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 Local Isometric Imbedding of Riemannian

 Manifolds with Indefinite Metrics

 AVNER FRIEDMAN

 Communicated by T. Y. Thomas

 Introduction. In 1873 Schläfli [9] conjectured that a Riemannian manifold
 Rm with positive definite and analytic metric can locally be imbedded isometri
 cally as a submanifold of a euclidean space En , provided n 2: \m (m + 1). In
 1926 Janet [5] described a method of proof which however (as he himself
 observed) was incomplete. In 1927 E. Cartan [3] gave a proof based on his
 theory of Pfaffian forms. Burstin [1] in 1931 completed the proof of Janet and
 also extended it to the case in which the enveloping space is a given Riemannian
 space Rn with positive definite and analytic metric. Recently Leichtweiss [6]
 gave a new proof of Burstin's extension based much more substantially (than
 [1]) on the Gauss-Codazzi equations of differential geometry. His proof is more
 involved than that of Burstin. Theorems on global isometric imbeddings of
 Rm into En which are of class Ck (k S: 3) provided the metric tensor of Rm is
 of class Ck have been established by Nash [8]. For compact Rm he assumes
 that n^\m (3m + 11).

 The first purpose of this paper is to extend the theorem of Janet-Cartan
 Burstin to Riemannian manifolds with indefinite metrics (such as the space
 of General Relativity). The metric tensors are still assumed to be analytic and
 non-degenerate (for semi-positive definite metric, see Lense [7]). We prove the
 following theorem (Theorem 1): If the metric tensor gab of Rm has p positive
 and q negative eigenvalues (p + q = m) and if the metric tensor gu of Rn has
 at least p positive and at least q negative eigenvalues (no restriction being
 made on the signature of the remaining eigenvalues), then there exist local
 isometric and analytic imbeddings of Rm into Rn , provided n 5; \m (m + 1).
 Our proof, like that of Burstin, is based on the general outline of Janet but
 otherwise it is a new proof even in the case of positive definite metrics.

 We also consider in this paper the question of imbedding a given submanifold
 Rm of Rn in a family Rm(t) of isometric submanifolds. We prove (Theorem 2)
 the existence of such a family of analytic submanifolds which varies analytically
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 626  AVNER FRIEDMAN

 with t, |£| small, and Rm(0) = Rm , provided n ^ \m (m + 1)- The metrics of
 Rm and Rn are assumed to be analytic and Rm is assumed (roughly speaking)
 to be non-flat. The special case of Rn having a positive definite metric was
 proved by Leichtweiss [6] and, without establishing the analyticity of Rm(t)
 in t, earlier by Burstin [2]. Our proof is based on the proof of Theorem 1, con
 bined with a procedure used by Leichtweiss.

 We finally consider the question of connecting two given submanifolds j Rm
 and 2Rm of Rn which are isometric, by a family Rm(t) of isometric submanifolds.
 This is solved (Theorems 3, 3') under some assumptions (such as non-flatness of
 JRm , 2Rm) provided n > \m (m + 1). Our result for positive definite metrics
 (Theorem 3) is slightly weaker than the analogous result of Leichtweiss [6].
 Theorem 1 is proved in §1, Theorem 2 is proved in §2, and Theorems 3, 3' are

 proved in §3. A few lemmas used in proving Theorems 1, 3' are proved in an
 appendix.

 1. Isometric imbedding of Rm into Rn . All functions in this paper are real
 valued, m and n are positive integers. The indices a, b, c, d, e run from 1 to m,
 and the indices h, i, j, k, I run from 1 to n. Let Rm be a Riemannian space with
 indefinite non-degenerate metric tensor gab(u') having p positive and q negative
 eigenvalues (p + q = m), and let Rn {n ^ m) be a Riemannian space with
 indefinite non-degenerate metric tensor ga(xk) having at least p positive and
 at least q negative eigenvalues; no restriction being made on the signature of
 the remaining (non-vanishing) n — p — q eigenvalues.

 Theorem 1. Let gab(uc) be analytic junctions in a neighborhood of uc = 0 and
 let ga(xk) be analytic junctions in a neighborhood oj xk = 0. Ij n ^ § m (m + 1)
 then there exist analytic junctions xk — xk(uc) in a neighborhood oj u° = 0 which
 satisjy the conditions:

 (1.1) x\0) = 0, rank (~ (0)) = m, 9ii{x\u')) = gjuc).
 Thus, Theorem 1 asserts the existence of a local analytic and isometric im

 bedding of Rm into Rn .
 Prooj. By an analytic transformation ([4], pp. 52-56) we can obtain new

 gu and new ^-coordinates which are euclidean at the origin, i.e.,

 (1.2) Çii(0) = ± Su , = 0.

 Hence, without loss of generality we may assume that (1.2) is already satisfied
 for the original x-coordinates. Similarly we may assume that

 (1.3) gai(0) = ± S.k , = 0.

 We may also assume that

 (1.4) sgn 5^(0) = sgn gaa{0) if i = n - m + a.
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 ISOMETRIC IMBEDDING  627

 The arrangement of the signs of the g{{(0) for i ^ n — m is immaterial. In what
 follows, m' will run from 2 to m, the indices a', b', c', d', e' will run from 1 to m',
 and the indices a", b", c", d", e" will run from 1 to m' — 1. Further, we set
 n' — n — m + m' and let the indices h', i', j', k', I' vary from 1 to n', and the
 indices h", i", j", k", I" vary from 1 to n' — 1. We define Rm> (m' < m) by the
 equations um'+1 = • • • = um = 0 and Rn- (n' < n) by xn'+1 = • • • = xn = 0.
 We wish to obtain the imbedding of Rm into Rn by imbedding inductively
 into Rn- , each step being an extension of the previous one. We need a few
 preliminaries.

 Definition. Let Y[(xk), , Y^(xk) be n-dimensional vectors and set
 b\ll(xk) = ga(xk) Y{(xk) Yl(xk). Consider the determinants

 b,{xk) = det {b^{xk)) (1 g X, ^ v) for

 If all the b,(xk) are different from zero at a point x\ , then we say that
 the 71 , • • • , Yla satisfy the B-condition at the point x\ . If xh = xk(u") and
 Xo = xk(ul), then we also say that the B-condition is satisfied at the point ul .

 It is well known ([4], pp. 103-104) that if the Fx satisfy the B-condition
 at a point xk0 , then they can be orthonormalized by the process of E. Schmidt.
 Thus, there exists an orthonormal set E{ (i.e., = ± <5X„) such that, at xka ,

 The converse of this theorem is also true (see Lemma 3 in §3) but it is not used
 in this section. We shall need the following result.

 Lemma 1. Let E[ , • • • , El be orthonormal vectors at a fixed point A in R„ .
 Then there exist vectors Exr+l , • • • , E\ at A which complete the given vectors to
 an orthonormal basis.

 The proof is given in the appendix at the end of this paper.
 Clearly the B-condition depends on the order in which the vectors appear.

 In what follows we shall consider vectors indexed in the form

 and only those appear for which ä ^ b. Unless the contrary is explicitly
 stated, it will be understood that these vectors are arranged in lexicographic
 order, that is, & precedes & if ä < b', Çab precedes fa if either â < c or, in case
 ö = c, if b < d; finally every precedes every fa ■

 Consider the mapping x' = x (V) in a neighborhood of u" = 0, where ä,
 b, c run from 1 to in, and I, j, k, I run from 1 to n. Consider the vectors

 x

 Fx = 2 aXyEi and axx * 0 (1 ^ X ^ a).

 I £ab (fi) b

 dx\uc)
 dua

 where the Tja are the Christoffel symbols of the second kind in the x'-space.
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 628  AVNER FRIEDMAN

 If the first min (n, \m (to + 3)) of these vectors satisfy the B-condition at
 u" = 0, then we say that the mapping x' = x'iu") satisfies the B-condition.
 We can now describe the inductive assumption. We assume that ßm-_x has

 been imbedded in Rn.-i and that the vectors

 (1.5) — K ) dx' ^ )
 du" ' du" du du" du

 satisfy the .B-condition. We shall prove that Rm- can be imbedded in Rn. in such
 a way that the imbedding satisfies the B-condition, that is, if m' < m then the
 vectors analogous to (1.5) (with " replaced by ') satisfy the B-condition, whereas
 if m' = m then the first min (n, \m (m + 3)) of these vectors satisfy the B-con
 dition.

 We remark that in case of positive definite metric tensors, the B-condition
 is equivalent to linear independence whereas, in any case, the B-condition
 always implies linear independence. From the inductive procedure described
 above it follows that by way of proving Theorem 1 we shall also prove that the
 first min (n, \m (to + 3)) of the vectors

 /, r\ dxilf) d2x'(uc) ; / dx'(u') dxk(uc) (1'6) ^rS7 + r"(l("))_S7 W
 satisfy the B-condition; hence the rank of the matrix (1.6) is min (n, §m (wi + 3)).
 A submanifold xl = x'(uc) with the last property is called planar. Geometrically
 this means that the vector space formed by the tangent vectors to the sub
 manifold and the normal curvature vectors of the submanifold (with respect to
 Rn) is of maximal dimension. In the following we shall not make any use of this
 interpretation.
 We start with the imbedding of Ä, in Ä„. , n' = n — m + 1. The case n — 1

 is immediate. If n > 1, we take xL = x2 = • • • = xn'~2 = 0 and try to find
 xn'~l, x"' which satisfy

 (1.7) gM = gn(u), n'), x (0) = 0,

 where g\ß(x') is the function g\„{xk) when all but xn'~l, xn' are identically zero,
 and similarly for g^u1). We only consider the case <7h(0) = — 1 (the case of
 + 1 can be handled similarly with minor changes). Then, by (1.4), gn>n. (0) = — 1.
 If a solution of (1.7) exists then, upon setting

 dz"'"1«)) dx"\ 0) „ dtxn'~\G) dV'(0) r
 du1 du1 '' (du1)2 7' (du1)2

 we find that (recall that ^„.-^„.-^O) = ± 1)

 (1.8) ±a2 - ß2 = -1, ±«7 - ß ô = 0.

 It is then easily seen that for the B-condition (of the imbedding) to hold it is
 enough to take ß 4= 0, 5 4= 0. We now take xn'~l(ul) to be any analytic function

This content downloaded from 
������������70.187.211.104 on Sat, 16 Jul 2022 16:30:28 UTC������������� 

All use subject to https://about.jstor.org/terms



 ISOMETKIC IMBEDDING  629

 of w1 having numbers a and y for its first and second derivatives at u1 = 0. The
 numbers a, y are taken in the range for which the solution ß, S of (1.8) exists
 and ß 4= 0, S 4= 0. We next differentiate (1.7) with respect to u1 and obtain a
 second order equation in xn'. Taking the initial condition

 *"«» -0 " "■

 the existence and uniqueness of an analytic solution follows by the Cauchy
 Kowalewski theorem (note that the equation is of the normal form). By
 uniqueness, its second derivative at u1 — 0 is equal to 5. Since the solution also
 satisfies (1.7) when ux = 0, we have actually obtained a solution x"'(ul) of (1.7).
 We have thus established the existence of an isometric and analytic imbedding

 of Ri into R„' , satisfying the 5-condition.
 We now assume that a local imbedding satisfying the 5-condition has already

 been constructed for Rm--i (into Rn>-0, where m' < m, and we proceed to
 construct it for Rm, (into Rn-). The case m' — m will be considered later. We
 shall denote by Gm>-X an appropriate neighborhood of the origin in Rm>-\ •
 For the sake of definiteness we assume that <7m-m'(0) = —1, the case of +1
 can be handled similarly with only minor changes.
 We next introduce in Rm. geodesically parallel coordinates (p1, • • • , pm') by

 constructing (analytic) functions ua'(pb') which satisfy ([4], p. 57)

 (1 9) d u / d'\ du du (L9) (dp-y Tt Au} v dp- '
 (1.10) u°"{pb", 0) = p"", um'(pl", 0) = 0,

 (1.11) gMW'ip'", 0)) jÇ (P'", 0) ^ (p*", 0) = .
 dp dp

 Here the r^c, are the Christoffel symbols of the second kind in Rm. .
 We obtain a new metric tensor

 , C'S duc &ud
 ) - 9c'i' df. ,

 (1.12) g.-M') = 0, gm-M') - -1.

 Using (1.3), (1.10), (1.11) we get dua'(0)/dph' = Si', . By differentiating (1.11)
 and by (1.9) we also get d2ua'(0)/dp1'dpe' = 0. Hence, using (1.3), (1.12) we
 conclude that

 (1.13) gM0) = gM0) = ±i..h. , gm,m.(0) = -1, = 0.
 dp

 For brevity we omit, in the following, the bar above the ga,b> . We observe, by
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 630 AVNER FRIEDMAN

 (1.10), that the imbedding xx" = x'"(ua"(pb")) = x'"(ph"), xn'(pb") = 0,
 satisfies the 5-condition in the new coordinates pb".
 We now introduce the expressions

 ia\ v r c'\ I »'/ «'\\ dxxXp°') dx'Xp"') , C'N (1.14) Ea.y{p ) = gil{.(x (p )) ga'b'(p ),
 dp dp

 where ga-b'(pc) stand for

 gi'i'ix1, , xn', 0, • • • , 0), ga-iAp\ ,pn', 0, • • • ,0)

 respectively.
 By the inductive assumption,

 (1.15) Ea-.b,,(pc", 0) = 0 onsome Gm^x .
 We shall determine dx''/dpm' on Gm--i by the equations

 (1.16) Ea..m. = 0 on ,

 (1.17) Em.m, = 0 on Gm'-i ,

 (1.18) ~^Ea,.m, +-^;Eb„m ~Ea,.b„ = 0 on Gm,., .
 dpb dp dp

 Next we shall prove the existence of an analytic solution x''(pc') of the system

 (1.19) -^iW = 0,
 dp

 (1.20) r*Em.m. = o,
 dp

 d2 „ d2

 (1.21)
 m7~2 E a "b" H £77 ~'Ea

 (idpm y dp dpm

 + S - - S t„ Em.m. = o
 dp dp dp dp

 in some neighborhood Gm- of the origin in Rm. . If (1.16)-(1.21) are established,
 then it easily follows, as in [5], that

 (1.22) Ea,y(p°') = 0 in Gm, ,

 which proves the isometry of the imbedding x1' = x*'(pc'). By way of solving
 (1.16)-(1.21) we shall also prove that the imbedding satisfies the 5-condition.
 We first write the equations (1.16)-(1.18) more explicitly, namely,

 (1.23) gi'Axl')^^ = g.»m- = 0 on dp dp

 (1.24) = - 1 on GV-i ,
 dPm' dpm ■
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 ISOMETRIC IMBEDDING 631

 ,_V,r d2x' , ,h,s dxk' dx1' 1 dx''
 Q''i'(X ) a" n 6" Fk>r(x ) o,

 (1.25) LôP -1 dp
 p 1 dça"b" P *a"6",m' 2 _ / Oll vJ"m'—1

 )

 where the r„.are Christoffel's symbols of the first kind.
 To solve these equations for dx''/dpm' we shall introduce (following

 Leichtweiss) an orthonormal basis of vectors at each point of . We first
 set

 /, r>a\ i' dx' i' dV dx' dxk „ (1.26) w... = — , «W< = w, = + r,.». —7.-77-, on ,
 dp dp dp dp dp

 where the set [a", b"} is indexed by p,m' ^ p ^ m0, and m0 = + 1) — 1.
 By the inductive assumption it follows that the vectors (1.26) (as vectors in
 Rn') satisfy the 5-condition on (recall that xn' — 0 on (rm._1). Hence, there
 exist vectors ed.. , e\' such that

 (1-27) w'a'.. = 2 Oa-'d'-ei" ,
 d"-1

 (1-28) wl' = X) Upd-ei,'- + 2 a^eï ,
 d'' -1 c=m'

 where a., m». — 0 if d" > a", ap, = 0 if <r > p, ad>.d-> 4= 0, app 4= 0, and the
 following relations hold:

 (1.29) 0,',-(z*')ex'4' = ±5X(1 (X, /i = 1,2, • - • , m0) on (?„._! .

 From the construction of the e's ([4], pp. 103-104) it follows that all the func
 tions a,\n(pa"), el'(pc") appearing above are analytic functions. Also, since
 xn\p") = 0,

 (1.30) en:,.{p°") = 0, e;'(pc") = 0 on .

 We complete the vectors eI'.. , e'p' to an orthonormal basis in by adding
 n' — m0 vectors é« . (The index w runs from m0 + 1 to ft' and the index «' runs
 from ra0 + 1 to n' — 1). The construction can be carried out in such a way
 that (in addition to the orthonormality relations) we have

 (1.31) eV") = 0, e*:(0) = C .

 Indeed, we first take constant vectors e'l which satisfy together with ej'(0)
 (1 g X ^ m0) the B-condition and are such that

 c = o, c =

 (The existence of the êf. follows by Lemma 1). We then have only to apply the
 orthonormalization method of Schmidt to the vectors ela'..(pc"), e'„'(pc"),
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 632 AVNER FRIEDMAN

 . We note that since (0) = — 1, we have

 (1.32) gi-i'(xk'(pe"))en'(pc")ei'.(j>c") = -1 on .
 We proceed to construct dx''/dpm' on Gm--i . We try to write it in the form

 J ' m'—l m0 n'

 (1.33) ^ = E M" + E bA' + E on .
 07) d''"l c=m' w = m0 +1

 By (1.26), (1.27), the equations (1.23) are equivalent to

 X ± aa"i--{vc")bi'-{pc") = 0,

 or to

 (1.34) 6,-.(pc") = 0.

 Similarly, the equations (1.25) are equivalent to

 (1.35) £ ± apA(pc") = -1 Wm;0).
 o=m' " dp

 This system of equations has a unique solution. Using (1.13) we conclude that,
 for pc" — 0, equations (1.35) are equivalent to

 (1.36) 6,(0) = 0.

 Finally, equation (1.24) is equivalent to

 (1.37) E ± W))2 + E ± (Mp°"))2 - (W))2 = -1
 u ' = m0 + l

 (here we made use also of (1.32)). Thus, we are free to choose the 6„.(pc"),
 provided bn\pc") is taken such that (1.37) is satisfied. We define

 (1.38) M0) = 0.

 Other restrictions on the bu> will be imposed later. If p°" is sufficiently close to
 the origin, as we may assume, then (1.37) can be solved by taking

 (1.39) bn,(p°") = {1 + E ± W")f + E ± (Mp°'W

 We now differentiate (1.33) and obtain (using (1.34), (1.36), (1.38))

 — - Z j! «;:.(o)
 (1.40) ap" ^

 + E (0) + E 7«"«'6»'(0) + ^c'-n'^n^O).

 Since db^(0)/dpc" does not depend on the choice of the ba.(pc") (provided only
 (1.38) is satisfied), it is seen that all the A's in (1.40) are independent of the
 choice of bU'(pc") (provided (1.38) holds). On the other hand the yC"U- can be
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 ISOMETRIC IMBEDDING 633

 made arbitrary by arbitrary choice of dba.(0)/dp°". Indeed, we have

 (1.41) %"»• = + Ac.,a. ,
 dpc

 where the are independent of the ba,(pc"). Later on we shall make a
 special choice of the y.

 We now turn to equations (1.19)—(1.21). We can write them in the form

 /, rffv, / h'\ dx1' f dV . . hdxk' dz'l „

 /■i ,<1\ / *'N dz' / dV , dx'' dz1'! „
 (1.43) ) -, , + !>,.<* ) — —) - F„. , Anm' 1 * *'«'v / ) dpm dp""

 „ jr: v- + ri'','(xA') dx" dx''
 (1.44)

 dp" ' dp"" ' ' dp"" dp"'

 I. Ûx _l p>'; (xh'\ dx dx \ p W? sp" ap-'J "
 where Fa■ , Fa-.b,. are given analytic functions which involve pa', xh', dxh'/dp"',
 dW/dp'"dp1' (but not d2xh'/(dpm')2). (1.42)-(1.44) is a differential system
 of m0 + 1 equations in n' unknowns x'\ Suppose that a solution exists which
 takes on (?„<_i the initial values x'', dx''/dpn' already determined. Let us then
 calculate d2xi'(p"")/(dpm')2 at p°" = 0.

 We write

 = £ A,.,..*:;..«» + £
 (1.45)

 + 2 %»'»'e<M0) + Am>n-e'„'(0).

 By (1.42), (1.44) we get (using (1.27), (1.28) and noting that r£',.(0) = 0
 by (1.2)),

 (1.46) 2 ^ = Fa" )

 (1.47) J2 ± api"Am-i" + £ ± = Fa..h.. (where p = {a", &"}).
 By (1.43) we get (using (1.33))

 (1.48) 2 + 2 =t •

 Note that all the functions in (1.46)-(1.48) have to be taken at the point p°" = 0.
 Equations (1.46)-(1.48) (at p°" = 0) show that Am-i>. , Am,„ and A„.n. (for
 fixed yC"u') are determined by the equations (1.42)—(1.44) in a unique manner,
 depending on the ye--a- , but independently of the (since &„.(0) = 0)
 whereas the ym-u> can be taken in an arbitrary manner.
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 634  AVNER FRIEDMAN

 We shall now determine the y„-u- which appear in (1.40), (1.45). By analog
 with (1.26) we define the vectors

 (1.49)  w a' )  Wa'b*

 (taken in lexicographic order). We want to choose the y„<„. in such a way that
 the vectors (1.49) satisfy the B-condition at pc" — 0. The Grammian matrix
 (?i'f(0) Wx'(0) wi'(0)) (X, p = a', {a', b'}) has the form

 C =

 0

 B1  B2

 0 0

 Bt

 -1 0 ••• 0

 0

 : B>
 -o

 Bt Bt

 Ä«..  7
 X1-m' p

 BA

 A
 ■tJ-c m'

 Bs

 pit* + Ba

 — foo)> (p> Q 1> ' ' ' > 2^1 (m' -f- 3)),
 where the Äm.e. , Äm.„ and the last row and column of Be depend on the yc>>a>
 but otherwise the B{ are independent of the 7a<u. ; D* denotes the transpose
 of D, T = (7„'U')> and PIT* = (J2 e*'y*-u-yyu-) where e„. = gu e'a. .
 r is a matrix of m! rows and n' — m0 — 1 columns. Since we are considering
 the case m' < m, n' — m0 — 1 ^ m'. From the form of C it is seen that if we take

 (1.50) r =

 X + Su s12

 ^21 X + 62:

 Sm'l fim'2

 Sim'

 Ô2 m'

 X + Sm

 Siß

 &2ß

 Sm'ß.

 , (ß = n' - m0 - 1),

 where |5MF| ^ const., and if X is sufficiently large and % is sufficiently large com
 pared to X, then det (c„) 4= 0 (p, q = 1, • • ■ , r) for all r S hm' (m' + 3), that
 is, the vectors (1.49) satisfy the 5-condition. We thus take in (1.50) X, % suf
 ficiently large and X = o(X), and from now on the ya.a. are fixed. We also fix
 the ba,(pc") such that they are analytic functions satisfying (1.38), (1.41).

 We return to the equations (1.42)-(1.44). Since the number n' of the unknown
 functions x*' is larger than the number m0 + 1 of the equations, and since the
 rank of the coefficients matrix is m0 + 1 at pc" = 0 (and hence in a neighbor

This content downloaded from 
������������70.187.211.104 on Sat, 16 Jul 2022 16:30:28 UTC������������� 

All use subject to https://about.jstor.org/terms



 ISOMETRIC IMBEDDING  635

 hood of pc" = 0 which we may assume to be we can determine
 n' — m„ — 1 of the x'' in an arbitrary manner and then solve for the rest of
 the unknowns. For simplicity we may assume these unknowns to be x', 1 5= v ^
 m0 + 1. We then take the x„ (m0 + 2 ^ ß S n') to be any analytic functions
 subjected only to the initial conditions (on x) on the x", dx"/dpm' and to
 the condition that at pc' = 0 (1.45) holds for i' = p. where the A's are determined
 by (1.46M1.48).
 The system (1.42)-(1.44) is now reduced to a normal system in the x', that

 is,

 Combining (1.51) with the initial conditions x"(pa") = 0 and (1.33), we have a
 system to which the Cauchy-Kowalewski theorem can be applied. Thus there
 exists a unique analytic solution x". Combined with the x" (m0 + 2 ^ ß g n',)
 we obtain an analytic solution of (1.42)-(1.44). From the uniqueness of the
 solution x" and from the way the ô2x"(0)/(ôpm')2 have been determined it
 follows that the dV(0)/(dpm')2 (are uniquely determined and) satisfy (1.45).
 Thus the solution x'' which we have just constructed satisfies (1.45). Hence the
 vectors (1.49) satisfy the 5-condition. We have thus completed the construction
 of an analytic isometric imbedding of Rm' (m' < m) into Rn. which satisfies
 the ß-condition.

 It remains to consider the case m' = m. In this case the number of the is

 n' — m0 — 1 = n — (m + 1) (thus the ba. may not appear at all). The proof
 proceeds in a similar manner. By making a good choice of the , which is a
 matrix of order m X (n — \m (m + 1)), we can get the first

 m0 + 1 + min (m, n — %m{m + 1)) = min (n, |m(m + 3))

 vectors of the set (1.6) to satisfy the B-condition. The proof is then completed
 as above. We have thus proved that there exists a local analytic and isometric
 imbedding of Rm into Rn which satisfies the B-condition.

 Remark. The above proof shows that the imbedding is not uniquely determined
 and that the number of free parameters does not depend on the signatures of the
 metric tensors. The calculation of the number of these parameters for positive
 definite metrics is given in [6].

 2. Isometric imbedding of a submanifold in a family. Let Rm be an analytic
 submanifold of R„ and let the metric tensor ga(xk) of Rn be analytic and non
 degenerate, no restriction being made on its signature. We say that Rm is locally
 imbedded isometrically in a family of submanifolds Rm(t) of Rn , if the local
 equations x\u, t) of Rm(t) satisfy

 (1.51)

 (2.1) x\u\ 0) = x\u"), I [<7„(*V, t)) = 0,
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 636  AVNER FRIEDMAN

 for all t sufficiently small, where x' = x\u ) is the local representation of Rm .
 It is agreed once and for all that we do not consider here trivial imbeddings,
 that is, imbeddings induced by a continuous family of isometries of Rn .
 Leichtweiss [6] proved the existence of analytic submanifolds Rm(t) satisfying
 (2.1) and varying analytically with t, and Burstin [2] proved earlier the same
 result but without the analyticity in t; in both papers Rn has a positive definite
 metric tensor. The only assumption made in [2], [6] is that the origin (we take
 z*'(0) = 0) is not a flat point of Rm . For the sake of completeness we define this
 concept here.

 A twice continuously differentiable submanifold Rm-i of Rm , which contains
 the origin «" = 0, is said to be non-asymptotic at the origin if the vector space
 generated by the tangent vectors of Rm-1 (at u = 0) and by the normal curvature
 vectors (at ua = 0) has a maximal dimension. Thus, if u" = u"(yb) are the
 equations of Rm~i and if the a;'-coordinates and «"-coordinates are euclidean
 at the origin (i.e., if (1.2), (1.3) hold), then

 rank , -£= l—\o)
 Ç2 2) I dll Di) \&I> / Dv° W

 _ rnni, fct'(O) du\0) due(0) D (dx'V.\ _ m(m + 1)
 l du dv< Du" \ducr>l 2

 where ä, b, c run from 1 to m — 1, u"(0) = 0, and D/Dvb , D/Du are mixed
 covariant derivatives.

 If there exists at least one non-asymptotic submanifold Rm-1 at the origin,
 then the origin is not a flat point. Now, for positive definite gu(xk) it is easily
 shown [6] that by change of coordinates we may obtain, in case the origin is
 not a flat point, a non-asymptotic submanifold defined by um = 0, that is,
 Rm-X is non-asymptotic. For indefinite metric tensors, we shall need (below) to
 assume more than the condition (2.2), namely, we shall need the 5-condition.
 Since the 5-condition is not invariant under change of coordinates, we shall
 introduce the following condition:

 (A) The a:'-coordinates and the «"-coordinates are euclidean at the respective
 origins, x\0) = 0, and the vectors

 (2-3) («',!>>'=1,
 du du du

 satisfy the B-condition for any to' = 1,2, ••• ,to — 1.
 Condition (A), for a positive definite metric ga(xk), merely states that Rm~x

 is non-asymptotic.

 Theorem 2. Let Rn be a Riemannian manifold with analytic and non-degenerate

 metric tensor gi, (xk) in a neighborhood of the origin and let Rm be an analytic sub
 manifold mth local coordinates ua, such that the condition (A) is satisfied. If
 n ^ |m (m + 1) then there exists in a neighborhood of the origin a family Rm(t)
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 ISOMETRIC IMBEDDING  637

 of analytic submanifolds which is analytic also in t, for |£| small, and which is
 isometric (for any fixed t) to Rm .

 By the remarks made above it follows that the special case of Theorem 2 in
 which the metric g>j(xk) is positive coincides with the analogous result of [6],

 Proof. We shall construct the imbedding of Rm by induction: We suppose that
 we have already constructed the imbedding family for Rm--i and we
 shall extend it to a family Rm*(t). We first consider the imbedding of Rx in Ri(t).

 We have to solve the equation (for xk = xk(u, t))

 Al** /)i*'

 (2.4) = ,0)

 In order that the imbedding will not be trivial, the expression (compare [6],
 p. 468)

 (2.5) »«<*'<0. <>> îë (i)<0. <> 1
 must be a non-constant function of t. We now note that at least one of the <7«(0)
 must be equal to gn(0); for simplicity we take it to be gnn(0). We can clearly
 find a solution

 (2.6) AO, t) = 0, = xXt), ST(t) * 0

 of (2.4) at u1 — 0. Indeed, the X' have only to satisfy

 (2.7) £ g>M(zW = jf«(0), m * 0,
 *-l

 (recall that ^„„(0) = gn(0)). Next, differentiating (2.4) we get

 (o g) q (xh\ — — u. ... — âSu (2'8^ 9nn{- ' (du1)2 du1 + du1 '
 which is equivalent to (2.4), since (2.4) is already satisfied at u1 = 0. We can
 choose x" (1 ^ a g n — 1) as arbitrary analytic functions satisfying only the
 restrictions of (2.6), and then solve (2.8) for xn, by the Cauchy-Kowalewski
 theorem. The solution will then depend analytically also on t. We can clearly
 make use of the freedom of choosing d2x"/(du1)2 and the Za to obtain a solution
 for which (2.5) varies with t.

 We now proceed by induction. We do not have to take care any more of the
 non-triviality of the imbedding, since it is non-trivial already for Ri . To con
 struct Rm'(t), we first (as in §1) introduce in Rm. geodesically parallel coordinates

 p°'. Since the vectors w\,,(-pc"), w'a..y,(pc") corresponding to Rm--i satisfy
 the ß-condition, we can represent them (as in §1) in terms of orthonormal
 vectors etd,.(pa"), e\(-p°"). The vector

 (2.9) <«0) =
 dp
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 638  AVNEE FRIEDMAN

 is orthogonal to ed,,(0), e'f(0), as follows by the analogs of (1.23), (1.25) which
 clearly hold for Rm^ .We now construct by Lemma 1 vectors e*< (0) which form
 together with e'd'.(0), e,(0), e^(0) an orthonormal basis. Next, by the Schmidt
 process we obtain an orthonormal basis ed.,(pc"), e'p(pc"), e'„(pc"), exa,(pc") for
 pc" in some neighborhood of pc" = 0. In the following we shall assume that
 ffm'm'(O) = — 1 (the case of + 1 is treated in the same way).

 We now try to construct (on pm' = 0)

 dx'ipC ' °'l) = E bd,.(P°", tyd.,(vc")
 (2.10) dp

 + 2 bp(pc"> t)e'p(pc") + 13 ba{p°", t)el{pc")

 such that it agrees for t = 0 with dx'(pc", 0)/dpm' which is known and whose
 coefficients in the representation analogous to (2.10) are hd.,(pc") = 0, b„(p°")
 and ba(p°"). In the following, whenever we refer to equations (1.23)—(1.25),
 (1.43)—(1.45) it is to be understood that the sign ' is to be omitted from the
 the quantities of Rn■ ; thus x*', n', etc. are to be replaced by x\ n, etc.
 We shall determine the right side of (2.10) in such a manner that equations

 (1.23)—(1.25) are satisfied for any small t; the right sides of these equations are
 independent of t.
 Noting that

 ^ m dx(pc ,o,t) = dx\tf ,0) + Q(ß = + 0(<))
 dp" dp"

 and similarly for w'a.,b,, , we are led to the equations

 (2.11) 2 ± a*"d"(pc")bd"(pc", t) = Ê Wpc", t)O(t),
 X = 1

 £ ± ap<^(pc")br'(pc", t) + 2 ± ap„{p°")bXp°", t)

 (2'12) = -f d0^'j 0) + S W", t)0(t), * qp x=i

 (2 13) ^ ^ ' ^)2 + X ± (bXp" , t)f
 + ^ (bw'(pc , t))2 + e(bn(pe , t))2 = — 1,

 where e = fif.,(0) e^(0) e^(0). All the functions 0(t) are analytic functions in
 (pct). Now, equations analogous to (2.11)-(2.13) with 0(t) = 0 are satisfied
 for the coefficients of dx'(pc", 0)/dpm'. Making use of (2.9) we conclude that
 6„"(0) = 6,(0) = &«,(0) = 0, b„(0) = 1 and hence (by the analogue of (2.13))
 e = — 1. We set

 (2.14) ba.(pc", t) = bu,(pc").
 Then the equations (2.11)—(2.13) are clearly solvable if 0(t) s 0, and if we make
 the restriction bn > 0 then the solution is unique, provided we consider the ba -
 as given functions.
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 ISOMETRIC IMBEDDING  639

 Hence, using the implicit-function theorem we conclude that if t is sufficiently
 small then equations (2.11)-(2.13) have an analytic solution which is uniquely
 determined if we take

 (2.15) 6n(pC"' l) = {1 + ^ V
 +x ± w, or + e ± {bAvc"> m*

 and if we set (2.14) from the beginning. Clearly, the solution coincides with the
 b's of dx'(pc", 0)/dpm' when t = 0.

 We turn to equations (1.42)-(1.44). We fix n — m0 — 1 of the x'(p"', t) such
 that they are analytic functions in (p"', t) which coincide with x\p"') when
 t = 0 and such that they and their first pm'-derivatives at pm' = 0 coincide with
 xx(pa", t) (as given by the inductive assumption) and with the functions (2.10)
 constructed above, respectively. We can fix n — m0 — 1 of the x's such that the
 remaining x' satisfy a normal Catjchy-Kowalewski system if |<| is small. This
 system coincides, for t = 0, with a system which the x'(p"') satisfy. Hence the
 solution x'(pa', t) together with the n — m0 — 1 already prescribed x's form a
 solution x\p°', t) of (1.42)-(1.44) which coincides with x'(p°') when t = 0. We
 thus obtain an imbedding of Rm■ in Rm-(t). Since the x\pa', t) satisfy the equa
 tions (1.23)-(1.25), (1.42)-(1.44), or equivalently, (1.16)—(1.21), and since
 (1.15) is also satisfied (since Äm-_j(<), determined by x'(pa", t), is isometric to
 Rm-~i), we conclude that Ea.b> = 0. Here, Ea,b, is defined as in (1.14) but with
 xk'(pc'), etc. replaced by xk(pc', t), etc. Ea>t- = 0 means that Rm'(t) is isometric
 to Rmr , hence the proof of Theorem 2 is completed.

 Remark. We note in Theorem 1 we have imbedded Rm as a submanifold of R„
 and that this submanifold satisfies the condition (A) of Theorem 2; hence we
 can imbed it in a family of isometric submanifolds of Rn .

 3. Isometric imbedding of two isometric submanifolds in a family. Let
 iRm and 2Rm be two analytic submanifolds of Rn with local coordinates u" and
 let iX*(u) and 2x\ua) be their local representation in a neighborhood of u" = 0.
 The metric tensor £,-,(xk) of Rn is assumed to be analytic and non-degenerate.
 We assume that the mapping tx'(u°) —> 2x'(u") is isometric.

 Theorem 3. Let the metric tensor ga(xk) be positive definite, let ax\Q) (a = 1, 2)
 be non-fiat points of aRm with respect to Rn, let the ax\0) belong to one x-coordinate

 patch Nx and let n > \m (m + 1). Then there exists a family Rm(t) (0 ^ t ^ 1)
 of analytic submanifolds isometric to iRm , which is piecewise analytic in t, and
 which connects iRm to 2Rm . More precisely, there exist functions x'(u°, t) analytic
 in u" in a neighborhood of ua = 0 and continuous and piecewise analytic in t,
 0 g < ^ 1, such that

 (3.1) x\ua, 0) = 1x\ua), x\u", 1) = 2x\u),

 /<> ^ r i (rk(\Ie l\\ ^ ^ n ((\ I W ( ) Jt (U ' ""ft? Ü? J ~
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 640  AVNER FRIEDMAN

 Remark 1. In [6] Theorem 3 is proved by a method different from ours and,
 actually, a slightly stronger result is established, namely, the Rm(t) are analytic
 in t. Our proof however can easily be generalized to the case of indefinite metrics,
 under suitable assumptions. This is discussed following the proof of Theorem 3.

 Remark 2. The restriction n > \m (m + 1) is essential. However, for euclidean
 spaces it is easily proved (see [6]) that if n = § m {m + 1) then either xRm or its
 reflection, with respect to any given hyperplane in Rn, can be connected to 2Rm
 by an analytic family Rm(t) of isometric submanifolds.

 Proof of Theorem 8. The Z?-condition is equivalent to linear independence
 (since (<?<,•) is positive definite). However, in order to make clear the generali
 zation of Theorem 3 to indefinite (g.j), we prefer to use the term 5-condition.
 As is easily shown (see [6]), we can assume, by change of coordinates, that

 aRm-i (defined by um = 0) is a non-asymptotic submanifold of aRm , a = 1,2.
 We next introduce, step by step, geodesically parallel coordinates p" and denote
 by oRm the space of ^'-coordinates with the metric tensor gu(p°) induced by
 Jlm . We may also assume that the ^'-coordinates are euclidean at pa = 0. The
 condition that aRm-i (defined by pm = 0) is non-asymptotic can be formulated
 as follows: For every m' = 1,2, ••• , m — 1, the vectors

 (3.3) , ^0 + r«(.s*(0)) §^~r} , (a', b' = I, ,m') dp dp dp dp dp

 satisfy the ß-condition.
 We proceed to prove Theorem 3 by induction. We first construct a family

 Ri(t) connecting A to 2Ri . Ri(t) will be represented by x'ip1, t). We take
 xl(0,2) (0 = ' = 1) to be any analytic curve in Nx which satisfies

 (3.4) ^'(0,0) = ^(0), s'(0, 1) = 2x'(0).

 We next consider the equation

 (3.5) guW, t)) dX<(^ l) t] = gu(p\ 0, ,0),
 which at p1 = 0 becomes

 /o _ /_*/n tW dx'(°> ^ dxi(°' Q _ „ (n\ (3.6) ga{x (0, t)) i — gu(0).

 For t = 0, 1 the equation (3.6) has a solution dax'^/dp1 for a = 1,2. We con
 nect these two unit vectors by unit vectors e[(t) (0 ^ t £ 1) analytic in t, and
 then define

 (3.7) = ei(t).

 We next differentiate (3.5) with respect to p1 and obtain

 ,h,dxiJd2xi i,h)dxkdx'\ 1 dgn(p\0, ■■■ , 0)
 (3.8) 9ii(x ) ¥ j(flpl)ï + Tkl(x ) ¥ dplf - 2 dpl
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 Since (3.6) is satisfied, (3.8) is equivalent to (3.5). We denote by e*u(f) the braces
 in (3.8) when pl = 0. Then, for p1 = 0, (3.8) is equivalent to the statement
 that el(t) and eh(t) are orthogonal. Now «„(0) and ej^l) are given vectors
 which are orthogonal to eî(0) and ej(l) respectively and they are non-zero
 vectors (because the 5-condition holds for the vectors (3.3) when m' — 1).
 Hence, we can connect ejx(0) to eja (1) by a vector eu(<), analytic in t, which is
 orthogonal to e\(t). We then define

 (3-9) Ö) = e»«)•

 We want to solve (3.8) with the conditions (3.4), (3.7), (3.9). An entirely
 similar problem arises in the inductive passage from m' — 1 to m'. Hence we
 shall omit details here. The solution x\px, t) is analytic in pl in some neighbor
 hood of p1 = 0 and in t, 0 S t ^ 1. Since the vectors (3.7), (3.9) are orthogonal,
 the mapping x\pl, t) satisfies (for any 0 £ t g 1) the B-condition provided p1
 is sufficiently close to the origin.
 We assume that we have already connected iRm--i to 2ß»'-i by ßm--i(0
 having the asserted analytic and isometric properties and satisfying (for any
 0 5s £ ^ 1) the 5-condition. We proceed to construct Rm-(t). We first consider
 the case m' < m. In what follows, whenever we refer to equations (1.23)-(1.25),
 (1.42)-(1.44) it is to be understood that x'', n', etc. (but not a', b', a", m', etc.)
 are to be replaced by xi, n, etc. Furthermore, the coefficients as well as the
 solutions are usually understood to depend on t. We shall make free use of the
 notation of §1, and sometimes introduce the parameter t into some of the quanti
 ties defined in §1, without further explanation.
 We define

 (3.10) ae;(0)=^M, (« -1,2).
 dp

 Since the 5-condition is satisfied for R^-^t) (by the inductive assumption) we
 can apply the process of orthonormalization of Schmidt to the vectors w'a-,(pe ',t),

 w'p(pc", t) (where p — {a", 6"}) and obtain orthonormal vectors e\.<{pc", t),
 eliP' "' 0 analytic in p°" and piecewise analytic in t. By (1.23), (1.25) we find
 that the vectors (3.10) are orthogonal to the ei(0, t) (X = a", p) for t = 0, 1
 respectively. Since the number of the vectors e{ is not more than (and actually
 less) than n — 2, we can construct a piecewise analytic vector e^(0, t) (0 ^ t ^ 1)
 which connects the vectors (3.10) and which is orthogonal to the vectors ex(0, t).
 Indeed it is easy to construct such e^(0, t) which varies continuously with t.
 Then we approximate it by an analytic vector ë'„(t) which connects the vectors
 (3.10) such that the ^-condition is still satisfied for the ei(0, t) and ë'n(t). Finally,
 by using Schmidt process we obtain from ê*n(t) a new vector orthogonal to the
 ex(0, t), which is piecewise analytic in t and of unit length, we again denote it
 (for simplicity) by e'n(0 ,t).

 We complete the vectors el(0, t), e'n(0, t) to an orthonormal basis by adding
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 642  AVNER FRIEDMAN

 vectors e'u,(t). These vectors can be taken to be continuous in t, and by using
 analytic approximation and the Schmidt process we obtain new vectors which
 we denote by ej,,(0, t). These vectors not only complete ej(0, t), e'„(0, t) to an
 orthonormal basis, but they are also piecewise analytic in t. Applying the method
 of Schmidt to the vectors e{(pc", t) eu<(0, t), e'n(0, t) we obtain an orthonormal
 basis e{{p°", t), e\,(pc", t), e'Jpc", t) at the points on (for pc" in some
 neighborhood of the origin).
 We now try to construct

 dx'(p[ :0'l) = E tyd..(p°", t)
 (3.11) P

 + E W, W", t) + E bjp0', t)eZ(p°", 0,

 which coincides for t — 0, 1 with dax'(pc", 0)/dpm' when a = 1, 2, and is such
 that (1.23)—(1.25) hold for 0 t g 1. We then find (by (1.23)) that bd..(pc", t) =
 0 and (by (1.25)) that the b„(pc", t) are uniquely determined extensions of the
 analogous coefficients abp(pc"), and b„(0, t) = 0. We next want to define ba-(pc", t)
 in such a way that

 (3.12) b„.(pe", 0) = lbH.(p'"), ba,(pc", 1) = 2bu.(p°"), MO, t) = 0.

 Then, since abn(0) = 1, the function

 (3.13) kW, t) = {i - e w, t)f - e (M?*", m*

 both satisfies (1.24) and is an extension of abn{pc"). Later on we shall show how to
 choose in a useful way the ba*(pc", t) which satisfy (3.12).

 We next differentiate (3.11) with respect to p°" and obtain, upon substituting
 V°" = 0,

 9 x (°' °' ^ + tUx\0, 0, t)) da*(0' 0> 0, da'(0, °> *)
 (3.14) dpm' df " dp"' dp'

 = E ^»"."«^"(0, t) + E Aa..p(t)e\(0, t)

 + E TV'«'(£)e«'(0, t) + Aa..n(t)ex„(0, t),

 where

 (3.15) 7.--W = Aa..a.(t) + aM„Q: t]
 dp

 Here the A's are given functions, independent of the choice of the 7's. The A's,
 for t — 0, 1, are equal to the corresponding a.4's for a = 1, 2 and

 (3*16) 'Ya"w'(0) lYa''u' f Yo' ' w'(l) 2Yo"m'

 (the «7's are given).
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 We next write

 aV"(Q, o, t) , r< , *(0 0 t)) a»*(o, o, t) dxl(0, o, t)

 (317) (apmT ' ôp"' ap-'
 = Z «) + Z ^»-p«K(o, t)
 + X) Tm'«'(Ôe«'(0, <) + Am-n(i)e^(0, <).

 The equations (1.42)-(1.44) determine the A's, depending on the but
 independently of the y„-w- , in a unique way, and when t = 0,1 the A's coincide
 with the analogous coefficients aA (corresponding to dl/xx/(dp"1')2) fora = 1, 2.
 The 7's are given for t = 0, 1 but are otherwise free. Thus we have to choose the
 7's such that

 (3.18) Tm'u'(^) lYm'w' ) 7m'w'(l) 27m'«' •

 We shall later on show how to choose the ybu.(pc", t) such that the
 vectors wa-{0, t), uv&'(0, t) satisfy the -B-condition. Once this is shown, we
 can complete the proof of Theorem 3 as follows.

 For every t0 there is a ^-neighborhood for which ra0 + 1 of the x'(pe',t) satisfy
 a normal system; the remaining n — m0 — 1 of the x'(pc', t) can be taken as
 arbitrary analytic functions. We divide the interval [0,1] into a finite number of
 such intervals /„ = , £„+,]. For 11 7X we fix n — m0 — 1 of the x'(pc', t) such
 that they are analytic functions, coinciding for t = 0 with ix'(p°'), having at
 pm' = 0 the values x\pa", 0, t), for their first pm'-derivatives at pm' = 0 the
 values of (3.11), and for their second p"1'-derivative at pa' = 0 the values of
 (3.17).

 We then solve for the remaining x'(pc', t) with the initial data x\pc", 0, t),
 dx\pc", 0, t)/dpm' (of (3.11)). The solution has ôV(0, 0, t)/(dx"~ )2 as deter
 mined above in 3.17 (by uniqueness) and, furthermore, it coincides for t = 1
 with ix'(pc'). We next turn to 12 and proceed in a similar manner, then to I3 ,
 etc. Finally, in the last interval 7, we can proceed as before, provided we can
 determine n — m0 — 1 of the x\p"', t) in such a manner that they are analytic,
 connect ix\p°', t) to tx'(pc) and such that x\pc', t), dx'(pc', t)/dpm' on pm' = 0
 and d2x'(pc', t)/(dpm')2 for p"' = 0 have the values prescribed above. We can
 take

 *V, t) = V') + y~Avc', Q

 (3.19)
 + |®V", 0,0 - \_Y~v *V", 0) + *V", 0, «,)]

 jdx\pc", 0, t) _ Tt - tvd 2xi(pc", 0) 1 - t dx'(pc", 0, pi
 I dpm' Li - u dpm' i - t, dpm' J
 1 /aV(0, 0, t) _ I" t - t, d2 2x'(0, 0) 1 - t d¥(0, 0, t,)
 O I /« tn'\ 2 I 4 /- m'NÎ? ' 21 (dPmy Li - u (dpmy i - u (dVmy (pT
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 The reason that we can assert, in Theorem 3, only piecewise-analyticity in
 t is that the n — m0 — 1 functions x'(pc', t) cannot, in general, be extended
 analytically in t at the points t = .
 The solution xk(pc', t) just found satisfies the J3-condition and also defines

 with the required analyticity and isometry properties.
 It remains to choose the t), We shall first determine ya>U'(t).

 Since (by assumption) the vectors (3.3) satisfy the 5-condition, we can apply
 the process of Schmidt and get

 (3.20) = E ada-'i" A- ,
 dp d"-i

 (3.200 = X ,
 op

 d «x (0) I p> ( - aX ^ d ax (0) Y* a e*
 df" &ph" dpdpr -

 + t .af.£, (p = \a", b"\),
 ff-m' +1

 d2 ax\0) ,• , h(m d ax\0) d ax'(0)
 ^7 + r,(.» (0>)

 a'

 ~ ^ cßa'd'' a&d" H- cßa'n cc@n ~4~ a^a'p a&p ~f" a^a'r cfim'r )

 (3.21)

 (3.22)

 for a - 1,2. Here «a«.,,. + 0, aapll =f= 0 and we may take aC0'„- > 0. The aa's
 and the „e^'s (X = a", p) are the values of the a(0, t)'s and the el(t)'s correspond
 ing to the w>à'(0, t), w'^.y.iO, t) when t = 0, 1. Since the number of the ej's is
 not more (and actually less) than n — 3, we can find orthogonal unit vectors
 e'm'r(t) which coincide for t = 0, 1 with ae'm.T for a = 1,2, which are orthogonal
 to ei(0, t) and to the e*(0, t), and which are continuous in t, 0 g t ^ 1.

 By approximating them by analytic vectors and applying the method of
 Schmidt we obtain new vectors, again denoted by e'm.T(t), which are also piece
 wise analytic in t.

 We next try to write (3.14), (3.17) in the form

 aV(o, o, t) + r< ( »(o o ds*(o, o, t) dx\o, o, t)
 dpm' dp"' K ' ' dpm' dp"

 (3.23) = £ Ba.d.'(t)e'd->(0, t) + Ba,n(t)el(0, t)

 + T,Ba.ft) + SC,,(l)4,r(i).
 T-l

 By comparison with (3.14), (3.17) we see that (3.23) is valid if Ba^(t) =
 Ao-x(0 and if

 (3.24) E7a'».«K'(0f t) = £ Ca.Xt)el.,(t).
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 Since the e'a- complete the el (X = a", n, p) to a basis, and since the e'm.T are
 orthogonal to the e{ , we have

 (3.25) = T,drAt)eUO, t).
 If we multiply (3.25) scalarly by e'„<(0, t) we obtain an expression for dra.(t)
 from which we conclude that it is piecewise analytic in t. Combining (3.24),
 (3.25) we get

 (3.26) 7«'<*'(£)= 2 dra'(t)Ca-r(t).
 T-l

 We are now ready to show how to choose the ya>„.(<). We take C«■„■(() to be
 any positive analytic function which coincides for t — 0, 1 with aCa-a> for
 a — 1, 2. We construct the remaining Ca>T{t) as arbitrary analytic functions
 which connect the aCa-T. Then the tvM'(0 are defined by (3.26). We also define
 Ba^(t) = Aa.x(t). Clearly the vectors w0.(0, t), wa,.b..(0, t) and (3.23) satisfy
 the ß-condition.

 It remains to extend the ba-(pc", t) such that (3.15) holds and such it is an
 extension of the aba>(pc"). This can be done by the formula

 bu.(pc", t) = t2ba'(pc") + (1 - t) iba'(pe")

 (3.27) + 23 {yo"u'(t) — [<27<."b' + (1 — t) i7o"«']}pa
 — S {-4a"<o'(Ö — [f 2^"»' + (1 — t) 1 .

 We have thus completed the construction of Rm>(t) for to' < to. If to' = m the
 proof is similar and is obtained from the previous proof by some minor modifi
 cations (compare the proof of Theorem 1, for ml = to). We make use of the fact
 that n > \m (to + 1) in establishing the existence of e'n(0, t).

 Remark 1. From the above proof it follows that pm — 0 is a non-asymptotic
 submanifold (at p" = 0) for any Rm(t), 0 ^ t £ 1.

 Remark 2. If instead of (3.19) in I, we use a more refined formula, and similarly
 in the other intervals J„ , then we can prove that Rm(t) is g-times continuously
 differentiable in t (0 ^ t ^ 1), as well as piecewise analytic in t, where q is an
 arbitrarily given positive integer.

 We shall now extend Theorem 3 to R„ with an indefinite metric. We need some

 assumptions.

 General assumptions. iRm and 2Rm are analytic submanifolds of Rn repre
 sented locally by ix'(u") and 2x'(ua), and ix'(0), 2z'(0) belong to one x-coordinate
 patch of Rn which we denote by Nx. ga(xk) is an analytic, non-degenerate and
 indefinite metric in Rn. ix'(u') —» 2x'(u") is an isometry. We introduce (step by
 step) in the «"-space, with the metric induced by ,Rm , geodesically parallel
 coordinates pa and denote the space of p'-coordinates with the metric gah(p")
 (induced by iRm) by 0Rm • The isometry between iR„ and 2Rm makes 2x\pa)
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 646  AVNER FRIEDMAN

 correspond to ,£l(p")- We take x'(0, t) to be an analytic curve (in Nt) for
 0 ;= t ^ 1 which satisfies: x'(0, 0) = ix'(0), x'(0, 1) = 2z'(0). We
 denote gti(xk(0, t)) simply by gait).

 Definition. For any t, 0 ^ t ^ 1, a vector £'(t) is called positive, negative or
 null if ga(t) £%(t)£'(t) is positive, negative or zero, respectively. We denote by
 K+(t), K~{t) and K(t) the sets of positive, negative and null vectors, respectively.

 We denote by K*(t) any component of either K+(t) or K~(t) which varies
 continuously with t and which is never empty. Incidentally, as is well known,
 for n ^ 3 the number of components (for every fixed t) is two if there are at
 least two eigenvalues (of gSj{t)) of each sign and is three if all the eigenvalues
 except one have the same signature. We now state further assumptions.

 Assumption (A,). The p" are euclidean coordinates of 0Rm at the origin
 pa = 0, and the vectors (3.3) satisfy the ß-condition for m' — m — 1 and for
 a = 1, 2.

 Noting that dax'(0)/dpm'+1 is orthogonal to the vectors (3.3) (see (1.23),
 (1.25)) for any to' < to, it follows (by (A,)) that we can write down the equa
 tions (3.20), (3.21) where the ae{ are orthonormal and where A"j" = 0 if
 a" + d", ad,.d.. — 1, and we also may assume that

 (3.28) aapp >0 (p = {a", b"}) for to' = 1, 2, • • • , to; a = 1, 2.

 Assumption (A2). For m' = m and a = 1, 2 the inequalities (3.28) (in the
 representation (3.21)) hold and there exist vectors e„(0, t), 4(0, t) which are
 orthonormal and continuous in 0 ^ t ^ 1, and which satisfy:

 (3.29) ei(0, 0) = , eî(0, 1) = , 4(0, 0) = 4 , ej(0, 1) = 2e'p .

 If n > \m (to + 1) and if for any X the vectors ae[ for a — 1 and a = 2 lie
 is some K*(0) and X*(l) respectively, then conditions on the mutual positions
 of the ae{ can be given under which the assumption (A2) follows.

 We can now state a generalization of Theorem 3.

 Theorem 3'. Let the general assumptions and assumptions (Ax), (A2) be satisfied
 and let n ^ |to (to + 1). Then there exists a family Rm(t) (0 ^ t ^ 1) of isometric
 cnalytic submanifolds, which is continuous and piece-wise analytic in t, and which
 aonnects iRm to 2Rm in the sense of Theorem 3.

 Proof. The proof of Theorem 3' proceeds very similarly to the proof of Theorem

 3. A few general facts about vectors which are tacitly used in the previous proof
 are not self evident in the present case of indefinite metric. We state these facts
 in a few lemmas whose proofs are given in the appendix, and omit further details
 of the proof of Theorem 3'.

 Lemma 2. Let E\ , • • • , El be orthonormal vectors at a point A of Rn . Then
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 the dimension of the vector space of solutions f (at A) of

 ÇuKf = 0, (l^gr),
 is n — t.

 Corollary. If in Lemma 1, F' is orthogonal to the vectors E\ , • • • , E'r at the
 point A of Rn, then

 F' = 2 cßEß ■
 ß-T+l

 Lemma 3. If the vectors F' (1 ^ \ ^ ß), at the point A, can be represented in
 the form

 x

 ?x = 2 <hyEl where axx 4= 0, (1^X^/3),
 7-1

 where the vectors E* are orthonormal vectors at A, then the Y{ satisfy the B-condition
 at A.

 The converse of this lemma was already used in §§1, 2.

 Corollary. If 1 ^ X ^ ß) satisfy the B-condition and if
 x

 where 6Xx + 0, (1 ^ X ^ ß),
 7-1

 then the Z{ satisfy the B-condition.

 Lemma 4. Let gait), E{(t) (1 ^ X ^ r) depend continuously on t, 0 ^ t ^ li
 where det (g(i(t)) + 0 and where the E{(t) are orthonormal, for every t. Then we
 can complete the E{(t) to an orthonormal basis by adding vectors E{ß(t) (0 û t ^ 1)
 which depend continuously on t.

 4. Appendix.

 Proof of Lemma 1. If the lemma is not true, then there exists k,r^k^n — 1,
 such that every solution /' of

 (4.1) gaEßf = 0, (1 ^ ß g k)
 satisfies

 (4-2) guff = 0,

 where the E'ß are orthonormal vectors. It is easily seen that the matrix (g^Eß)
 has rank k. Hence the solutions f form a vector space V of dimension n — k.
 If h' are vectors of V then

 (4.3) Çafti = 0.

 Indeed, this follows by noting that (4.2) holds also for h' and for f + h{. Let
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 648  AVNER FRIEDMAN

 E'k+1 , • • • , E'n be linearly independent vectors in V. Then

 9nEyE'n = 0, (1 y S ri),

 which implies that the matrix (g^Ey) is singular. Since det (<7,-,) 4= 0, the vectors
 Ey must be linearly dependent. Writing ^2 nyE* = 0 and multiplying scalarly
 by Eß (1 g ß 5s k) we obtain nß = 0. Hence, the vectors E'k+1 , • • • , E'n are
 linearly dependent, which is a contradiction.

 Lemma 2 follows immediately from the fact that the matrix (guE'ß) has
 rank t.

 Proof oj Lemma 3. Set guE{E\ = ex5x). , so that ex = ± 1. To establish the
 lemma it is enough to prove that the Grammian determinant

 «lOiiOn (iClnhi

 «l02l0ll flChldH 4" «2022022

 «1031011 €1(131021 + «2032022

 Mßian eiClßidn + «2002022

 «1011(131

 £1021031 + «2022032

 «1031031 + «2O32O32 + «3O33O3S

 «1Ö01O31 + «2032032 + «3O03Û33

 «lOna^l

 «l02l0|31 + «2022002

 «1O31O31 + «20320^2 "T" «30330^1

 «îO^ia^i + • • • + (ßüßßaßß

 is different from zero. Extracting — €1axi from the first row, then multiplying
 the first row by aMl and adding to the ju-th row, for 2 ^ ju ^ /3, we obtain a new
 determinant which has zeros at each place (ß, 1) (2 ^ p g ß). We then see that
 the original Grammian determinant is equal to et anan times the Grammian
 determinant of Y\ , • • • , Yß . Proceeding inductively we conclude that the
 Grammian determinant of Fj , ■ ■ ■ , Y'ß is equal to

 Il «x(a\x)2 * 0
 X-l

 and the proof is completed.

 Proof of Lemma 4. It is enough to construct f(t) = E'r+1(t), since then we can
 apply the same construction n — r — 1 additional times. We have to find a
 continuous solution /'(<) (0 ^ t ^ 1) of

 (4.4) Çij(t)E*(t)f(t) = 0, (l èaûr),
 (4.5) 4= 0.

 Let V(t) be the space of solutions of (4.4). We first consider the case n — r 2.
 By Lemma 2, the dimension of V(t) is n — r ^ 2. It is also easy to see that
 V(t) varies continuously with t. Hence we can construct two linearly independent
 vectors f{(t), f'2{t) in V(t), which vary continuously with t. The line L(t) through
 these vectors cannot he entirely on the cone K(t), and we denote by L+(t) an
 unbounded component of L(t) which varies continuously (and hence is never
 empty) with t. We can now take any continuous vector /*(£) (0 ^ t ^ 1) which
 lies on L+(t).
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 ISOMETRIC IMBEDDING  649

 If n — r = 1 then Lemma 1 implies that, for 0 ^ t ^ 1, the line V(t) has
 only the origin in common with K(t). Hence, V(t) — {0} lies either in K+(t)
 or in K~(t) for all t and it is clear how to construct /'(<)•
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