f(q) to the origin is disjoint from Be(f(p)); see Figure 2.

 /// ('^' Be(f(p))

 ^ '_V^ - -f(X.'i))

 Figure 2

 Define /: M -> Rm by /(<?) := '{q)f(q) on C/, and f(q) := 0 on M - Í/. Note
 that / is Cfc+1 since A = 0 on U - W. Apply Lemma 2.2 with p := f(p) (and
 e = e) to obtain the short mapping h: Rn - > Rn. We claim that we may choose c
 in Lemma 2.2 small enough so that

 a := ho f

 is the desired map. First note that, since f(W) is a radial graph, and A > 0 on
 W, a is one-to-one on W; further, since h is the identity precisely on some small
 ball Bf := Be/(/(p)), and / = / on A D F :== /"HS7), we have a = / on F, for
 any choice of c. It remains then to show that a is strictly short on M - V, for
 sufficiently small c.

 To find this c note that, for any choice of c, a is strictly short on A - V, since
 / is short on A, and h is strictly short on Rn - ~b' d f(A - V). The fact that
 f(A - V) C Rn - B is due to the assumption at the end of the first paragraph
 that for any point q G W - A~1(l), the line segment connecting f(q) to the origin
 is disjoint from Be(f(p)).

 Thus it remains to find c so that a is strictly short on M - A. To this end, let
 'gp' denote the norm of the metric g at p e M, i.e., 'gp' := sup<7p(X, X), where X
 ranges over the unit vectors of the tangent space TpM. Note that if g' is any other
 metric on M , then gp < g'p if and only if 'gp' < 'g'p'. Next observe that

 l/p*(,)l p |#(,)| .,
 sup p = sup ^ =: K ., < oo;

 peM-A 'gP' PeW-A '9p'

 the first equality is due to the fact that / is constant on M - W, which implies
 that (/)* vanishes there, and finiteness of K follows from compactness of W - A.
 So we conclude that

 !*(,)< Kg
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 RELATIVE ISOMETRIC EMBEDDINGS 69

 on M - A. Now, if we set c < 1/K in Lemma 2.2, it follows that

 <r*(,)=rh*{,)<±f*(,)<9
 on M - A. So a is strictly short on M - A. D

 3. Proof of Theorems 1.1 and 1.2

 Before proving our main results, we need only one more fact:

 Lemma 3.1. Let M be a C°° manifold, and V C M be a connected open subset with
 compact closure V and C°° boundary dV. Suppose there exists a Ck , symmetric
 bilinear form g on M which is positive definite on M - V and is identically zero
 on V, and let f: M - V - > RN be a Ck isometric embedding. Then there exists a
 point p G HN such that f : M -» HN defined by f = / on M - V and f = p onV ,
 is C1 on M and Ck on M - dV .

 Proof. First we describe how the point p is to be found. Let h be an arbitrary
 Riemannian metric on M, and let V¿ be a sequence of nested open neighborhoods
 of dV, which lie within an /i-distance 1/i of dV. Then, for i sufficiently large, g < h
 on A¿, since g vanishes on dV. Indeed, g < A¿/i on Ai, where A¿ is a sequence of
 positive numbers converging to 0. So the diameter of Ai with respect to g becomes
 arbitrarily small as i grows larger, since

 dia,mg(Ai) < A¿ diam/l(A¿) < A¿ f T + diam/l(9F) j .

 Consequently, the f{AÌ) are contained in a sequence of nested closed balls of radii
 dia,mg (Ai) in RN . There is only one point common to all these balls, which we
 choose as our p. This immediately yields that / is continuous.

 Next we show that / is C1. To see this, note that, since dV is C°°, we may
 identify, via a diffeomorphism, a neighborhood W of any point of dV with Rn,
 where n = dim(M), so that VFnF is identified with the lower half-space xn < 0. Let
 gij be the coefficients of g with respect to these coordinates. Then (9¿/, djf) = gij
 on the complement of the plane II given by xn = 0. So

 (3.1) lim ||ã,/(x)||2 = ìimguix) = 0,
 x- »n x- yïl

 since p, and consequently g^j, vanish on the II. So, to show that / is C1 it suffices
 to check that / is differentiate on II and the dif vanish there. To see this, note
 that for i = 1, . . . , n - 1 we have dif = 0 on II since / is constant there. Further,
 since / vanishes on II, l'Hopital's rule and (3.1) yield that:

 0n/(a;i,...,a;n_i,O) = linà

 Finally, since / is Ck on M - V and is constant on V, / is Ck on M - dV. D

 Now we are ready to prove our main results:

 Proof of Theorem 1.1. Let V, W, and a be as in Proposition 2.3, and set f' := a.
 Then g' := /f(, ) is a Ck metric on W, since /i is Ck+1. Further note that gi
 vanishes on M - W since /i is constant there. Next set g2 := g - g' (where g is the
 metric on M). Then, since g > g' on M - V, and g and g' are both Ck !, it follows
 that #2 is a Ck metric on M - V. Thus, by Lemma 3.1, there exists a C1 mapping
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 70 MOHAMMAD GHOMI AND ROBERT E. GREENE

 J2 : M - > R^, such that /2 is a Ck isometric embedding on M - V, with respect
 to #2 > and maps V to a point, say the origin. Now define f:M-> R^+m by

 7:=(/i,/a).
 Then / = f' = / on V. Further, / is a C1 immersion, and its induced metric on
 M is #1 + #2 = 9- So / is an isometric immersion. Furthermore, since f' is Ck
 everywhere, and Í2 is Ck on M - dV, it follows that / is Ck on M - dV. It only
 remains to check that / is one-to-one, which would complete the proof. Note that
 since /1 is one-to-one on W and ¡2 is one-to-one on M - V, it follows that / is
 one-to-one on W and on M - V. So we just need to show that f(M - W) is disjoint
 from f(V). But /i(V) is disjoint from the origin, whereas /i(M - W) is the origin
 by construction of /1 (Proposition 2.3)* So / is the desired mapping. D

 Proof of Theorem 1.2. Let V, Wi gi, #2, and /1 be as in the proof of Theorem 1.1.
 Let V be an open neighborhood of p diffeomorphic to a ball with V C V. There
 exists a C°° map 0: M -> M such that 0(1"") = p and 0: M - V7 -+ M - {p} is
 a diffeomorphism. Note that 0 induces a symmetric bilinear form 9*g2 on M by
 defining 0*g2 to be the push-forward of g2 via 0 on M - {p}, i.e.,

 (0,52)g(x,y) := te)9-1(,)(<»-1(i),i-1(y)),
 for all g G M - {p}, and setting (0*#2)p := 0. Further note that 0*g2 is Cfc since it
 vanishes on 0(F), which is an open neighborhood of p.
 Let h be any C°° Riemannian metric on M, and 0: M - >> R be any C°° non-

 negative function with compact support which contains 0(V). Then 0*02 + £<t>h is
 a Cfc Riemannian metric on M for any e > 0. Thus there exists a Cfc isometric
 embedding /| : M -> RN with respect to this metric. After a translation, we may
 assume that /|(p) = 0. Next let g' be the pull-back of 0*#2 •+■ e(ßh via 0, i.e., set

 g' := 0*(0*02 + e<f>h) =g2+ e0*(<t>h).

 Note that g' 1S a Cfc symmetric bilinear form on M which is positive definite on
 M - V and vanishes on V.

 Define/^: M -+RN by

 T2''=Î2O0- _
 Then /2 is a Cfc mapping which is an isometric embedding on M - _ V with respect
 to g€2, and /^(F7) = 0. Next define f : M -> Rw+m by

 This is a Cfc isometric immersion with respect to the metric

 g€:=gi+gl=g + e0*(<l)h).

 Further, Je = /i = / on V1 . Choosing e sufficiently small, we can make sure that
 g€ is as Ck close to g as we may desire. Furthermore, similar to the end of the
 proof of Theorem 1.1, it can be shown that f is one-to-one, which yields that it is
 an embedding.

 Finally, note that if A is any open neighborhood of dV , then we may assume that
 0 is the identity and <'> vanishes outside A U V. This implies that 0*((/)h) vanishes
 outside A U V, so g€ = g outside AUV. Furthermore, recall that g' = 0 on V7, so
 ge = gx on V7, but ^i = p on F D F' by construction. So #c = # on V'. We may
 choose V so large that dV C A. Then g = g€ outside of A. O
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 4. More regularity

 Here we show that / in Theorem 1.1 has somewhat more regularity than has
 been mentioned there. In particular, if (M,g) is C°° and 7: (-1, 1) -> M is any
 C°° curve which is a transversal to dV, then /07 is C°°. More generally, we have:

 Proposition 4.1. Let f be as in Theorem 1.1, or Lemma 3.1, and suppose that
 k > 21. Then for any C2i curve 7: (-1,1) - > M, which is a transversal to dV ',
 {dif) ° 7 ¿5 C^, w¿¿A respect to any system of local coordinates. In particular f o 7

 This follows quickly from the following elementary observation:

 Lemma 4.2. Let h: (-1, 1) -» R^ 6e a continuous map. Suppose that h = 0 on
 (-1,0], ft is C* on (0, 1), and ''h''2 is C2t everywhere. Then h is C£.

 Proof We proceed by induction on Í. First suppose that £ = 1. Note that if ft'(0)
 exists, then /i'(0) = 0, since h is contant on (-1,0]. Further, by l'Hopital's rule,

 h'(0) = 'unh{t)-m=limh'(t).

 Thus to show that h is C1 it suffices to check that lim^o h'{t) = 0. To see this,
 note that all derivatives of ''h''2 have to vanish at 0. Thus

 lib. «oil' = ^ M 2 _ u» !M! _ hm dm')«')" . „.

 Next suppose that the lemma holds for £. Then we need to show that h is C^+1.
 Note that, similar to the case for I = 1, we have

 ^)(o) V y = Um^Wñ(o) = lim/l^)(í). V y V y t->0 t *-K) V y

 So, again we just need to verify that lim^o ^+1H*) = 0. The computation is a
 straightforward generalization of the one given earlier:

 |lim^>(*)||a llt->o v II = t-^o lim^W t 2 llt->o v II t-^o t

 v hm e'h(t) 2 = v hm / t-¥0 t£

 _ (a).tai!î«B^_a v y v y t->o (2€)!
 D

 Proof of Proposition 4.1. It suffices to prove this result for Lemma 3.1, for then the
 corresponding statement for Theorem 1.1 follows immediately (recall that, in the
 proof of Theorem 1.1, / is given by (/1, /2), and /1 is Cfc+1; thus the regularity of
 / in Theorem 1.1 corresponds to that of fi, which in turn coincides with the map
 / in Lemma 3.1). Next note that if 7 is disjoint from 9V, then we are done, since
 / is C2i on M - dV. Further, since 7 meets dV transversally, it suffices to consider
 the curves 7 which map (-1,0) to V and (0, 1) to M - V. Then h := (dj) o 7
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 vanishes on (-1,0), is Cl on (0, 1) and ''h''2 = #¿¿(7), which is C2i. So, by Lemma
 4.2, h is Cl. Next note that, since (<%/) o 7 are C£, the Jacobian matrix of / is

 C£ on 7. Further, by the chain rule, (/ o j)f(t) = Jac/7(t)7'(t). Thus, since 7' is
 C2i-i > Ci^ it follows that Q o 7y ¡g ct^ and therefore / ° 7 is Ce+1. D

 5. Questions

 _ As we mentioned in the Introduction, we do not know if the isometric extension
 / in Theorem 1.1 can be constructed so that it is Ck everywhere. The problem
 here is that we do not know whether / in Lemma 3.1 is Cfe, or whether one can
 always choose / in such a way that / will be Ck. More succinctly, we would like
 to know:

 Question 5.1. Let M be a C°° manifold, and g be a Ck symmetric bilinear form
 on M which vanishes on a set B C M diffeomorphic to a closed ball, but is positive
 definite on M - B. Does there exist a Ck mapping / : M - >> HN such that /* (, ) = #,
 and / is an embedding on M - B?

 In other words, can one extend Nash's isometric embedding theorems to mani-
 folds with degenerate metrics? We do not know the answer to this question even
 when B is a point. If the answer to the above question is yes, then / in Theorem
 1.1 is Ck.
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