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 ON THE UPWARD EMBEDDING ON THE TORUS

 ARDESHIR DOLATI, S. MEHDI HASHEMI, AND MASOUD KHOSRAVANI

 ABSTRACT. An upward embedding of a digraph on an
 embedded surface is an embedding of its underlying graph on
 that surface such that all arcs are represented by monotonie
 curves that point to a fixed direction. In this paper we study
 the concept of upward embedding on the torus. We shall intro-
 duce a partition of the arcs of a digraph and based on that we
 shall investigate some characteristics of digraphs that admit
 upward embedding on the horizontal torus. We also present
 a polynomial time algorithm for upward embedding testing of
 single source and single sink digraphs on the horizontal torus.
 We shall investigate the relation between the vertical and the
 horizontal tori with respect to the upward embedding.

 1. Introduction. Graph embeddings and their generalization on
 surfaces have many applications, such as VLSI layout and graphical
 representations of a poset. In fact, it is customary and convenient to
 draw a diagram of an ordered set on the plane, whether or not edges
 cross. We may also wish to draw them on other surfaces, especially if
 this avoids the crossing of edges. In this paper we deal with the upward
 embedding of digraphs, which is defined as follows.

 An upward embedding of a digraph D on an embedded surface S is
 an embedding of its underlying graph on the surface such that all arcs
 are represented by monotonie curves that point to a fixed direction.

 The study of upward embedding on surfaces has been motivated by
 graph embedding, and topological graph theory, whose literature is ex-
 tensive (cf., for example, [8, 15]). However, there are major differences
 between graph embedding and upward embedding of digraphs. For
 instance, all genus one orientable surfaces are topologically homeomor-
 phic to a ring torus, which in turn, from the point of view of graph
 embedding is equivalent to horizontal and vertical tori. But in this
 paper we show that in upward embedding the critical points of these
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 108 A. DOLATI, S. M. HASHEMI, AND M. KHOSRAVANI

 surfaces are important and a digraph with an underlying graph with
 genus one may have an upward embedding on the vertical torus, which
 has two saddle points and a minimum and a maximum, but may fail to
 have an upward embedding on the horizontal torus, which has infinitely
 many minimum and maximum points and has no saddle point.

 While the question that whether an undirected graph has an embed-
 ding on a fixed surface has a polynomial time algorithm [5, 13], there
 exist polynomial time algorithms for upward embedding on the plane
 for some special cases such as triconnected [1], single source [1, 12],
 outerplanar [16] and bipartite digraphs [4]. However, in general, up-
 ward embedding testing of a digraph on the plane and on the sphere is
 NP-complete [6, 9].

 Mohar and Rosenstiehl [14] presented an algorithm to orient the
 edges of a toroidal map to obtain an upward embedding of it on
 the torus by the aid of flow techniques. Their definition of upward
 embedding is based on the model of the torus as a parallelogram in the
 plane whose opposite sides are identified. They defined horizontal and
 vertical circuits as the lines parallel to the sides of the parallelogram due
 to their definition an arc is monotonie if it crosses horizontal circuits

 from bottom to top. Here we try to define the concept of upward
 embedding more naturally, and so we first consider a fixed embedded
 torus in R3 and then we say that a digraph has an upward embedding
 on it if there is an embedding of its underlying graph on the surface and
 its arcs are represented by monotonie curves that flow toward positive
 direction of the z axis.

 In this paper we study the problem of upward embeddings on the two
 different embeddings of the torus, namely horizontal and vertical tori.
 We refer to them by and Tv, respectively.

 After some preliminaries in Section 2 we shall introduce a partition
 of the arcs of a digraph and then we shall present some characteristics
 of digraphs that admit upward embedding on in Section 3. Then
 in Section 4 we present a polynomial time algorithm for upward em-
 bedding testing of single source and single sink digraphs on T^. In
 Section 5 we show that the class of digraphs that have upward em-
 bedding on T h is a proper subset of the class of digraphs that have
 upward embedding on Tv. In Section 6 we present conclusions and
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 ON THE UPWARD EMBEDDING ON THE TORUS 109

 some related open problems that, from our point of view, are worth
 investigating.

 2. Preliminaries. Here we introduce some definitions and notations

 which we use throughout the paper. By a digraph D we mean a pair
 D = ( V , A) of vertices V, and arcs A. A source of D is a vertex with no
 incoming arc. A sink of D is a vertex with no outgoing arc. An internal
 vertex of D has both incoming and outgoing arcs. Let H' = (Vi,A')
 and H.2 - (^2,^2) be subdigraphs of a digraph D. Their union is
 defined as H 1 U H 2 = (Vi U V2, A' U A2). An st- digraph is a digraph
 with exactly one source and exactly one sink with an arc connecting
 them. If we replace some edges of a graph G with independent paths
 between their ends so that none of these paths has inner vertex on
 another path in G, the resulting graph is called a subdivision of G. Let
 e = xy be an edge of a graph G = (V,E). By G /e we denote the graph
 obtained from G by contracting the edges into a new vertex ve, which
 becomes adjacent to all the former neighbors of x and y. A minor of
 a graph G can be obtained from it by first deleting some vertices and
 edges, and then contracting some further edges. Notice that any minor
 of a planar graph is planar.

 By a surface we mean a two-dimensional connected compact manifold
 like sphere and torus.

 Now we restate some well-known results for upward embedding on
 the plane and the sphere which play key roles in the proof of our main
 results.

 Theorem 2.1 [4]. A digraph D has an upward embedding on the
 plane if and only if it is a spanning subdigraph of an st-digraph whose
 underlying graph is planar.

 Theorem 2.2 [10]. A digraph D has an upward embedding on the
 sphere if and only if it is a subdigraph of an acyclic single source and
 single sink digraph whose underlying graph is planar.

 We now introduce two different embeddings of the torus, which we
 use for the problem of upward embedding.
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 110 A. DOLATI, S. M. HASHEMI, AND M. KHOSRAVANI

 Our definition of horizontal and vertical tori is based on the concept
 of the surface of revolution [7]. We define the horizontal torus as
 the surface obtained by revolution of the curve c: (y - 2)2 + (z - l)2 = 1
 round the line L : y - 0 as its axis of revolution in the yz- plane. In
 this case we refer as inner layer to that part of resulting from the
 revolving of the part of c in which y < 2. The other part of resulting
 from the revolving of that part of c in which y > 2 is called outer layer.
 The curves generating from revolving points (0, 2, 0) and (0, 2, 2) round
 the axis of revolution are minimum and maximum of the torus and are

 denoted by cmm and cmax, respectively. It is obvious that cm in and cmax
 are common between the inner layer and the outer layer.

 We also define a vertical torus Tv as the surface of revolution that
 results from revolving the curve c' : (x - l)2 + (z - l)2 = 1 round the
 line L' : z = 3 in the xz- plane. In this case b = (1,0,0) is the single
 minimum point of Tv, s = (1,0,2) and st = (1,0,4) are its saddle
 pints, and t = (1,0,6) is its single maximum. We also refer to that
 part of Tv with nonnegative y coordinates as the positive portion and
 to the part of it with nonpositive y coordinate as the negative portion.
 Note that c' and c" : (x - l)2 + (z - 5) = 1 in the xz- plane are common
 between the positive portion and the negative portion.

 A parallel on T h or on Tv is the intersection of the surface with a
 plane orthogonal to its axis of revolution. A parallel may consist of
 two curves. In this case, for simplicity, we refer to each of them as a
 parallel.

 Consider the orientations of these simple closed curves on Tv and
 T*, whose projections on the xy- plane are also simple closed curve. We
 denote the family of these curves by C. An orientation on c G C is called
 clockwise ( counterclockwise ) orientation if the inherited orientation of
 its projection on the xy- plane is clockwise (counterclockwise).

 3. Some characteristics of digraphs that have an upward
 embedding on T^. In this section we concentrate on the upward
 embedding on T^. We first introduce a partition of the arcs of a digraph
 into equivalence classes with this special property that whenever an arc
 of a class is drawn on a layer (inner or outer) of T^, the other arcs in
 the same class must be drawn on the same layer; otherwise, the upward
 property would not be satisfied.
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 ON THE UPWARD EMBEDDING ON THE TORUS 111

 FIGURE 1. Th and T„.

 Definition 3.1. Given a digraph D = (V^A), we say two arcs
 a, a' G A(D) are related by relation R denoted by aRa' if they belong to
 a directed path or there is a sequence Pi, P2, . . . , Pk(k > 2) of directed
 paths with the following properties:

 (i) a e P' and a' e Pk .

 (ii) Every P¿, ¿ = 1, . . . , fe - 1, has at least one common vertex with
 Pj+i which is an internal vertex.

 Applying Definition 3.1 one can easily verify the following proposi-
 tions.

 Proposition 3.2. Given a digraph D = (V,A), the relation R is an
 equivalence relation on the set of arcs A(D).

 Proposition 3.3. Let a = (u, v) be an arc of a digraph D which
 belongs to class C . Then all incoming arcs to u and all outgoing arcs
 from v also belong to class C .

 Proposition 3.4. In a digraph D , the elements of every two distinct
 classes C and C' are connected just via sources and sinks.

 Theorem 3.5. Given a digraph D. In every upward embedding of
 D on Thy all arcs that belong to the same class must be drawn on the
 same layer.
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 112 A. DOLATI, S. M. HASHEMI, AND M. KHOSRAVANI

 Proof. Suppose that D has an upward embedding on T', and let a
 and a' be two arcs of it that belong to a class. We distinguish two
 cases: (i) a and a' belong to a directed path. In this case they must
 be in a layer. Otherwise, this path passes through a maximum point
 of Th in an upward embedding that is impossible, (ii) Assume that
 they do not belong to any directed path and they are related via a
 sequence of length two of paths, say (Pi ^2). Suppose that v is the
 common internal vertex of P' and P27 in this case a and a' belong to two
 subpaths P[ and Pļ (or P" and Pļ') of P' and P2, respectively, which
 are terminated at v (or started from v). Let a" be an outgoing arc from
 (or an incoming arc to) v. Since a and a" belong to the directed path
 P[ U a" (or a" U P"), they are drawn on a same layer and since a' and
 a" belong to the directed path Pļ U a" (or a" U Pl¡) they are drawn on
 the same layer. So a and a' are drawn on the same layer. The case in
 which the length of the sequence that relates a and a' is more than two
 can be easily verified by induction. □

 Corollary 3.6. If a digraph D has an upward embedding on the
 horizontal torus , then the underlying graph of every class must be
 planar.

 It is not difficult to see that the reverse of the last corollary is not
 true. Moreover, it may be impossible to find an upward embedding of
 a digraph on the horizontal torus, even if the induced subdigraph of
 each equivalence class has an upward embedding on the plane. For an
 example, see Figure 2.

 FIGURE 2. A digraph and the induced subdigarphs of its equivalence classes.
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 ON THE UPWARD EMBEDDING ON THE TORUS 113

 4. Upward embedding testing on the horizontal torus for
 single source and single sink digraphs. In this section we present
 an algorithm for testing whether an acyclic digraph D with a single
 source s, and a single sink t , has an upward embedding on the horizontal
 torus. Let Ci, C2, . . . , Ck be the equivalence classes of the arcs of D
 with respect to the relation defined in Definition 3.1. We denote the
 induced subdigraphs of C¿ by for i = 1, ... k. Recall that Di U Dj
 where l<i<j<k is a, subdigraph of D resulting from identifying
 the common source and the common sink of Di and Dj. Since D is
 acyclic, all Z)¿s are acyclic, too. Also, due to Proposition 3.4, we have
 Di fi Dj = {5, t}. In the rest of this section we freely use the same
 notation as above.

 Since each Di is acyclic and has only one sink and one source, if
 it is planar, by Theorem 2.2 we can deduce that Di has an upward
 embedding on the sphere. The following lemma is a generalization of
 this fact.

 Lemma 4.1. If the underlying graph of H = Dix U Dì2 U ... U Dim ,
 where 1 < z'i, ¿2, . . . , zm < k, is planar , then it has an upward embedding
 on the sphere.

 As a result we state that if two sets of indices, say ,iP}
 and {ji,j2,... construct a partition on {1,2,... ,&}, and the
 underlying graphs of H = Dh U DÍ2 U ... U Dip and H' - Djx U D j2 ... U
 Djq are both planar, then each of them has an upward embedding on
 the sphere and consequently has an upward embedding on a layer of
 the horizontal torus. Since H D H' = {s,¿}, we can deduce that the
 digraph D has an upward embedding on the horizontal torus.

 The following lemma shows the necessary and sufficient condition for
 each of jD¿s to have an upward embedding on the plane.

 Lemma 4.2. The underlying graph of Di + (5, t) is planar if and
 only if Di has an upward embedding on the plane.

 Let D have an upward embedding on T^. Which pair of D¿s cannot be
 drawn simultaneously on a same layer? The following lemma answers
 this question.
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 114 A. DOLATI, S. M. HASHEMI, AND M. KHOSRAVANI

 Lemma 4.3. Suppose that D has an upward embedding on T^. If
 Di U Dj, 1 < i < j < k, has no upward embedding on the sphere , then
 Di and Dj are not in the same layer.

 The following lemma has an important role in the algorithm.

 Lemma 4.4. If Di does not have an upward embedding on the plane,
 then in any upward embedding of D on T^, Di and Dj, 1 < j < k,
 i / j, cannot be drawn on the same layer.

 Proof The underlying graph of Di + (s,t) is the minor of the
 underlying graph of Di U Dj for each i < j < k. On the other hand,
 by Lemma 4.2, the underlying graph of Di + (s, t) is not planar, so the
 underlying graph of the digraph Di U Dj is not planar. That means
 Di U Dj does not have an upward embedding on the sphere. Therefore,
 Di and Dj cannot be in the same layer in any upward embedding on
 TV □

 Now we state a theorem that is the basis of the correctness of our

 algorithm.

 Theorem 4.5. Suppose that D is a single source and single sink
 acyclic digraph , and let Ci, C2, . . . , Ck be the equivalence classes of its
 arcs with respect to the relation R. Also suppose that the digraphs
 £>1, £>2, . . . , Dk are the induced subdigraphs on C', C2, . . . , Ck, respec-
 tively. The digraph D has an upward embedding on T h if and only
 if the underlying graphs of Di s are planar and either k < 2 or there
 is only one induced subdigraph that has no upward embedding on the
 plane.

 Proof. Suppose that the underlying graphs of DiS are planar. If
 there are only two classes, since their induced subdigraphs are planar
 and acyclic and they have one source and one sink, by Theorem 2.2
 each of them has an upward embedding on the sphere. So we embed
 upwardly one of them on the inner and the other on the outer layer
 of Th separately, then attach them together via the common source
 on cm in and the common sink on cmax. In the case that the induced
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 ON THE UPWARD EMBEDDING ON THE TORUS 115

 subdigraphs of the equivalence classes are upward planar, by using
 Lemma 4.1 one can deduce that D' U D2 U • • • U has an upward
 embedding on the sphere, so it can be embedded on a layer of the
 horizontal torus. If just one of the induces subdigraphs is not upward
 planar, then in this case to gain an upward embedding, we embed it
 on a layer of and embed the rest of them on the another layer and
 identify their sources on cmin and their sinks on cmax-

 To prove the converse, Suppose that D has an upward embedding on
 TV According to Corollary 3.6, the underlying graph of the digraph
 Di, i = 1 is planar. Consider the subdigraphs of D that
 are embedded on the inner and the outer layers of T^. If the arcs
 of these subdigraphs consist of just two or less equivalence classes,
 by Theorem 3.5, nothing remains to prove. So suppose that k , the
 number of equivalence classes, is more than two. In that case we show
 that there is at most one of them that has no upward embedding on
 the plane. Suppose, for the sake of contradiction, that there are at
 least two subdigraphs Dix and DÌ2Ì 1 < ix < i2 < k, that have no
 upward embeddings on the plane. By Lemma 4.4 each of them must
 be embedded, individually, on a layer of in any upward embedding
 of D. On the other hand, since k > 2, there is a subdigraph D{z
 distinct from Dix and DÌ2. By Lemma 4.4, Diz cannot be embedded
 on any layer of T^. That means D has no upward embedding on T
 a contradiction. □

 We use the last theorem in the following algorithm to decide whether
 a single source and single sink digraph has an upward embedding on
 the horizontal torus.

 Algorithm: Upward embedding testing

 INPUT An acyclic single source and single sink digraph D = (V, ^4).

 OUTPUT YES or NO, based on whether or not D has an upward
 embedding on the horizontal torus.

 1. Find all equivalence classes Ci, ... , of A with respect to the
 relation R and construct their induced subdigraphs Di, . . . , D &.

 2. if there is any Di , i = 1, . . . , k, whose underlying graph is not
 planar, then answer: =NO
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 3. else if k < 2 then answer: = YES

 4. else if r < 1 (2here r is the number of DiS for which the underlying
 graph of Di + (s,¿) is not planar) then answer:=YES

 5. else answer:=NO

 6. return answer

 The correctness of the algorithm is obvious with respect to the preced-
 ing theorem. Suppose that n and m are the numbers of vertices and arcs
 of the given acyclic digraph, respectively. To find the time complexity
 of the algorithm, note that the construction of D' , D<i , . . . , D^ can be
 done in 0(ra + n). Then, if we show the number of vertices in Di by
 planarity testing of the underlying graphs of every Di and Di + (s, ť)
 can be done in 0(n¿) by Hopcroft and Tarpan algorithm [11], and since
 Yli=i ni - n + 2k - 2 and k < m, we have Yli=i ni - 71 + ~ 2. So
 it takes 0(m + n) time and we have:

 Theorem 4.6. Let D be an acyclic single source and single sink
 digraph with n vertices and m arcs. There is an algorithm that tests
 whether D has an upward embedding on the horizontal torus in 0(m+n)
 time.

 FIGURE 3. A digraph and its upward embedding on the vertical torus.
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 ON THE UPWARD EMBEDDING ON THE TORUS 117

 5. The relation between horizontal and vertical tori. Recall

 that, unlike graph embedding on a surface which completely relies on
 the topology of the surface, the problem of upward embedding of a
 digraph on a surface depends not only on the topological properties
 of the surface but also on the specified embedding of that surface in
 R3. In order to verify this fact, in this section we shall show that if a
 digraph has an upward embedding on the horizontal torus then it has
 an upward embedding on the vertical torus whereas the converse is not
 true.

 For example, consider the digraph and an upward embedding of it on
 Tv that are shown in Figure 3. This digraph does not have an upward
 embedding on T^, because all its arcs are in the same class and the
 underlying graph of the induced subdigraph on this class is not planar.
 So, due to Corollary 3.6, it does not have an upward embedding on T h-

 Now we prove one of our main results that shows the relation between
 T h and Tv with respect to the upward embedding problem.

 Theorem 5.1. If a digraph D has an upward embedding on the
 horizontal torus T^ then it has an upward embedding on the vertical
 torus Tv.

 Proof. Suppose that D has an upward embedding on T^. Let Din
 and Dout be the induced directed subgraphs on the vertices on the
 inner and the outer layers, respectively. We shall construct an upward
 embedding of Dm and Dout on the positive and the negative portions
 of T„, respectively. Suppose that Dm is not the empty graph. Let
 Pi,P2, - ,Pk be the parallels (except cmm and cmax) that pass through
 at least one vertex of Dm . We suppose that they are indexed such that
 if z < J then height (P¿) < height ( Pj ), where height is a function
 that assigns to a parallel the common z-value of the coordinates of
 its points. If there is no parallel with the above conditions, we let
 k = 0. We let Po = Cmin and Ą+i = cmax. For any arc of Din
 whose endpoints are on two nonconsecutive parallels, we consider its
 intersection points with other parallels as dummy vertices. Then we
 assign a bottom to top direction to the^ new edges. We denote the
 resulting subdivision digraph of Dm by Dm (If none of the arcs of Dm
 has been divided, obviously Din = Din). We intersect the positive
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 portion of Tv with the planes Z{ - ( 2i/k + 1) + 2, i = 0, . . . , k + 1, and
 denote the resulting curves by L{. Let v', . . . , v 1 be the vertices that
 appear in the cyclic order when we traverse Pi on in the clockwise
 direction. We put the vertices v', . . . , vlmi as the copies of them on Li
 such that the counterclockwise order of v' , . . . , vx on Li is the same
 as the clockwise order of v' , . . . , v%m. on Pi . Because of the roles of
 the curves that pass through the saddle points of Tv in the proof, to
 distinguish them we refer to Lo and Lk+i by LSb and LSt , respectively.
 We put the copies of v J and if they exist, on saddle points
 and st, respectively. Moreover, we can assume that the copies of the
 vertices on LSb and LSt are distributed uniformly.

 Similarly, we obtain Dout and then put copies of its vertices on the
 negative portion of Tv with slight changes in the above method. These
 changes correspond to the order of the distribution of the vertices such
 that the clockwise order of the vertices on each parallel is the same as
 the clockwise order of their copies on the corresponding curve.

 Notice that any arc of Dm and Dout connects a pair of vertices on
 two consecutive parallels. Thus, the copies of its endpoints are on two
 consecutive L¿s in T„. On the other hand, we know that the order
 of appearance of vertices on any parallel is the same as the order of
 appearance of their copies on the corresponding curve in Tv. So^we
 can connect the copies of the endpoints of any arc of Dm and Doxlt
 by a monotonie arc without crossing other arcs that have been drawn.
 After doing that, we have upward embeddings of Dm and DOVLt on the
 positive portion and the negative portion of Tv, respectively. Now, we
 replace any path whose internal vertices are dummy vertices by an arc.
 Finally, we have upward embeddings of D[n and Dout on the positive
 portion and the negative portion of Tv , respectively.

 Now we identify the two copies of the vertices on cmļn and cmax, if
 they exist, to gain an upward embedding of D on T„. Suppose that
 t is an arbitrary sink of D on cmax and t' and t" are two copies of it
 on the positive and the negative portion of Tv. Because the copies of
 the vertices on cmax are uniformly distributed, the points t' and t" are
 on the same parallel, see Figure 4. Suppose that t'" is the intersection
 point of this parallel with the curve c", which was defined in Section 2.
 Assume that r is the number of the incoming arcs to t'. If r = 0 we
 just replace t' by t'". Otherwise, let wt be the resulting curve of the
 intersection of the positive portion of Tv with the plane z = 4 - e.
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 ON THE UPWARD EMBEDDING ON THE TORUS 119

 We choose e > 0 small enough such that there are two parallels at
 distance e from each other which together with wt and c" bound a
 region of Tv that contains t' and intersects only the incoming arcs of
 t' and intersects no arcs except all incoming arcs of t'. We denote this
 portion by 1Z (the gray region of Figure 4). Suppose that xi, . . . ,xr
 are the intersection points of the incoming arcs of t' with wt regarding
 left to right direction. We denote the incoming arc of t' containing
 xi by a¿. Next, for every k = 2, ... , r, we remove (#&,£') from
 and continue the arc a' from t' to t'" on the parallel containing t'.
 Suppose inductively that the arcs ai,... , a/ have been extended to
 t'" as incoming arcs of it. The remaining portion of the arc 1 is
 continued to t'" by a monotonie curve starting at point #/+ 1 going
 closely to the extended arc a/, such that the points of the added curve
 (except £/+ 1 and t'") remain in Int (7£). That means we replace t' by
 t'" . If we repeat the above procedure we can replace t" , the other
 copy of on the negative portion of Tv by t'" . Similarly, we identify
 the copies of the sources on cm[n on. c', that was defined in Section 2,
 properly and obtain an upward embedding of D on Tv.

 FIGURE 4. The region 11.
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 120 A. DOLATI, S. M. HASHEMI, AND M. KHOSRAVANI

 6. Conclusion and some open problems. In this paper, we
 have introduced horizontal torus and vertical torus Tv and have
 shown that the class of digraphs that have upward embedding on is
 a proper subset of the class of digraphs that have upward embedding
 on Tv. Moreover, we have presented a polynomial time algorithm for
 upward embedding testing of the single source and single sink digraphs.

 The following are some open problems:

 1. Is it possible to find a polynomial time algorithm for upward
 embedding testing of a given digraph on or on Tv?

 2. Characterize all digraphs which admit upward embedding on
 or on Tv.
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